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LIMITS OF CONICAL KAHLER-EINSTEIN METRICS ON RANK ONE
HOROSYMMETRIC SPACES

THIBAUT DELCROIX

ABSTRACT. We consider families of conical Kahler-Einstein metrics on rank one horosymmet-
ric Fano manifolds, with decreasing cone angles along a codimension one orbit. At the limit
angle, which is positive, we show that the metrics, restricted to the complement of that orbit,
converge to (the pull-back of) the K&hler-Einstein metric on the basis of the horosymmetric
homogeneous space, which is a projective homogeneous space. Then we show that, on the
symmetric space fibers, the rescaled metrics converge to Stenzel’s Ricci flat Kéhler metric.

1. INTRODUCTION

Chi Li and Song Sun showed in [LS14] that there exists conical Kéhler-Einstein metrics on
P2, with conic singularities along a quadric D C P2, for cone angles 273, with 3 €]1/4,1].
Equivalently, there exists a (singular) Kihler-Einstein metric on the pair (P2, (1 — 8)D) for
B €]1/4,1]. Then they conjectured that these metrics converge in Gromov-Hausdorff sense to
the weighted projective space P(1,1,4), equipped with its orbifold Kédhler-Einstein metric. This
convergence is now well understood thanks to the machinery developped by Chen, Donaldson
and Sun to solve the Yau-Tian-Donaldson [CDS15|, but before that Chi Li used numerical
analysis to support the conjecture in [Lil5], and further observed numerically that the bubble
out of this convergence was the Z/2Z-quotient of the Eguchi-Hanson Ricci flat Kéhler met-
ric. Our purpose in this paper is to prove exactly (instead of only numerically) the bubbling
phenomenon in this case, and in a generalization to limits of conical Kéhler-Einstein metrics
on rank one horosymmetric varieties. The bubbles arising in our generalization are fibrewise
Stenzel’s Ricci flat Kdhler metrics on symmetric spaces of rank one.

The setting is the following. Let G be a connected complex semisimple group. We consider
a G-homogeneous fibre bundle X on a projective homogeneous space G/P, with fibers P-
equivariantly isomorphic to the unique equivariant compactification X of a rank one semisimple
group Go/Hp. In that situation, X possesses a unique prime G-stable divisor D, which is the
unique closed orbit of G. Assume that X is Kéahler-Einstein, and let [0,b[C [0, 1] be the set
of all s such that (X, sD) admits a singular log Kéhler-Einstein metric in ¢;(X). We denote
by ws a log Kéhler-Einstein metric on (X, sD) which is invariant under a maximal compact
subgroup K of G. Such metrics have conical singularities along D by [GP16].

Theorem 1.1. As s converges to b, the conical Kdihler-Einstein metrics ws restricted to X \ D
converge to the pullback of the Kdhler-FEinstein metric on G/P. Furthermore, restricted to
a symmetric fiber Go/Hy, and rescaled, they converge to Stenzel’s complete Ricci flat Kdhler
metric.

We note that the divisor D is a projective homogeneous space, and as such, is a Fano
Kahler-Einstein manifold. However in the general case considered here, it is not assumed to be
an ample divisor in X, or a multiple of the anticanonical divisor. The simplest example where
the fibration structure is non-trivial is given by P? x P2 equipped with the diagonal SLs-action,
see Example 2.3.

The proof relies on the translation of the equation governing the existence of K-invariant
log Kéhler-Einstein metrics to a single ODE. This is obtained through the convex geometric
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translation of Kéhler geometry of horosymmetric varieties obtained by the author in [Del20].
One then follows the strategy of [Dell7], inspired by [WZ04|, and already specialized to the
rank one case by Biquard and the author in [BD19]. The added input is to examine precisely
what fails in the existence result as s — b, and translate this into estimates on the sequence of
convex potentials.

As should be obvious from the proof, and comparison with [DH21]| for example, the same
methods should apply with very limited changes, to more general settings. For example, one
could use the same method to show that Stenzel’s metric appear in bubbling phenomenon for
various continuity paths or flows, such as the Kéhler-Ricci flow, or the twisted Kéhler-Einstein
continuity path for the existence of Kéahler-Einstein metrics. The methods apply as well on a
singular rank one horosymmetric variety, and in that setting we exhibited examples without
Kahler-Einstein metrics in [BD19].

Several generalizations of this work are of interest, let us comment on some of these to con-
clude the introduction. First, rank one horosymmetric varieties do not exhaust the possibilities
for cohomogeneity one manifolds. However, the Kéhler geometry of such manifolds in general
is not yet fully understood. We intend to fill this gap one day, and we expect Stenzel’s metrics
to stealth into this setting as well.

If one wishes to extend the picture to manifolds without symmetries, a natural replacement
to Stenzel’s metrics is provided by Tian-Yau’s asymptotically conical complete Ricci flat Kéhler
metrics on the complement of a divisor [TY91]. Biquard and Guenancia informed the author
that they studied this problem in general by gluing techniques (with a strategy analogous to
[BG22]), obtaining a wide generalization.

Finally, it should be noted that Tian-Yau’s metrics are constructed on the complement of a
smooth divisor, representing a multiple of the anticanonical line bundle. This is of course not
the only setting of interest, but the case of singular divisor for example, is wide open in general.
The construction by Biquard and the author of asymptotically conical Ricci flat Kédhler metrics
on rank two symmetric spaces, with singular tangent cones in [BD19], should be revisited with
the point of view of limits of conical Kéhler-Einstein metrics, and may provide further insights
on possible generalizations.

Acknowledgements. The author is partially funded by ANR-21-CE40-0011 JCJC project
MARGE and ANR-18-CE/0-0003 JCJC project FIBALGA. We thank Olivier Biquard, Henri

Guenancia and Chenyang Xu for discussions related to the topic of this note.

2. RANK ONE HOROSYMMETRIC MANIFOLDS, AND THEIR KAHLER GEOMETRY

We extract from the general setting of horosymmetric varieties in [Del20, DH21]| the Kéhler
geometry tools to translate our problem into the study of a single ODE.

2.1. Rank one horosymmetric manifolds. Let GG be a connected, semisimple complex al-
gebraic group. We always denote by the corresponding fraktur character the Lie algebra of a
group, for example, g is the Lie algebra of G.

Definition 2.1. An algebraic subgroup H of G is horosymmetric if there exists a parabolic
subgroup P of G, a Levi decomposition P = LP" of P and a complex Lie algebra involution o
of L such that

h=1"@p"
It is of rank one if furthermore the reductive symmetric space L/L° is a rank one symmetric
space.

From now on we assume that G, P = LP“, H are fixed, with the assumption that the action
of L on L/L N H does not factor through a torus. If H is a horosymmetric subgroup of rank
one, we also say that G/H is a rank one horosymmetric homogeneous space.

One should be aware that we do not require the action of L to be effective, nor to have a
finite kernel, otherwise the class of rank one horosymmetric spaces would be reduced to rank
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one symmetric spaces. Thanks to the classification of rank one symmetric spaces, the last
sentence of the definition means that L admits a semisimple quotient GGy such that the action
of L on L/L N H factors through Gy, with isotropy group Hy, and up to isogeny, Gy and H)
are in the following list:

e Gg = SOy42 and Hy = SOy41, for some n > 0

e Gy = SL,4+1 and Hy = GL,,, for some n > 2

e Gy = Spy,, and Hy = Spy X Spy,,_9, for some n > 3

[ ] Go = F4 and H() = SOg

The first case with n = 0 is special: in this case Gyg = SOy ~ C* is a torus, and the

homogeneous space si called horospherical (of rank one). We will not consider this case in the
present paper since in that situation, conical Kéhler-Einstein metrics exist only for one given
cone angle, so it does not make sense to take a limit.

Remark 2.2. We can describe G/H as the fiber bundle with fiber G/ Hj associated to the P-
principal fiber bundle G — G/P. This is the quotient of G x G/ Hy by the action of P given by
p-(g9,z) = (gp~ ', p-x) where the action of P on Gg/Hj is via the morphisms P/P% ~ L — G.

Example 2.3. Let G = SL3 and consider the natural diagonal action on P? x P?. There are
two orbits: the diagonal and its complement. The complement P? x P2\ diag(P?) is a rank one
horosymmetric space. Indeed, consider the stabilizer H of the point [1:0:0],[0:1:0]). It is
the subgroup generated by the maximal torus T' of diagonal matrices, and the unipotent radical
of the parabolic subgroup P of G, which is the stabilizer of the hyperplane {z = 0} in P? with
homogeneous coordinates [z : y : z]. We can choose the Levi subgroup L = S(GLg x GL;) of
block diagonal matrices in P. Then LN H = T, the action of L on LN H factors through PGLs
and the rank one symmetric space fiber is PGLy / PSOa.

2.2. Maximal compact group action. As in [Del20, DH21|, we make the following choices
to reduce Kéahler geometry of G/H to convex geometry and combinatorics.

Choose Ty a torus in L, maximal for the property that o acts on Ty as the inversion. Choose
T a maximal o-stable torus of L containing Ts. Let () denote the parabolic subgroup of G
which is opposite to P, that is, @ N P = L. Let B be a Borel subgroup of G with T'C B C )
such that, if 8 is a root of BN L (with respect to the maximal torus T'), then either o(8) = 8
or —o(f) is a root of BN L. We denote by ® the roots of B, by ®gu the roots of Q“, and by
7} the roots of BN L which are not fixed by o.

Fix K a maximal compact subgroup. Let a; denote the real vector space t; N ¢t.

Under the rank one assumption, the torus Ty is of complex dimension one, and az is a one
dimensional real vector space. The restriction of any root of ®} to as is non-zero, and they
all define the same non-negative closed half-space af C as, called the positive restricted Weyl
chamber.

Proposition 2.4. The image of the positive restricted Weyl chamber af under the map g —
G/H,x — exp(z)H is a fundamental domain for the action of K on G/H.

2.3. Invariant metrics as functions. On the homogeneous space G/H, we will work with
metrics in (a multiple of) the anticanonical class ¢ (K 5/1H) It should be noted that in general,

the space of K-invariant Kéhler classes up to scaling may be of positive dimension.
We let xi be the character of H defined by

XH = Z «

a€<I>s+U<I>Qu o

We will consider it as the o-invariant element of t* defined by
at+aoo
we Y e

CMECD? Uq)Qu
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This is the isotropy character of Ka/lH, that is, the character corresponding to the one-
dimensional representation of H defined by the fiber at the identity coset. We let also =«
denote the quotient map G — G/H.

Let w be a K-invariant closed real (1,1)-form in ¢ (K 5/1 ) Recall that it is the curvature of a

K-invariant hermitian metric A on K 5/1 ;- Note that h is well-defined only up to a multiplicative
constant.

Let v be the primitive generator of X*(T'/T N H) which evaluates non-negatively on elements
of af. Let v* be the unique element of a such that v(v*) = 1.

We choose € a non-zero element of the fiber of K 6/1H at the identity coset. Define uy, : R - R
by

up(x) = — Injexp(z7y) - &|p-

This is an even function which fully determines h, hence w. Even though it is only determined
by w up to an additive constant, we will denote by wu,, the function associated to an arbitrary
choice of h and &.

The form w is Kéhler if and only if u, > 0 and /() < minaes,,. l67:8

w(y,a)

Proposition 2.5. Assume that w is Kdhler, then up to an additive constant, ugic() is defined
by, for x >0,

[T #laxi — (@)

CMG‘I?'Qu

1 " K(B, v (z)7)
(1) URiew) (2) = —5 In | u"(2) J] = :
R 2 seot sinh(25(xzv*))

S

From a direct application of [Del20], in the product in formula (1), there should be the factor

] exe

aE‘PQu

but in our situation, this is equal to 1 for all x € R. Indeed, the action of K induces, on ag, the
action of the restricted Weyl group, which in our rank one case is the reflection with respect to
the origin. By [Ros79|, this reflection on a; is induced by the action on t of an element w of the
Weyl group of L with respect to T. Any element of this Weyl group induces a permutation of

the roots in ®gu. As a consequence, ) acdou is invariant under w, and thus for any = € R,

S actge U071 = Tacag, o—277) = 0.

2.4. On the toroidal equivariant compactification. Any rank one symmetric space G/ H
admits a unique Gy-equivariant compactification Xy, which is smooth (it is either a projective
space or a quadric). In this paper, for a rank one horosymmetric space G/H = (G x Gy/Hy)/P,
we consider the G-equivariant compactification X given by the fiber bundle (G x Xj)/P with
fiber X, called the toroidal compactification. By definition, it is smooth as well.

Example 2.6. For G/H = SL3 /(T, P*) = P? x P?\ diag(P?), the toroidal compactification is
X = Bldiag(P2)(P2 X I[DQ)

In general there can be more than one G-equivariant compactification, as is obvious in the
above example: P? x P? is also an equivariant compactification. However, for all compactifica-
tions, there is only one added orbit, and it is a divisor only in the toroidal compactification.

Let D = X \ (G/H) denote the closed G-orbit in X, which is the unique G-stable prime
divisor on X.

Let )\ac =14+ ZO&G@?U<I>Qu Oé(")/*) =1+ Zae@j Oé(’)/*)

Proposition 2.7. A smooth K -invariant Kdhler form w in cl(Ké/lH) extends to X as a locally
bounded Kdihler current in ¢1(X) — s[D] if and only if ul,(Ry) = [0, Age — 8.



LIMITS OF CONICAL KAHLER-EINSTEIN METRICS ON RANK ONE HOROSYMMETRIC SPACES 5

2.5. EDO and their translation. In view of the previous description of K-invariant Kéhler
metrics by one-variable real functions, the existence of canonical K&hler metrics on rank one
horosymmetric varieties can be encoded by ODEs. We give explicitly the equation for the
metrics that will be of interest for us. To shorten the notations, we introduce

(2) vp) = [ #B.pv) [[ #(exu—pv)

peaf aEPqQu

and

(3) J(z) = [] sinh(28(y")z), j=-InJ
ped’

Proposition 2.8. A K-invariant singular Kdhler-Einstein metric ezists on the pair (X, sD)
if and only if there exists a smooth, even function u : R — R such that v"(R) €]0,+o0],
W' (Ry) = [0, Aae — s, and for all z > 0,

(4) uv(u') = e~ (2uts)

Furthermore, this function is uniquely determined. Finally, there exists such a function if and
only if

Aac—S Aac—S8
(5) /0 po(p)dp > (1 — Aac) /0 v(p) dp

We refer to [BBET19] for the full definition and caracterization of singular Kahler-Einstein
metrics, and to [BD19] for the proof of criterion (5). We will go over a part of the proof from
[BD19] in the next section.

Proposition 2.9. Assume that G/H = Go/Hy, that is, G/H is a rank one symmetric space.
Then the K-invariant Kdhler metric w, wn the trivial Kdahler class cl(Kg/lH) 15 a Ricci flat
Stenzel metric if and only if

(6) W v(u)=CJ
for some C € R.

3. ESTIMATES BREAK

By Proposition 2.8, there exists a singular Kahler-Einstein metric on G/H as long as crite-
rion (5) is satisfied. Obviously, the set of s satisfying criterion (5) is bounded above by 1. We
assume that it is non-empty and denote its supremum (which is not a maximum) by b. Note
that it is always non-empty in the case when G/H = Gy/Hy is a rank one symmetric space,
since in that case X is a projective homogeneous space, hence admits a Kéhler-Einstein metric
for s = 0. We will also impose throughout that s > 0. Although a lower bound is needed in the
proof, allowing negative values of s may allow to deal with more examples, when Xy does not
admit a Kédhler-Einstein metric. Since we do not know of the existence of such an example, we
settle with the lower bound s > 0.

For 0 < s < b, we denote by us the solution, and let

Vg i=2Ug +J
In view of the expression of j, we know that v, is smooth, strictly convex on |0, +oc[, with
v.(]0,+00[) =] — 00,1 — s[. In particular, since 1 — s > 0, vs admits a unique minimum. We
define mys and x4 by

ms = min vs = vs(xs)

10,400]

We define also ys; and d5 by
[ys — 05, ys + 65] := u;l([ms,ms +1])

Lemma 3.1. There exist a constant eo > 0 independent of 0 < s < b such that ys — d5 > eo.
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Proof. Let 0 < x < 1 and consider the difference
vs(2) — (1) = 2(us(2) — us(1)) + ji(x) — (1)
Since us is Age-Lipschitz (even Aqe — s-Lipschitz), and v4(1) > ms, we have
Vs(x) — My > _>\ac + j(IL’) - ](1)

The right hand side is a function of x which is independent of s and we have
CN . X
il_r)rg)j(a:) = il_)l)% Z Insinh(28(y*)x) — +o0
pedt
hence there exists a €9 > 0 such that the right hand side is larger than 1 for = > es. O
Lemma 3.2. There exists 6 > 0 independent of 0 < s < b such that
[xs - ga Ts + S] C [ys — s, Ys + 53]

Proof. On [e2, +00], the derivative of v; is uniformly bounded:

7' (e2) < 2ul(e2)+5'(e2) = vi(ea) < Vj(w) = 2u (@) +5(x) <2(Nac—5)— Y 2B(y") <2(1—s)
pedd

We thus have a uniform Lipschitz bound on vg. Since vs(zs) = ms and [ys — ds,ys + ds] =
v71([ms, ms + 1]), this yields the result. O

Lemma 3.3. There exists a constant C > 0 such that for 0 < s < b,
5, < Ce?

Proof. By assumptions on the solution ug, we know that v(u}(z)) is positive for z €]0, 400 for
any s € [0,b]. Let

For s € [0, b] fixed, consider the function f defined by
f(z) =vy(x) — Coe ™ ((z —ys)? — 6%) —my — 1
By direct computation, we have
" (x) = 2u} (z) + 5" (x) — 2Cpe ™1
= 2u)(x) — 2Cpe ™!
> 2 eiVS(x)
v(uf(z))
> 20, (671/3(:1:) - efmsfl)

— 2006_7”5_1

As a consequence, f is convex on [ys — Jds,ys + ds]. Since f(ys — 0s) = f(ys + 0s) = 0, by
convexity we deduce f(ys) < 0 and thus

vs(ys) < —Coe_ms_lég +mg+1

Since v4(ys) > ms by definition of mg, we gather

1
2
05 < Goa—mT
hence the result. O

Lemma 3.4. We have, for any s € [0,b],

)\acfb o0 )\ac
0<V_:= / v(y)dy < / e dr <Vy:= / v(y) dy
0 0 0
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Proof. By equation (4), and the change of variable y = u/,(x), we have

[e'e] 0o Aac—S
/ e dx = / v(ul)ull de = / v(y) dy
0 0 0

hence the result. ]
Lemma 3.5. There exist a constant Cy, independent of s € [0,b] such that
‘ms‘ <Cn

Proof. Write

+o0 +o0
(7) / eV =e / e M Vol(vg t([ms, ms + A])) dA
0 0

We will obtain both an upper bound and a lower bound, and compare the two.
By convexity, v; ! ([ms, ms+]) is included in the A-dilation with center x of [ys — &5, ys +Js),
hence
Vol(v; H([ms, ms + A]) < 26:\

“+o0 —+o0
/ e s < 2(556_’”3/ e M d\
0 0

< 20,e”™Ms

mg

<2Ce 2
by Lemma 3.3. By Lemma 3.4, we thus have

Integrating yields

mgs

0<Vo<2Ce 2
in other words,
ms < 2In(2C/V_)
On the other hand, for A > 1, we have [z -0, zs40] C v ! ([ms, ms+1]) C v; ' ([ms, ms+ ),
hence )
Vol(v; ([ms, ms + N]) > 20

Now putting this in formula (7) yields

“+o00 _ +o0
Vi> / e Vs > 256_7“3/ e M d\
0 1

> 2e s
In other words, .
ms > In(26/Vy) — 1
O

Lemma 3.6. There are constants Cy, l1, ly independent of s € [0, b] such that 65 < Cs and for
all 0 < z < 400,

Vt<1‘) > lﬂ.’L‘ — 1‘3‘ + lo
Proof. The bound for ds follows from the two previous lemma. As a consequence, we have
vs(xs £2Cs) > mg + 1. By convexity, we deduce that vg(z) > ‘902%:' + m, for x not in the
interval [xs — 2Cs, x5 + 2Cs]. Since vs > mg everywhere and ‘xz%’;sl < 1 on the latter interval,

we obtain the result, with [y := ms — 1 and [; := 27(175 O
Now we draw the first consequence of the non-existence of solutions at s = b.

Lemma 3.7.
lim x4 = +00
s—b
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Proof. Assume the contrary, then there exists a subsequence of 0 < s < b such that s — b
and x5 — xp €|eg, +0o[. In this case, by the same arguments as in [BD19], the functions ug,
converge locally uniformly to a solution of equation (4). This is impossible. O

4. COLLAPSING

Let r = Card(®}) be the order of vanishing of v at 0. Note that r + 1 is equal to the
dimension of the symmetric space fiber Go/Hj.

Lemma 4.1. There exists a strictly increasing function V=1 : [0, +-00[— [0, +00[ and a constant
C_1 > 0, such that for any q € [0, +o0],

g1 <V7lg) < Cyg

C_q
and for any s € [0,b[, for any x € [0, +o0],

ul(z) =V1 (/ e s W) dy>
0

Proof. By definition of v and A4, we know that v is continuous on [0, Asc], positive on |0, Agc].
By definition of r, we deduce that there exists a constant C,, > 0 such that for any p € [0, Age—1],

1
(8) Fp’” <w(p) < Cyp"

Let V : [0, Aac] — R be the primitive of v which vanishes at 0. For p € [0, \se — 1], we have

C
r+1 < V < v r—+1
r+nc,’ = () = =3P

Since v is positive on |0, Age[, V is strictly increasing on [0, As¢], and its inverse V=1 : V([0, Age]) —
[0, Age] is a strictly increasing function.

Let po €]0, Age — 1] be such that %PTH € V([0, A\ge — 1]) for any p € [0, pp]. Then applying
V~1 to the above inequality yields

1 C
V—l r+1 < <V—1 v r+1
((r+1)cvp )—p— rr1?
Cy ,r+1

Setting qq := 1Py~ we have, for 0 < ¢ < qo,

1
1\ m+1
<§ > g < VTG < (Gl + 1) g

Since V! is increasing and V~1(gg) > 0, we deduce that there exists a constant C'_; > 0 such
that for all ¢ € V ([0, Aac)),

g1 < VY(g) < C_igr

-1

We set V=1(q) := Cflqﬁll for ¢ € Ry \ V([0, Age)). This is an increasing function, albeit no
longer continuous, which still satisfies the above inequality.
Integrating equation (4) between x; < xo € [0, 400 yields

2

V(u (12)) — V(tl (1)) = / W) gy

1

2
Uy(wa) = V7! </ e W) dy>
0

In particular, for x; =0,
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Lemma 4.2. There exists a constant Cy, > 0 such that for any s € [0,b] and any x € [0, x],

1

—ZO r+1 1 1 1

0 < () — us(0) < Oy )
l1 l1

Proof. For 0 < z < x4, we can plug the uniform linear growth inequality from Lemma 3.6 in
the expression of v/, from Lemma 4.1 to get

u',s(as):V_1 /e_”s(y)dy>
0

As a consequence, by integrating we get, for 0 < z < zg,

0 < uufe) —ul0) = [ uilo)dy

xT —l r4+1
S/ C (S2) 7 et gy
0 h

1
7l T
<c, e\ p 41 (6%(171«5) _ 67%x3>
- l1 l1

O

The collapsing result follows immediately : for any M > 0, the functions us|j a1 — us(0)
converge uniformly to the zero function, hence the metrics associated to us converge to the
metric associated with the zero function, which is exactly the pullback of the Kéhler-Einstein
on the basis G/P.

5. CONVERGENCE TO STENZEL'S METRIC ON (RESCALED) SYMMETRIC FIBERS

Our main theorem follows from the more precise result.

Theorem 5.1. Consider the functions

2us(0)
ug = e (us — ug(0))

Then up to subsequence of s, they converge locally uniformly to an even, C? solution to the
equation

vo(u')u" = CJ
for some constant C > 0, with vo(p) = Haeéj k(a, py), hence they converge to the potential of

a Stenzel metric on the symmetric fiber.

Proof. Let M > 0. Since 3 — oo, we may as well assume that [0, M] C [0,z/2] for all
(sufficiently close to b) s. We assume for the first part of the proof that x € [0, M].
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We first derive uniform estimates for u,. By Lemma 4.1, and since us(0) < us(z) < ug(zs/2),
we have

V—l <6—2us(xs/2)/ J) < U/S(CC) — V—l </ e—2usJ> < V—l <€—2us(0)/ J)
0 0 0

1

1
1 ~ 2us(zs/2) x T+1 _ 2ug(0) x r+1
——e o+l </ J> <ul(r) < C_je” 1 (/ J>
C— 0 0
1 x _1 - _1
_ 2(us(zs/2)—us(0)) r+1 2us(0) r+1
—e a2 /J <ul(x)=e 1 ul(z) <Oy /J
C1 0 0

Since us(zs/2) — us(0) converges uniformly to 0 as s — b, and fox J is independent of s, we
obtain a uniform bound for «} on [0, M].
By integration from 0, since u,(0) = 0, we obtain a uniform bound for ug on [0, M] as well.
Turning to u”, we have, at least for x # 0,

hence

Finally,

1

S

2us(0) 2us(0) e 2u$( )J( )
- )

(.%') =e Usg ($) =e ! ( ( )

By inequality (8), we have

us(0) ¢ 2us(T) g 2us(z)
e%@etﬂ)SU%)<;Jpoi,(”mw
wg(x))"

Co(u(2))"

Plugging in the inequality for u/,(x) obtained above, we get

1 eg(us(o)_us(x))J(x) / J 1 < Q;/(l’) < CvCCle (ufi‘iuw ’U,s(x))J(x) / J 1
C,CT 0 0

Again, this provides a uniform bound on [0, M], since us(x) converges uniformly to us(0)
on [0,z4/2], and J(z) (fy J)~ 7 is a function on 10, 4+00[, independent of s, which extends
continuously to 0 in view of the order of vanishing of J at 0.

It follows from Arzela-Ascoli theorem that up to subsequence the u, converge locally uni-
formly in C* sense to a limit function w, on [0, +00]. From the equation, we deduce that the
convergence is actually in C? sense. It remains to check the equation satisfied at the limit.

For this, we consider first

viuy(@) = [T #B,ui@)y) ] wlexm — (@)

Bedt acdPqu
We have seen that u/, converges uniformly on [0,25/2] to 0 as s — b. As a consequence, the
factors corresponding to ac € ®gu converge to constants. In view of the relations u), = e~ ey ul,
and u” =e Shcn u”, passing to the limit in Equation (4) multiplied by e2s(©) yields
k(B,ul(x)y) [ wlenxm) =7
BedT acPgu
hence the result. O
REFERENCES

[BBE*19] Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi.
Kéhler-Einstein metrics and the Ké&hler-Ricci flow on log Fano varieties. J. Reine Angew. Math.,
751:27-89, 2019. 5

[BD19] Olivier Biquard and Thibaut Delcroix. Ricci flat Kéhler metrics on rank two complex symmetric
spaces. J. Ec. polytech. Math., 6:163-201, 2019. 2, 5, 8



LIMITS OF CONICAL KAHLER-EINSTEIN METRICS ON RANK ONE HOROSYMMETRIC SPACES 11

[BG22] Olivier Biquard and Henri Guenancia. Degenerating Kdhler-Einstein cones, locally symmetric cusps,
and the Tian-Yau metric. Invent. Math., 230(3):1101-1163, 2022. 2

[CDS15] Xiuxiong Chen, Simon Donaldson, and Song Sun. Kéhler-Einstein metrics on Fano manifolds. II:
Limits with cone angle less than 27. J. Am. Math. Soc., 28(1):199-234, 2015. 1

[Dell7]  Thibaut Delcroix. Kahler-Einstein metrics on group compactifications. Geom. Funct. Anal., 27(1):78-
129, 2017. 2

[Del20] Thibaut Delcroix. Kahler geometry of horosymmetric varieties, and application to Mabuchi’s K-
energy functional. J. Reine Angew. Math., 763:129-199, 2020. 2, 3, 4

[DH21] Thibaut Delcroix and Jakob Hultgren. Coupled complex Monge-Ampére equations on Fano horosym-
metric manifolds. J. Math. Pures Appl. (9), 153:281-315, 2021. 2, 3

[GP16] Henri Guenancia and Mihai Paun. Conic singularities metrics with prescribed Ricci curvature: general
cone angles along normal crossing divisors. J. Differ. Geom., 103(1):15-57, 2016. 1
[Li15] Chi Li. Numerical solutions of Kahler-Einstein metrics on P? with conical singularities along a smooth

quadric curve. J. Geom. Anal., 25(3):1773-1797, 2015. 1

[LS14] Chi Li and Song Sun. Conical Kéhler-Einstein metrics revisited. Commun. Math. Phys., 331(3):927—
973, 2014. 1

[Ros79] W. Rossmann. The structures of semisimple symmetric spaces. Can. J. Math., 31:157-180, 1979. 4

[TY91] Gang Tian and Shing Tung Yau. Complete K&hler manifolds with zero Ricci curvature. II. Invent.
Math., 106(1):27-60, 1991. 2

[WZ04]  Xu-Jia Wang and Xiaohua Zhu. Kéhler-Ricci solitons on toric manifolds with positive first Chern
class. Adv. Math., 188(1):87-103, 2004. 2

THiBAUT DELCROIX, UNIV MONTPELLIER, CNRS, MONTPELLIER, FRANCE
Email address: thibaut.delcroix@umontpellier.fr
URL: http://delcroix.perso.math.cnrs.fr/



	1. Introduction
	2. Rank one horosymmetric manifolds, and their Kähler geometry
	2.1. Rank one horosymmetric manifolds
	2.2. Maximal compact group action
	2.3. Invariant metrics as functions
	2.4. On the toroidal equivariant compactification
	2.5. EDO and their translation

	3. Estimates break
	4. Collapsing
	5. Convergence to Stenzel's metric on (rescaled) symmetric fibers
	References

