Fluorescent biosensors — Probing protein kinase function in cancer and drug discovery
Résumé
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Fluorescent biosensors constitute a class of imaging agents which have provided major insights into the function and regulation of enzymes in their cellular context. GFP-based reporters and genetically-encoded FRET biosensors, have been successfully applied to study protein kinases in living cells with high spatial and temporal resolution. In parallel, combined efforts in fluorescence chemistry and in chemical biology have enabled the design of non-genetic, polypeptide biosensors coupled to small synthetic fluorescent probes, which have been applied to monitor protein kinase activities in vitro and in more complex biological samples, with an equally successful outcome. From a biomedical perspective, fluorescent biosensor technology is well suited to development of diagnostic approaches, for monitoring disease progression and for evaluating response to therapeutics. Moreover it constitutes an attractive technology for drug discovery programs, for high content, high throughput screening assays, to assess the potency of new hits and optimize lead compounds, whilst also serving to characterize drugs developed through rational design. This review describes the utility and versatility of fluorescence biosensor technology to probe protein kinases with a specific focus on CDK/cyclin biosensors we have developed to probe abundance, activity and conformation. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).