Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy

Abstract : Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.
Liste complète des métadonnées

Littérature citée [75 références]  Voir  Masquer  Télécharger

https://hal.umontpellier.fr/hal-02309349
Contributeur : Anthony Herrada <>
Soumis le : mercredi 9 octobre 2019 - 11:14:37
Dernière modification le : jeudi 10 octobre 2019 - 01:24:04

Fichier

s41467-018-07229-3.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Jens Stephansen, Alexander Olesen, Mads Olsen, Aditya Ambati, Eileen Leary, et al.. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.5229. ⟨10.1038/s41467-018-07229-3⟩. ⟨hal-02309349⟩

Partager

Métriques

Consultations de la notice

40

Téléchargements de fichiers

18