Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping
Résumé
The conversion of CO 2 into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO 2 into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C 2+ species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms. As a result, we achieve a high Faradaic efficiency for the C 2+ formation of ≈80% and full-cell energy efficiency of 20.3% with a specific current density of 261.4 mA cm −2 for C 2+ products.
Domaines
CatalyseOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|