Feasibility of Neovessel Embolization in a Large Animal Model of Tendinopathy: Safety and Efficacy of Various Embolization Agents
Résumé
Targeting neovessels in chronic tendinopathies has emerged as a new therapeutic approach and several embolization agents have been reported. The aim of this study was to investigate the feasibility of embolization with different agents in a porcine model of patellar tendinopathy and evaluate their safety and efficacy. Eight 3-month-old male piglets underwent percutaneous injection of collagenase type I to induce patellar tendinopathies (n = 16 tendons). They were divided into four groups (2 piglets, 4 tendons/group): the control group, 50–100 µm microspheres group, 100–300 µm microspheres group, and the Imipenem/Cilastatin (IMP/CS) group. Angiography and embolization were performed for each patellar tendon on day 7 (D7). The neovessels were evaluated visually with an angiography on day 14. The pathological analysis assessed the efficacy (Bonar score, number of neovessels/mm2) and safety (off-target persistent cutaneous ischemic modifications and presence of off-target embolization agents). The technical success was 92%, with a failed embolization for one tendon due to an arterial dissection. Neoangiogenesis was significantly less important in the embolized groups compared to the control group angiographies (p = 0.04) but not with respect to histology (Bonar score p = 0.15, neovessels p = 0.07). Off-target cutaneous embolization was more frequently depicted in the histology of the 50–100 µm microspheres group (p = 0.02). Embolization of this animal model with induced patellar tendinopathy was technically feasible with different agents and allowed assessing the safety and efficacy of neovessel destruction. Particles smaller than 100 µm seemed to be associated with more complications.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |