Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy - Université de Montpellier
Article Dans Une Revue Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Année : 2016

Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy

Résumé

In cellular dosimetry, common assumptions consider concentric spheres for nucleus and cell and uniform radionuclides distribution. These approximations do not reflect reality, specially in the situation of radioimmunotherapy with Auger emitters, where very short-ranged electrons induce hyper localised energy deposition. A realistic cellular dosimetric model was generated to give account of the real geometry and activity distribution, for non-internalizing and internalizing antibodies (mAbs) labelled with Auger emitter I-125. The impact of geometry was studied by comparing the real geometry obtained from confocal microscopy for both cell and nucleus with volume equivalent concentric spheres. Non-uniform and uniform source distributions were considered for each mAbs distribution. Comparisons in terms of mean deposited energy per decay, energy deposition spectra and energy-volume histograms were calculated using Geant4. We conclude that realistic models are needed, especially when energy deposition is highly non-homogeneous due to source distribution.
Fichier non déposé

Dates et versions

hal-02294314 , version 1 (23-09-2019)

Identifiants

Citer

François-Xavier Arnaud, S. Paillas, Jean-Pierre Pouget, S. Incerti, M. Bardiès, et al.. Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 366, pp.227-233. ⟨10.1016/j.nimb.2015.11.008⟩. ⟨hal-02294314⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

More