Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions from Multispectral Images in Forest-Savanna Landscapes

Abstract : Precise accounting of carbon stocks and fluxes in tropical vegetation using remote sensing approaches remains a challenging exercise, as both signal saturation and ground sampling limitations contribute to inaccurate extrapolations. Airborne LiDAR Scanning (ALS) data can be used as an intermediate level to radically increase sampling and enhance model calibration. Here we tested the potential of using ALS data for upscaling vegetation aboveground biomass (AGB) from field plots to a forest-savanna transitional landscape in the Guineo–Congolian region in Cameroon, using either a design-based approach or a model-based approach leveraging multispectral satellite imagery. Two sets of reference data were used: (1) AGB values collected from 62 0.16-ha plots distributed both in forests and savannas; and (2) an AGB map generated form ALS data. In the model-based approach, we trained Random Forest models using predictors from recent sensors of varying spectral and spatial resolutions (Spot 6/7, Landsat 8, and Sentinel 2), along with biophysical predictors derived after pre-processing into the Overland processing chain, following a forward variable selection procedure with a spatial 4-folds cross validation. The models calibrated with field plots lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. Decomposing bias along the AGB density range, we show that multispectral images can (in some specific cases) be used for unbiased prediction at landscape scale on the basis of ALS-calibrated statistical models. However, our results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixelwise predictions, because of large relative RMSPE, especially above (200–250 t/ha). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples
Liste complète des métadonnées

Littérature citée [63 références]  Voir  Masquer  Télécharger

https://hal.umontpellier.fr/hal-02619063
Contributeur : Yannick Brohard <>
Soumis le : lundi 25 mai 2020 - 16:15:25
Dernière modification le : mercredi 15 juillet 2020 - 14:07:27

Fichier

SagangT_etal_Remote_sensing_20...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Le Bienfaiteur Sagang Takougoum, Pierre Ploton, Bonaventure Sonké, Hervé Poilvé, Pierre Couteron, et al.. Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions from Multispectral Images in Forest-Savanna Landscapes. Remote Sensing, MDPI, 2020, 12 (10), pp.1637. ⟨10.3390/rs12101637⟩. ⟨hal-02619063⟩

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

63