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Summary

Allometry determines how tree shape and function scale with each other, related through size.

Allometric relationships help scale processes from the individual to theglobal scale and constitute

a core component of vegetationmodels. Allometric relationships have been expected to emerge

from optimisation theory, yet this does not suitably predict empirical data. Here we argue that

the fusion of high-resolution data, such as those derived from airborne laser scanning, with

individual-based forest modelling offers insight into how plant size contributes to large-scale

biogeochemical processes. We review the challenges in allometric scaling, how they can be

tackled by advances in data-model fusion, and how individual-based models can serve as data

integrators for dynamic global vegetation models.

I. Introduction

Forests provide important services to societies globally, sequester-
ing large amounts of carbon, limiting erosion, regulating the water
cycle, and providing a habitat for many species. Size, shape and
function relationships among plants, or allometries, play a key role
in understanding these services. Such relationships encapsulate
ontogenetic, ecological and evolutionary constraints (Niklas,
1994) and have been widely used in quantitative tools to aid forest
management.Howmuch carbon is stored in the world’s forests, for
instance, is estimated from forest inventories using allometric
models and then scaled up to regional and global scales, based on
Earth observation data and modelling (Pan et al., 2011).

Allometries also describe how metabolic functions, such as
respiration rates and net primary production, scale with each other.

A theory has been developed to infer allometric scaling from
evolutionary optimisation principles (Enquist & Niklas, 2002),
but this theory does not account for recent advances in plant
physiology (Rogers et al., 2017; Scoffoni et al., 2017), and its
predictions do notmatch empirical datawell (Muller-Landau et al.,
2006; Poorter et al., 2012). Our ability to simulate the vegetation
response to environmental change in Dynamic Global Vegetation
Models (DGVMs) is, however, directly dependent on the robust-
ness of these scaling relationships. BecauseDGVMs adopt a coarse-
grained description of forests, allometries are often used to link
fluxes and pools, but the results do not always correspond to
empirical observations (Wolf et al., 2011).

A great opportunity to bring processes and field information into
a consistent modelling framework is offered by individual-based
models (IBMs) of forest dynamics (DeAngelis&Grimm, 2014). In
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IBMs, the forest ecosystem emerges from a combination of
individual tree physiological and demographic processes at a scale
that is relevant for forest resource management and ecological data
assimilation, as in the FORMINDmodel (R€odig et al., 2017). This
approach can be extended to larger scales, either by informing
DGVMs through IBMs (for example ED2; Medvigy et al., 2009;
LPJ-GUESS, Smith et al., 2014) or by directly scaling them up
(SEIB-DGVM, Sato et al., 2007; FORMIND, Fischer et al.,
2016). Like DGVMs, forest IBMs often rely on empirical
allometric models to predict tree shape and function but, during
model calibration, information can also be gained about the
allometric models themselves and the processes that shape them.

Proper calibration and validation of forest IBMs should be based
on a variety of independent data sources, ranging from forest
inventories to eddy-flux data, as recently exemplified with the
TROLL model, a physiology-based and fully spatially explicit
forest IBM (Mar�echaux & Chave, 2017). A promising additional
data source is provided by remote sensing. With its ability to
generate detailed information over unprecedented scales and at
locations that are otherwise hard to access (for example upper
canopy layers, remote ecosystems), remote sensing has already had a
transformative effect on vegetation modelling (Shugart et al.,
2015).

Here, we examine how a fusion of IBMs and airborne laser
scanning (ALS), a remote-sensing technology that provides
structural information at landscape scale, can be used to
improve allometric relationships and better understand the
processes that shape them. We argue that by linking forest IBMs
with ALS, we can reduce unexplained variation in allometric
estimates and extend these to large spatial scales, as displayed in

Fig. 1. This is an important step towards increased biological
knowledge and improved predictions of ecosystem functioning.
It is also a test case for the integration of future remote-sensing
sources such as hyperspectral imaging or spaceborne laser
scanning.

II. Tree allometry and transferability

When tree size, shape and function relate to each other across scales
and environmental conditions, then the measurement of a single
dimension can already provide a rough estimate of whole-tree
attributes. This factor is particularly relevant when one quantity is
more easily measured (for example trunk diameter) than the others
(for example metabolic rate or biomass). Empirical studies provide
a strong support for generalised allometric relationships. Whole-
plant autotrophic respiration, for example, scales predictably with
biomass across several orders of magnitude and from boreal to
tropical forests (Mori et al., 2010), and general patterns of
allocation into aboveground vs belowgound plant organs exist at
individual and stand levels globally (Poorter et al., 2012; Chen
et al., 2019). Similarly, allometries that relate trunk diameter to tree
height, as shown in Fig. 2, can be found across forest types and have
been used to supplement height measurements that are error prone
and time consuming without optimised protocols (Sullivan et al.,
2018).

The notion that a model developed at one site may be valid
elsewhere is called transferability (Wenger & Olden, 2012). An
important application is exemplified by the calculation of carbon
stocks from forest inventories. The product of wood density, trunk
cross-sectional area, and tree height turns out the be a good
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Fig. 1 Individual-based models (IBMs) as data
assimilators, in interface with dynamic global
vegetation models (DGVMs): application to
allometric inference. Ground-based censuses
and airborne laser scanning (ALS) provide
complementary views on trees and forest
canopies.Both techniquescanbe incorporated
into themodel–data fusion cycle, as formalised
by Approximate Bayesian Computation
(ABC). Increasingly diverse data can therefore
be used to improve model representation and
allometric parameter inference. Such
improvement can be a benefit to DGVMs,
whose simulations typically reach larger
extents than IBMs, butwhich are currently run
at coarse resolution, preventing them from
making direct comparisonswith data provided
at finer spatial resolution.
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predictor of tree biomass obtained from destructive harvesting
(Chave et al., 2014). This holds true across a wide range of values
for the predictor variables and broad bioclimatic gradients, from
dry forest woodlands to tropical rainforests. Recent work based on
an extensive destructive harvest experiment in African tropical
forests suggests that relatively simple biomass models are transfer-
able (Fayolle et al., 2018), and could therefore be useful in biomass
assessments across the tropics.

However, in most cases, allometries are influenced by environ-
mental factors, both abiotic and biotic, and are not easily
transferable. The scaling of tree height with trunk diameter, for
example, depends on bioclimatic constraints (Lines et al., 2012;
Olson et al., 2018), and tree growth is shaped by interactions with
other trees (Coomes et al., 2011; Jucker et al., 2015). Furthermore,
allometries typically have a multiplicative error structure. Residual
standard deviations for predictions translate into large absolute
errors for the biggest individuals and result in inflated uncertainty
in the predicted variables.

To quantify variation in scaling of tree shape, remote sensing
offers new perspectives. Terrestrial laser scanning (TLS), for
example, provides accurate estimates of tree dimensions without
requiring destructive harvesting (MomoTakoudjou et al., 2017). It
therefore holds great potential for exploring geometric scaling
properties in forest trees and their dependence on environmental
conditions (Disney, 2019).

III. Condensing the point cloud: allometry from space

Where TLS is a type of remote sensing ‘from the ground’, airborne
LiDAR scanning extends the 3D-mapping capacity of forest and
tree structure to the landscape scale. The technology and its
application to forest scanning have been developed for over 3
decades (Schreier et al., 1985;Nelson et al., 1988), and studies now
commonly cover several 1000 hectares of forest at high point
densities, that is high resolution. As a result, individual tree shapes
can be measured in open woodlands, allowing researchers to
monitor the growth anddeathof individual plants (Levick&Asner,
2013; Duncanson & Dubayah, 2018). Even more impressively,
clustering algorithms have been developed to segment ALS point
clouds into individual tree crowns in closed-canopy forests (Ferraz
et al., 2016). As tree trunk diameter was recently found to be
correlated with the product of tree height and crown size, the
segmented crowns can then be used to estimate ground-based
measurements (Jucker et al., 2017); this technology is being
increasingly used in routine forest monitoring programmes.

Tree-delineation from ALS is not without its problems,
however. Trees often have irregular crowns, they may partly
overlap, and the sharp light attenuationwithin dense canopymeans
that understorey trees are sparsely scanned, rendering the direct
retrieval of tree dimensions difficult. IBMs such as TROLL
(Mar�echaux & Chave, 2017) offer an indirect, yet powerful
alternative.

The spatially explicit rendering of treefalls and the competition
for light resources introduce ecological constraints on the simulated
forest structure, limiting tree density and dimensions across size
classes. Instead of translating point clouds back into individual tree
dimensions, we can create better fits between virtual and empirical
canopies by adjusting vital rates and allometric parameters that can
therefore be derived from mechanistic principles – even for trees
that are difficult to observe directly from ALS. As TROLL’s virtual
canopies have a high spatial resolution (m3), they compare naturally
to ALS data and a few statistics are often suffice to link them. For
example, Fig. 3 shows the match between top-canopy height
obtained by ALS and a TROLL-based reconstruction. In the future
it would be critical to extend this approach to other data sources,
including TLS and spaceborne missions. Examples are the
spaceborne laser scanner GEDI, a LiDAR now on board the
International Space Station, and the BIOMASS synthetic aperture
radar satellite, scheduled for launch in 2022, that will both provide
a radically new view of the world’s forests.

Because vegetation models and remote sensing have long proven
mutually informative (Sellers et al., 1997), the available approaches
for data-model fusion have been well tested. Possibilities include the
derivation of tree-level data from ALS for model parameterisation,
the comparison of outputs with observed canopies for model
validation (Seidl et al., 2012, Fig. 3), and so-called model inversion,
inwhichmodels are runwith awide rangeof parameter combinations
and systematically compared with remotely derived metrics (Fig. 1).
A hybrid between these approaches – partly inversemodelling, partly
initialisation – was developed early on and has recently been applied
to derive biomass maps across Amazonia using spaceborne LiDAR
(Hurtt et al., 2004; R€odig et al., 2017). Moreover, when models
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Fig. 2 Empirical allometric relations between tree height and trunk diameter
(DBH).Michaelis�Menten typeallometricmodelswere fittedwithnonlinear
least squares and a heteroscedastic error structure at six sites, typical of
tropical forests, as follows: (a) Ulu Ulu National Park, Brunei (4.54°N,
115.15°E); (b) Parque Estadual Cristalino, Mato Grosso, Brazil (9.06°S,
55.94°W); (c) GreboNational Forest, southeast Liberia (5.4°N, 7.62°W); (d)
Nouragues Ecological Research Station, French Guiana (4.09°N, 52.67°W);
(e) Dja Faunal Reserve, Cameroon (1.89°S, 13.22°E); (f) Tambopata
National Reserve, Peru (12.84S, 69.29W). Data are from Sullivan et al.

(2018), and metadata can be accessed on the forestplots.net data portal.
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provide realistic representations of forest structure, virtual ALS data
can be produced and tested before using empirically observed
canopies (Fassnacht et al., 2018; Knapp et al., 2018).

IV. Bayesian merging of data in IBMs

One efficient way to merge data and models is offered by Bayesian
approaches such as Approximate Bayesian Computation (ABC), a
widespread method in biological and ecological applications
(Beaumont, 2010; Hartig et al., 2011). Fig. 4 illustrates the
inference of crown allometry parameters based on ABC. In
qualitative terms, the approach is as follows: large numbers of
simulations are performed with variations in crown allometry
parameters (the prior in Bayesian statistics), the resulting virtual
canopies are then compared with an empirically observed canopy
(through statistics such as canopy height; Fig. 3) and, finally, the
parameter values of the best-performing simulations are selected
(the posterior). Inference on tree allometries is therefore turned into
a parameter optimisation problem, and uncertainty around the
parameter estimate reflects how informative is the data regarding a

particular allometry. In the example given in Fig. 4, the inference is
considerably improved by using ALS data in addition to ground
data, providing more precise estimates for allometry parameters
across diameter-size classes.

When harmonising high-dimensional data, as obtained from
ALS and IBMs such as TROLL, some issues emerge. Inferences can
be markedly different, depending on how virtual and empirical
canopies are compared, and dimension reduction and cross-
validation techniques are needed to find an appropriate set of
statistics (Csill�ery et al., 2012; Nunes & Prangle, 2015). But even
when summary statistics are well chosen, a pattern (for example a
virtual canopy) can be the result of several parameter combinations
or ways to represent processes (for example allometries). In this
case, inference methods such as ABC are not well posed. This type
of uncertainty, usually referred to as ‘equifinality’ (Luo et al., 2009),
cannot always be avoided, but it can be mitigated. Additional data
sources can help to narrow down the parameter space (Fig. 4).
Furthermore, it is desirable to implement mechanistic models over
statistical ones, because mechanistic simulations are restricted to a
generally smaller universe of possibilities. They therefore
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complement machine-learning techniques that are increasingly
popular across science, including forest modelling, but are
especially prone to the equifinality problem.

Another approach to narrow down the parameter space for
models such asTROLL is the construction of an initial canopy state
whose spatial arrangement is consistent with both the mechanistic
principles of TROLL and the ALS-derived canopy structure. One
method to produce such an initial state consists in sequentially
assigning trees to spatial positions such that they receive enough
light and that their size matches ALS observations. A space-filling
rule is then iterated until all available space in the scene has been
filled by trees (Taubert et al., 2015). This initialisation can be useful
to explore the range of validity of forest structure parameters
(canopy gaps, crown exposure) and, therefore, yields both priors for
the IBM and an evaluation of summary statistics. The IBM can
then use this information to focus on ecological dynamics and
provide distributions for tree trunks, crowndimensions andheights
that represent a predictive check on ecological inferences and a new
prior for the parameterisation of DGVMs (Fig. 1).

V. Challenges and perspectives

In this paper we argue that the explicit merging of plant allometry,
forest observations, and individual-based modelling contributes to
a unified vision of forest ecology. A fully spatially explicit IBM,
when used for Bayesian data-model fusion, can inform quantities
such as crown size and shape that are difficult to measure in dense
canopies, but to which spatially explicit models are highly sensitive.
The approach also helps to gain an understanding of ecological

processes, as it captures the fine-grained structure of forest canopies.
It could, therefore, better explain tree regeneration and simulate the
dynamics of nontree life forms, including lianas and epiphytes or
even canopy-dwelling animals. This challenge is one of the greatest
in biodiversity research today (Singer et al., 2016). Further
ecological insights can be gained regarding submodels, such as
the tree growth equations implemented in gap models (Shugart
et al., 2018), or the autotrophic respiration equation (Atkin et al.,
2015). The obtained information could then constrain the
parameters of physiological models that are usually prescribed in
DGVMs (but seeWang et al., 2017), and offer a direct benchmark
of upscaling simplifications of canopy structure, such as the perfect
plasticity approximation (Purves et al., 2008).

Where the focus of DGVMs has traditionally been on satellite
data, forest IBMs have instead been developed for and from ground
inventories, with trunk diameters and their growth the main
predictors of all simulated ecological processes. The remote-sensing
revolution calls, however, for a new paradigm in forest modelling,
including new data sets, and new approaches to model building.
This mirrors the larger change of direction in global forest research
in which remotely sensed metrics are increasingly used to predict
ground metrics (Jucker et al., 2017). This also represents a timely
challenge because spaceborne missions such as GEDI and
BIOMASS will acquire global forest structure datasets, but it is
likely that a correct interpretation of these datasets will require an
explicit linkage with models (Fisher et al., 2018). Model upscaling
raises the question of spatial model transferability. It is crucial to
test this by validating the model at places where it has not been
calibrated.
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TROLLmodel. Two posterior distributions of crown-radius allometry are shown, one constrained by ground data only (orange), the other also constrained by
dataderived fromairborne laser scanning (ALS, red). The thick lines represent theposteriormode, the colouredareas the70%highest-density intervals, and the
dotted lines the extent of the prior distribution. (b, c) Cuts through the allometric distribution at 0.5m in trunk diameter (DBH), for both simulations,with priors
indicated by dotted lines. The addition of ALS data in ABC inference considerably narrows down the crown allometry parameters. The inference is based on
20 000 simulations, with a posterior composed of the best 200 simulations. Summary statistics included tree diameter-size distributions and ALS-derived
canopy-height distributions. The overlap between simulated and empirical distributions was quantified and, to determine the posterior, we used the rejection
scheme implemented in the R package ABC (Csill�ery et al., 2012) with an acceptance rate of 1%.

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 223: 1159–1165

www.newphytologist.com

New
Phytologist Tansley insights Review 1163



The assimilation of global remote-sensing data will be greatly
helped by recent advances in computing technology that have
shifted the limits of what forest extent can be simulated at tree level
(Shugart et al., 2015). For calibration, which requires 1000s of
simulations for data-model fusion, computational cost can be
reduced by classic assimilation techniques (Hurtt et al., 2004).
Future increases in computational power and emulatorswill further
speed up inference (Fer et al., 2018), turning IBMs into Bayesian
data integrators that create a common vision of forest functioning
and structure and the allometric relationships that link both across
scales.

Complementary to this effort is the need to explain allometries
from evolutionary optimisation arguments, for plant form
(Enquist & Niklas, 2002), plant function (Wolf et al., 2016),
and forest structure (Farrior et al., 2016). A better fundamental
knowledge on allometric relationships can only improve our
confidence in the parameters and simplify model calibration. This
can only be achieved if theory is consistent with the known
constraints of plant physiology. In return, data-model fusion, as
explained here, provides a strong validation for theory.
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