Limits of conical Kähler-Einstein metrics on rank one horosymmetric spaces - Université de Montpellier
Article Dans Une Revue Bulletin of the London Mathematical Society Année : 2024

Limits of conical Kähler-Einstein metrics on rank one horosymmetric spaces

Résumé

We consider families of conical Kähler-Einstein metrics on rank one horosymmetric Fano manifolds, with decreasing cone angles along a codimension one orbit. At the limit angle, which is positive, we show that the metrics, restricted to the complement of that orbit, converge to (the pull-back of) the Kähler-Einstein metric on the basis of the horosymmetric homogeneous space, which is a projective homogeneous space. Then we show that, on the symmetric space fibers, the rescaled metrics converge to Stenzel’s Ricci flat Kähler metric.
Fichier principal
Vignette du fichier
Stenzel_bubbles.pdf (417.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04258511 , version 1 (25-10-2023)

Licence

Identifiants

Citer

Thibaut Delcroix. Limits of conical Kähler-Einstein metrics on rank one horosymmetric spaces. Bulletin of the London Mathematical Society, 2024, 56 (7), pp.2514-2528. ⟨10.1112/blms.13069⟩. ⟨hal-04258511⟩
15 Consultations
21 Téléchargements

Altmetric

Partager

More