Linking genomics and population genetics with R - Université de Montpellier Accéder directement au contenu
Article Dans Une Revue Molecular Ecology Resources Année : 2017

Linking genomics and population genetics with R

Thierry Gosselin
  • Fonction : Auteur
Jérome Goudet
  • Fonction : Auteur
  • PersonId : 857317
Thibaut Jombart
  • Fonction : Auteur
  • PersonId : 900648
Klaus Schliep
  • Fonction : Auteur

Résumé

Population genetics and genomics have developed and been treated as independent fields of study despite having common roots. The continuous progress of sequencing technologies is contributing to (re-)connect these two disciplines. We review the challenges faced by data analysts and software developers when handling very big genetic data sets collected on many individuals. We then expose how R , as a computing language and development environment, proposes some solutions to meet these challenges. We focus on some specific issues that are often encountered in practice: handling and analysing single-nucleotide polymorphism data, handling and reading variant call format files, analysing haplotypes and linkage disequilibrium and performing multivariate analyses. We illustrate these implementations with some analyses of three recently published data sets that contain between 60,000 and 1,000,000 loci. We conclude with some perspectives on future developments of R software for population genomics.
Fichier principal
Vignette du fichier
Paradis_etal_MER.pdf (389.24 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01821977 , version 1 (23-06-2018)

Identifiants

Citer

Emmanuel Paradis, Thierry Gosselin, Jérome Goudet, Thibaut Jombart, Klaus Schliep. Linking genomics and population genetics with R. Molecular Ecology Resources, 2017, 17 (1), pp.54 - 66. ⟨10.1111/1755-0998.12577⟩. ⟨hal-01821977⟩
227 Consultations
554 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More