Improving plant allometry by fusing forest models and remote sensing - Université de Montpellier Accéder directement au contenu
Article Dans Une Revue New Phytologist Année : 2019

Improving plant allometry by fusing forest models and remote sensing

Résumé

Allometry determines how tree shape and function scale with each other, related through size. Allometric relationships help scale processes from individual to global scale, and they constitute a core component of vegetation models. Allometric relationships have been expected to emerge from optimization theory, yet this does not suitably predict empirical data. Here we argue that the fusion of high-resolution data, such as those derived from airborne laser scanning, with individual-based forest modelling offers insight into how plant size contributes to large scale biogeochemical processes. We review the challenges in allometric scaling, how they can be tackled by advances in data-model fusion, and how individual-based models can serve as data integrators for dynamic global vegetation models.
Fichier principal
Vignette du fichier
Fischer_etal_new_Phytol_2019_223_3.pdf (3.9 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02191073 , version 1 (22-07-2021)

Identifiants

Citer

Fabian Jörg Fischer, Isabelle Maréchaux, Jérôme Chave. Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 2019, 223 (3), pp.1159-1165. ⟨10.1111/nph.15810⟩. ⟨hal-02191073⟩
308 Consultations
47 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More