Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides - Université de Montpellier
Article Dans Une Revue Journal of the American Society of Nephrology Année : 2015

Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides

Alaa Alkhalaf
  • Fonction : Auteur
Stephan Bakker
Joachim Beige
  • Fonction : Auteur
Henk Bilo
  • Fonction : Auteur
  • PersonId : 910274
Christos Chatzikyrkou
  • Fonction : Auteur
Jesse Dawson
  • Fonction : Auteur
Marion Haubitz
  • Fonction : Auteur
  • PersonId : 910490
Holger Husi
  • Fonction : Auteur
Jan Jankowski
  • Fonction : Auteur
  • PersonId : 930153
George Jerums
  • Fonction : Auteur
Nanne Kleefstra
  • Fonction : Auteur
  • PersonId : 910270
Tatiana Kuznetsova
  • Fonction : Auteur
David Maahs
  • Fonction : Auteur
Jan Menne
  • Fonction : Auteur
Frederik Persson
  • Fonction : Auteur
Piero Ruggenenti
  • Fonction : Auteur
Andreas Serra
  • Fonction : Auteur
Jan Snell-Bergeon
  • Fonction : Auteur
Goce Spasovski
  • Fonction : Auteur
Raymond Vanholder
P. Zurbig
  • Fonction : Auteur
A. Staessen
  • Fonction : Auteur

Résumé

Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.

Dates et versions

hal-01907604 , version 1 (29-10-2018)

Identifiants

Citer

Joost Schanstra, Petra Zürbig, Alaa Alkhalaf, Angel Argilés, Stephan Bakker, et al.. Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. Journal of the American Society of Nephrology, 2015, 26 (8), pp.1999 - 2010. ⟨10.1681/ASN.2014050423⟩. ⟨hal-01907604⟩
196 Consultations
0 Téléchargements

Altmetric

Partager

More