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Abstract

Population genetics and genomics have developed and been treated as independent fields

of study despite having common roots. The continuous progress of sequencing3

technologies is contributing to (re-)connect these two disciplines. We review the

challenges faced by data analysts and software developers when handling very big genetic

data sets collected on many individuals. We then expose how R, as a computing6

language and development environment, proposes some solutions to meet these

challenges. We focus on some specific issues that are often encountered in practice:

handling and analysing SNP data, handling and reading VCF files, analysing haplotypes9

and linkage disequilibrium, and performing multivariate analyses. We illustrate these

implementations with some analyses of three recently published data sets that contain

between 60,000 and 1,000,000 loci. We conclude with some perspectives on future12

developments of R software for population genomics.

Keywords: multivariate analysis, NGS, R, SNP, VCF
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Introduction15

An exploration into the history of genetics reveals a complex pattern of interconnected

concepts, hypotheses, and research programs. A remarkable historical fact is that

population geneticists laid the foundations of their discipline several decades before the18

physical support of heredity was known. Avery et al. (1944) demonstrated that DNA

was the molecule coding for genes, a fact that was not immediately accepted by their

contemporary geneticists for several reasons, perhaps the main one being that, at this21

time, it was widely accepted that genes most likely consisted of proteins (Lederberg

1994; Deichmann 2004). Population genetics was a mature field at the time of Avery et

al.’s finding as witnessed by the long-dated publication of seminal books on the subject24

(Fisher 1930, e.g.,). Thus, population and molecular genetics have had separate histories

at some time and this certainly had an impact on how empirical studies were conducted

or motivated. During almost half a century, population genetic studies were based on27

genotyping individuals on a limited number of loci, especially in conservation-oriented

research (Ekblom & Wolf 2014). A crucial preliminary of these studies was to find the

‘right genetic marker for the study’ (Sunnucks 2000).30

At the end of the century, genomic data from human populations started to

accumulate making possible to address new questions in the emerging field of population

genomics, even though at this time we were “a long way from knowing all the SNPs,33

even in any given population” mainly because “exhaustive typing is currently

prohibitive” (Goldstein & Weale 2001). Nevertheless, it appeared clearly that this wealth

of human genetic data could not be interpreted without traditional population genetic36

concepts such as linkage disequilibrium, genetic drift, or coalescent (Jorde et al. 2001).

Another result that came out at this time was the peculiarity, from an evolutionary

point of view, of human populations compared to other species: low overall genetic39

diversity, considerable continental-level homogeneity, and small effective population size

(Jorde et al. 2001). These features associated with the relatively simple biology of

humans (lack of polyploidy, long lifespan) and the considerable interest in medically42

oriented applications of genomic research resulted in a lot of developments for handling

and analysing population genomic data. However, these tools did not appear flexible
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enough to be applied to organisms with more complex biologies.45

In the early twenty-first century, next generation sequencing technologies (NGS) have

made possible to access the genotype of an individual at a very large number of loci and

even its complete genome sequence (Luikart et al. 2003). Even though there are still few48

species with their genome sequenced, several approaches have been proposed to apply

NGS to any living species (Ellegren 2014). Furthermore, the decreasing costs of NGS

make increasingly easy to generate data on a large number of loci and to apply these51

technologies in studies on natural populations (Narum et al. 2013; Andrews & Luikart

2014). This is a radical change in point of view for population geneticists compared to

almost a century of practice of their discipline. In his review, Sunnucks (2000) listed54

three components in population genetics studies: genetic markers, statistical methods,

and computer programs. We believe that the NGS revolution has solved, at least in

principle, the problem of genetic markers. The availability of vast amount of data clearly57

points to new developments in software. Furthermore, the perspective of merging

population and molecular genetics calls for a unified approach to software development.

In this paper, we review the current state of progress in the analysis of population60

genomic data using R. We illustrate some recent developments with three recently

published data sets: the human Y chromosome with 62,042 loci for 1233 individuals

(The 1000 Genomes Project Consortium 2015), a set of 1,055,818 phased genotypes for63

121 fruit flies (Drosophila melanogaster, Kao et al. 2015ab), and a set of 61,951 SNPs for

113 dolphins (Lagenorhynchus spp., Fernández et al. 2016ab). In the next section, we

summarize the challenges ahead and explain how R can help meeting them. The66

following two sections explore some specific issues related to handling and analyses of

large data sets in the context of population genomics, and how the R packages presented

in this paper integrate with other genomic bioinformatics software. We argue that R69

solves the issue of software in population genetics in the current context of NGS and in

the perspective of a constant flux of genomic data. In the last section, we discuss the

future developments of statistical methods which will, hopefully, complete the merging of72

population and molecular genetics.
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Challenges

NGS contrast sharply with their predecessor (the Sanger method) in two important75

aspects: they generate far larger quantities of data, which is clearly a source of practical

difficulties for data storage and analysis (Stephens et al. 2015), and they evolve much

more quickly. The tremendous potential applications of NGS have stimulated a lot of78

research and development (Erlich 2015). A new technology or platform can be created

and made available rapidly, but tests and validation for reproducibility take time.

Meanwhile, competing laboratories or companies may initiate another cycle of testing,81

assessment, and validation for a new method. Furthermore, the commercialisation of a

technology and the training of laboratory staff to use this technology on an appropriate

scale also take time. All these time-lags result in a form of inertia in the deployment of84

NGS in research laboratories. A now famous example is provided by the 454 platform

which was discontinued in 2013, just six years after being acquired by a large

company—some emerging platforms will probably have a shorter lifespan. It appears87

that we are now in a situation where we can start sampling in the field without knowing

exactly what genotyping or sequencing method will be used in the laboratory.

Nowadays, it is possible to genotype a single individual at thousands or even millions90

of loci, and population genomic studies typically do this for a few individuals (n), at least

far less than the number of loci that are analysed (p). This ‘small n, large p’ problem

raises some difficulties, especially in statistical analyses (see section below on multivariate93

methods). This situation contrasts with traditional population genetic studies which

generally used sampling protocols with n > p. With complete genome sequencing the

value of p is theoretically bounded by the size of the genome; however, the number of96

variants (the sites in the genome which are variable among individuals in the sample)

depends on the sampling protocol. For instance, the 1000 Genomes Project found almost

38,000,000 variants from 1092 individuals sampled from 14 populations (The 100099

Genomes Project Consortium 2012); this number increased to more than 88,000,000

when 2504 individuals were sampled from 26 populations (The 1000 Genomes Project

Consortium 2015). With non-model organisms, we certainly have to expect even more102

variation since most species are distributed among several subspecies over their range.
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The fast pace of NGS development is usually accompanied with a rapid development

of bioinformatics tools often resulting in the appearance of a wide variety of data105

formats. A problem is that very different technologies are used by the different NGS

platforms, so that raw data and their assembly differ a lot even though the final goal is

the same. For instance, though the FASTQ file format has been adopted as the de facto108

standard for storing raw DNA reads, the emerging NGS platforms in the late 2000’s used

subtle differences in their respective FASTQ files making the development of common

bioinformatics tools problematic (see: https://en.wikipedia.org/wiki/FASTQ_format111

for a review of the variation in FASTQ formats). Another difficulty comes from the fact

that population genetics software have traditionally been developed independently of

each other and often created their own data file formats, resulting in burdensome114

conversions necessary along bioinformatics workflows (see Lischer & Excoffier 2012, for a

tool to work around this problem). Besides, because of the conceptual separation

between population and molecular genetics, most software for population genetics has117

been developed with classical genetic markers and cannot handle large genomic data sets

simply because of memory limitations.

Why R120

The quest for standardization is a common and recurrent issue in software development,

and applications for data analysis are no exception to this. The 1990’s were a key period

in this respect: efficient hardware (e.g., 32-bit processors) were widely available, Internet123

became common, and a new generation of software started to spread. R was developed

in this exciting context (Ihaka & Gentleman 1996), and started to be progressively

adopted by a wide community of scientists for analysing their data, but also for126

developing new applications (Vance 2009). Several reasons can explain the success of R:

we can cite a few that are relevant for population genetics. R is available for all common

platforms and operating systems. Its fast graphical capabilities make it ideal for129

exploratory analyses. Some generic features of R are extremely useful when

manipulating data, such as factors or data structures indexed with names. R is modular

so that building new packages or pipelines, or conducting simple analyses is132

straightforward. R can be easily interfaced with code written in C, C++, and some
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other languages, so that computations which are not efficient in R can be recoded in

these languages without losing the advantages of the R environment. R has a standard135

documentation system which makes very easy to find the relevant information when

using a new package or a new function (of course, providing the package developers have

written the documentation appropriately). R has been widely adopted in statistics138

courses in many countries so that most students have a fair knowledge of this language.

Finally, and not the least, several user interfaces (Emacs+ESS, JGR, R-commander,

RKWard, RStudio, Tinn-R, among others) are available which considerably ease the141

work flow while accomodating each researcher’s personal taste.

Naturally, all these features (and others) apply to the analysis of population genetic

data which has led to the progressive development of a software environment that is144

attractive to a wide community of population geneticists. Two remarkable features of

this software are worth mentioning here. First, these R packages consider all kinds of

genetic markers: DNA sequences, SNP, micro-satellites, allozymes. Second, all situations147

can be handled: genotypes with single or multiple loci, locus with more than two alleles,

all levels of ploidy including cases where ploidy level varies within the same data set,

phased and unphased genotypes (Table 1). By contrast to some applications which have150

been developed specifically for diploid organisms with simple life histories and relatively

low polymorphism, R packages are developed to meet the needs of a wide community of

molecular ecologists. This underlines the philosophy of R to be inclusive in its153

developments: from the simplest to the most complex or challenging situations.

Data and files

R has a wide range of tools to handle and analyse DNA sequences (mostly in the156

package ape; Paradis et al. 2004), and traditional allelic data (mostly in the package

adegenet; Jombart 2008). In this section, we detail how some other kinds of data that are

more specific to NGS can be handled with R.159
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SNP Data

Molecular genetic studies have revealed that variation in genetic materials can take

many forms. In humans, among 88,332,015 genetic variants identified in a sample of162

2504 individuals, 95.53% were biallelic single nucleotide polymorphism (SNP), 4.07%

insertions–deletions (indels), 0.33% multiallelic SNPs, and 0.07% structural variants

(The 1000 Genomes Project Consortium 2015). Thus, biallelic SNPs are by far the most165

common form of genetic variation in natural populations (see also the examples below).

Among the technologies developed to acquire this kind of variants, two are most

frequently used: sequencing and genotyping arrays, the second one being able to acquire168

only biallelic SNPs (which are often called ‘SNPs’ in short). The approach based on

genotyping SNPs can be seen as an intermediate stage between the use of traditional

population genetic markers and the more modern genomic sequencing-based approaches171

which consider the whole set of genetic variation in populations.

Typically, SNP data files store genotypes of individuals at many loci in a matrix form

with additional information for each locus such as its position along the chromosome. A174

difficulty with these files is that there is no widely accepted standard format. For

instance, a genotype can be coded in the usual form (e.g., A/A, A/T, or T/T), or as the

number of minor alleles in the genotype (0, 1, or 2, if T is the minor allele). However, it177

appears that the VCF format has recently been adopted as a standard for all kinds of

SNP data files (see the example with the dolphin data).

The package adegenet provides several tools to read and handle SNP data (Jombart &180

Ahmed 2011). The core of these tools is the class "genlight" designed to store SNP data

in a compact way: for example, such an object with one million SNPs for 100 individuals

uses about 16 Mb of RAM (or active memory) which is less than 1% of the available183

RAM on most modern computers. Besides, adegenet has several functions specially

designed for the analysis of "genlight" data, such as glPca which performs a principal

components analysis (PCA; see below), glPlot which plots a set of SNPs, or glSim which186

simulates efficiently SNP data. The function read.PLINK in the same package can read

some SNP files. More generally, SNPs are stored in plain-text files in tabular form, so

standard R functions (e.g., read.table) can be used to parse such files.189
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VCF files

Over the last few years, the Variant Call Format (VCF) has appeared as a standard for

storing population genetic data from NGS sequencing or genotyping (Danecek et al.192

2011). By contrast to SNP data files, VCF files can contain data on all types of genetic

variation. VCF files are text files storing a lot of information, including on the process

used to create it from the raw sequencing reads (variant calling). The genetic data are195

stored in a matrix-like layout where the individuals are the columns and the loci are the

rows.

Several R packages have tools to analyse VCF files: two of them, stacksr and vcfR, are198

described in this issue. Bioconductor has the package VariantAnnotation (Obenchain et al.

2014) for annotating VCF files. We focus here on the functions in pegas because this

package is dedicated to population genetics (Paradis 2010). vcfR provides functions to201

assess the quality of the VCF file (Knaus & Grünwald 2017) together with functions for

data conversion (Table 2).

VCF files can be very big, so a strategy is to first scan the files before reading more204

detailed information such as the genotypes. pegas follows this strategy by providing

several functions: the main ones are VCFloci and read.vcf. The first function scans a

VCF file and extracts the information on the loci; the second one reads the individual207

genotypes with the possibility to select a subset. VCFloci uses a specific mechanism to

read big files: the file is scanned sequentially by chunks of one billion bytes (1 Gb; the

chunk size can be modified by the user). The function then stores a small table with the210

name of the file, the size of each chunk adjusted to meet the nearest end of a line, and

the number of loci in each chunk. With this mechanism, not more than 1 Gb of RAM is

used at the same time whatever the size of the file. The running time increases roughly213

linearly with the file size: it takes about 20 sec to scan an 8 Gb file (compressed or not)

with about 500,000 loci. For smaller files, the running time depends on whether the file

is compressed or not: for a 200 Mb file with 62,000 loci, this takes 1 sec or 0.2 sec,216

respectively.

The output of VCFloci is a data frame (R’s usual data table) with nine columns

where each row is a locus and the columns are the information for each locus from the219
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VCF file. The information correspond to the mandatory VCF header fields (see Danecek

et al. 2011): chromosome (CHROM), position (POS), unique identifier (ID), reference

and alternative alleles (REF and ALT), phred-scaled quality score (QUAL), site-filtering222

information (FILTER), a semicolon-separated list of additional annotation metadata

(INFO) and the FORMAT field containing genotype data information (often a

semicolon-separated list). The data frame can be manipulated to extract information225

with standard R functions (Box 1). The function VCFheader prints the header of a VCF

file which, usually, contains details on these different fields.

The genotypes are then read by read.vcf. At this stage, it is good to think if it is228

interesting or feasible to read a complete VCF file. pegas takes roughly four bytes of

RAM to store a single genotype; so (using the above notation), about 4np bytes are

needed for a given genetic data set. With the rule of thumb that data in R should not231

use more than 25% of the available RAM to perform “comfortable” analyses, one million

loci for 1000 individuals appears as a reasonable upper limit on a computer with 16 Gb

of RAM. Furthermore, the user may be interested in only some loci depending on the234

type of genetic variant, position on the chromosome, or else. A strategy is to locate these

loci by finding the rows of the output of VCFloci using standard R data manipulation

(Box 1). Similar operations can be done on the field "CHROM" (if loci from several237

chromosomes are in the same file), "QUAL", or "FILTER". The field "INFO" requires a

special attention because it includes detailed information on each locus. To make this

information easier to digest, pegas provides the function getINFO to extract a specific240

information from this character string; by default this is the sequencing depth (DP), but

the option what makes possible to extract another information, for instance, the variant

type (Box 2).243

For small VCF files, read.vcf can be used directly without calling VCFloci first, but

the latter is still needed to get the information on the loci.
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Analysis of population genomic data with R246

Haplotypes and Linkage Disequilibrium

The possibility to investigate the genetics of populations at many loci of individuals

brings the perspective to study the dynamics of genomes in populations. An exciting249

opportunity is to identify parts of species genomes which evolve as a single unit

(Andrews & Luikart 2014). Several approaches with NGS allow one to infer genotype

phasing for diploid or polyploid organisms, either directly by sequencing long fragments252

of DNA (e.g., McCoy et al. 2014), or with high coverage sequencing of shorter fragments

(Nielsen et al. 2011). With phased genotypes, it is straightforward to reconstruct the

haplotypes of each individual. pegas has the generic function haplotype which does this255

operation (it also works with DNA sequences). Linkage disequilibrium (LD) is the most

widely used statistical method to identify alleles at different loci that are statistically

associated. It is also of central importance in association studies of genetic diseases258

(Goldstein & Weale 2001; Jorde et al. 2001). The function LDscan permits to analyse LD

by calculating pairwise correlation coefficients (r2) for a series of biallelic loci. The

output of this function can be plotted with LDmap; this function has an option POS to plot261

the correlation coefficients together with the positions of the loci on the chromosome.

Figure 1 shows the LD at two scales for the chromosome 2L of the fruit fly data: for the

first 100 loci and for 100 loci equally spaced on the chromosome (Box 3). Two other264

functions analyse LD for a pair of loci with any number of alleles: LD and LD2 for phased

and unphased genotypes, respectively. These two functions return detailed statistics and

tests (Schaid 2004; Zaykin et al. 2008).267

Multivariate Methods

Multivariate methods are common when analysing big data sets because of their abilities

to provide dimension reduction, that is to provide a summary of many variables into a270

few, usually linear, combinations of them. Thus, population genetics has used these

methods for some time (Westfall & Conkle 1992; Guinand 1996; Moazami-Goudarzi &

Laloë 2002). The package adegenet implements a lot of tools for the multivariate analysis273

of genetic data (Jombart et al. 2009). Some of the methods of particular interest here
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include the spatial principal components analysis (sPCA; Jombart et al. 2008) and the

discriminant analysis of principal components (DAPC; Jombart et al. 2010) which is276

illustrated below.

In spite of their efficiency with large tables, multivariate methods are penalized when

analysing very large data sets, for instance, when n and p are larger than 10,000. Some279

approaches have been developed to decompose very large matrices without using

traditional methods such as eigen or singular value decomposition (Halko et al. 2011).

These approaches are based on random matrices and aim to approximate the first few282

principal components. Abraham & Inouye (2014) implemented this approach to perform

a PCA on genomic microarray data collected on a large sample of individuals (n >

10,000). Their implementation is available as the R package flashpca distributed on285

GitHub (https://github.com/gabraham/flashpca). This approach is quite

straightforward to code in R and is available in several forms with more or less accuracy

(Halko et al. 2011).288

Discriminant analysis (DA) is a multivariate method which searches for linear

combinations of variables resulting in the strongest discrimination of groups identified

from the data (Fisher 1936). Under some assumptions, it is possible to quantify the291

reliability of the inferred assignments. Thus, DA offers a powerful approach to assess the

presence of structure in genetic data with many loci. However, because it is based on

matrix decomposition algorithms, it suffers from the same limitations than PCA with294

very big data sets, and these methods need to be adapted to be used on genomic data.

The DAPC gives a solution to this problem: it can be used to assess group structure in

genetic diversity with large datasets, and is also implemented separately for "genlight"297

objects (Jombart & Ahmed 2011). The main idea behind the DAPC is to first perform a

data reduction using a PCA. Typically, less than 100 principal axes are sufficient. If

group priors are missing, a sequential k-means clustering with model selection based on300

the Bayesian information criterion (BIC) is done to infer prior clusters. The next step is

to perform a discriminant analysis in the reduced data space using the prior clusters

returned by the k-means clustering (or the cluster definition provided by the user if303

available). The results can be graphically visualized in two ways: by plotting the

projections of the individuals on discriminant axes (as usual in multivariate analyses), or
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by examining the relative posterior probabilities to the different clusters inferred from306

the discriminant analysis (as usual in stochastic assignment methods).

We consider here the dolphin data and try to show evidence for geographical structure

(Fernández et al. 2016a). The data are provided as a VCF file (simply named ‘vcf’)309

available from Dryad (Fernández et al. 2016b). Because the multivariate methods are

implemented in adegenet, we have to convert the data read by pegas into the appropriate

class (Box 4). Remarkably, none of these analyses take significant running time (in fact,312

the longest operation is to convert from the class "loci" to the class "genind").

Population Genetics and Genomic Bioinformatics

The main strength of R, and maybe the most attractive one for data analysis, is the315

possibility to integrate a great variety of methods and tools while using the same

programming language. In the past few years, the analysis of genetic data has changed

quite radically. Until the early twenty-first century, population geneticists used to get318

their data from the laboratory on their physical support (e.g., electrophoresis gels), then

input the data in the computer, and analyse them with specialised software. With the

advent of NGS, genetic data are directly acquired on the computer, but an additional321

step is required: the identification of alleles from the many (hundreds of millions)

sequencing reads. This step is called ‘variant calling’ and requires highly specialised

software. Because NGS technologies are evolving very fast (see above), this software is324

also evolving very fast. Fortunately, the past few years have seen the development of

more integrated bioinformatics tools to accomplish such tasks. The R package poRe has

been recently released to analyse data from the the mobile nanopore sequencer MinION327

(Watson et al. 2015). This package takes profit of R’s tools such as scanning a directory

with many files, searching for patterns in file names, and reading files in a specific format

(here HDF5), to extract and plot summary statistics from the sequencing runs, as well as330

export data into FASTQ or FASTA format.

Bioconductor is a long-term effort to produce R packages for the analysis of

large-scale genomic data sets (Gentleman et al. 2005; Huber et al. 2015). Bioconductor’s333

website (www.bioconductor.org) hosts a suite of integrated R packages mostly

dedicated to the analysis of expression data. Several packages have been released for the
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analysis of DNA microarray data (e.g., Dunning et al. 2007; Ritchie et al. 2009; Morgan336

2015). The package ape has functions to convert DNA data from Bioconductor classes

into the "DNAbin" class from which population and evolutionary analyses can be

performed.339

A crucial aspect of R packages which permits the integration of different tasks is the

stability of the packages themselves and especially of the data classes defined therein

(Tables 1, 3). Several R packages for evolutionary genetic analyses are now more than342

one decade-old and have been widely used and tested, so that their contents are now

reliable for a wide range of applications, and package developers have the possibility to

work with them to develop new tools and methods (e.g., Paradis 2012; Lawrence &345

Morgan 2014).

Perspectives

Remarkable progress has been accomplished in the development of software for348

population genetics in the context of analysing data sets from NGS. There is no doubt

that this will continue in the years to come where population genetic data will become

more and more important to assess biodiversity dynamics and adaptations of species in a351

changing environment. We discuss below three specific areas where significant progress is

likely to be achieved in the coming years.

As apparent from the contributions to this Special Issue, a lot of effort has been354

devoted to improve the overall quality of the software dedicated to population genetics.

On the other hand, hardware has continued to improve. For instance, multi-core

processors are now the rule rather than the exception, so that parallel computing can be357

accomplished on almost all computers. The adaptation of genetic software to this has

been uneven. Lawrence & Morgan (2014) give some examples using Bioconductor,

illustrating the issue that implementing a parallel algorithm to accomplish a given task360

may not always be beneficial. R has a built-in capacity to parallelize computations using

the package parallel. The functions in parallel can be used with most R packages described

in this article, for instance, by distributing a calculation to several cores of a processor.363

However, there is certainly some improvements possible since a lot of the computations
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used in population genetics implies repetitive and independent calculations (e.g., for

allele frequencies by population or for LD).366

NGS raw data are more or less noisy because they are generated through some

biological and electronical processes which may be affected by random variation. Besides

these measurement errors, intrinsic biological processes induce another form of variation,369

for instance because of cell-specific genetic changes. Lynch (2008) addressed the issue of

inferring population genetic parameters using NGS data (see Korneliussen et al. 2013,

for a more recent contribution). Blischak et al. (2016) developed a hierarchical Bayesian372

model to assess genotype uncertainty in autopolyploids using raw read counts. They

implemented their method in the R package polyfreqs (available on CRAN). We take this

opportunity to emphasize the importance of open source software for the future of375

population genomics. O’Rawe et al. (2015) warned about the risk that commercial NGS

applications tend to ignore uncertainty in genotyping inference. As a sign of this risk,

these authors mention that several applications for haplotype or variant call are378

proprietary and closed-source. Considering the continuously increasing diversity of NGS

technologies and the increasing range of their applications, a special attention to

uncertainty in statistical inference using NGS data will be crucial.381

Environmental monitoring already allows acquisition of data in real time, and recent

developments in NGS (e.g., nanopore sequencing) strongly suggest that similar things

will soon be accomplished with population genetic data. This is a crucial challenge for384

developing efficient software and making sense of the results in real time. Facing this

forthcoming challenge will mean having to combine data analysis with theoretical

population genetics in order to help us meet issues related to global change, biodiversity387

conservation, and pathogen dynamics. It will surely be useful to remember the words of

caution—if not wisdom—from Gower (2008): “Automatic instrumentation ensures that

there is no lack of large data sets. This is something new but I sometimes think that we390

are getting perilously close to the search for the philosophers stone. If only we could find

the right recipe, great truths would be revealed by analysing vast masses of data.”
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Box 1 Scanning and reading VCF files

First we scan the human Y chromosome data with VCFloci, print the number of loci and
the labels of the columns with names:

> info.Y <- VCFloci("chrY.vcf.gz")

Scanning file chrY.vcf.gz

171.6615 Mb

Done.

> nrow(info.Y)

[1] 62042

> names(info.Y)

[1] "CHROM" "POS" "ID" "REF" "ALT" "QUAL"

[7] "FILTER" "INFO" "FORMAT"

The number of individuals in the VCF file are obtained with the function VCFlabels which
extracts their labels (or identifiers):

> labs <- VCFlabels("chrY.vcf.gz")

> length(labs)

[1] 1233

> head(labs)

[1] "HG00096" "HG00101" "HG00103" "HG00105" "HG00107"

[6] "HG00108"

Then we read the genotypes with read.vcf. Here, we select the loci in a 1 Mb region of
the Y chromosome between positions 5,000,000 and 6,000,000 which can be found with:

> sel <- which(info.Y$POS > 5e6 & info.Y$POS <= 6e6)

> length(sel)

[1] 5

read.vcf has two ways to specify which loci to read: either using the options from and to

(which are set to 1 and 10,000 by default), or using the option which.loci which requires
a vector of integers specifying the indices of the loci to read:

> x <- read.vcf("chrY.vcf.gz", which.loci = sel)

Reading 5 / 5 loci.

Done.

> x

Allelic data frame: 1233 individuals

5 loci

If the user wants to read all loci with a single command, the following can be done:

> x <- read.vcf("chrY.vcf.gz", to = nrow(info.Y))
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Box 2 Going further with the INFO field in VCF files

Here we use the information returned by VCFloci, such as the field CHROM (if loci from several
chromosomes are in the same file), to select some loci to be read. The field INFO requires a special
attention because it includes detailed information on each locus:

> info.Y$INFO[1]

[1] "AA=G;AC=22;AF=0.0178427;AN=1233;DP=84761;NS=1233;\

AMR_AF=0.0000;AFR_AF=0.0000;EUR_AF=0.0000;SAS_AF=0.0000;\

EAS_AF=0.0451;VT=SNP;EX_TARGET"

To make this information easier to digest, the function getINFO helps to extract a specific infor-
mation from this character string; by default this is the sequencing depth (DP), but the option
what makes possible to extract any other information, for instance, the variant type:

> VT.Y <- getINFO(info.Y, what = "VT")

> table(VT.Y)

INDEL MNP SNP SV

1314 113 60505 110

The function VCFheader reads the header of the VCF file where details on the abbreviations used
can be found:

> cat(VCFheader("chrY.vcf.gz"))

....

##INFO=<ID=VT,Number=.,Type=String,Description="indicates what type\

of variant the line represents"

....

Thus, we can now locate which loci are SNPs:

> sel.snp <- which(VT.Y == "SNP")

> length(sel.snp)

[1] 60505

As usual with R, it is possible to combine these logical comparisons with the AND operator (&),
for instance, to locate the SNPs within a 2 Mb region:

> sel <- which(VT.Y == "SNP" & info.Y$POS > 1e6 & info.Y$POS <= 3e6)

> length(sel)

[1] 1231

To illustrate how to use other information returned by VCFloci, we scan the fruitfly data (Kao
et al. 2015a) which include genotypes from all chromosomes in a single file:

> fl <- "global.pop.GATK.SNP.hard.filters.V3.phased_all.pop.maf.05.recode.vcf.gz"

> info.fly <- VCFloci(fl)

> table(info.fly$CHROM)

2L 2R 3L 3R R X

224253 193675 214235 270619 1 153035
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Box 3 Analysis of linkage disequilibrium

We read the fruitfly data and call the two functions LDscan and LDmap on the first 100
loci (we could use the option to as above to read only 100 loci, but this gives us the
opportunity to show how to subset a data frame of genotypes). The positions of the loci
are stored in the column POS output by VCFloci (Box 2), so we extract the positions for
these 100 loci and pass them as the (optional) second argument of LDmap (Fig. 1a):

> x <- read.vcf(fl)

> res <- LDscan(x[, 1:100])

> LDmap(res, info.fly$POS[1:100])

We now select 100 loci regularly spaced from 1 to 224,253 (this value comes from the last
tabulation in Box 2) and using ceiling to ensure we have only integers:

> s <- ceiling(seq(1, 224253, length.out = 100))

We then repeat the LD analysis using the appropriate POS information (Fig. 1b):

> xs <- read.vcf(fl, which.loci = s)

> res2 <- LDscan(xs)

> LDmap(res2, info.fly$POS[s])

549
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Box 4 DAPC with the dolphin data

We read 1000 loci and convert them to the class "genind":

> x2 <- read.vcf("vcf", to = 1000)

> g2 <- loci2genind(x2)

We can now call the method implemented in the function find.clusters:

> o2 <- find.clusters(g2)

When called with no other option, the function displays two graphs (Fig. 2) and asks the user to input the number
of principal components (PCs) and the number of clusters to retain. The first graph shows that 40 PCs retain
about 80% of the variance, so we select this number. The second graph shows a lowest value of BIC with seven
clusters. However, the present data has eight populations (see below) so we select this number of clusters (K) for
this analysis (we could use simply the original populations).
The output is a list with several elements, including grp giving the cluster assignment of the individuals. The labels
of the individuals include the geographical origin of the samples (as often the case with this kind of data set). So it
is simple to extract this information, and cross-tabulate it with the cluster assignment done by find.clusters:

> head(names(o2$grp))

[1] "FAE_2" "FAE_609" "FAE_660" "FAE_667" "FAE_668" "FAE_671"

> pop <- gsub("_.*", "", names(o2$grp))

> cluster <- o2$grp

> table(pop, cluster)

cluster

pop 1 2 3 4 5 6 7 8

DEN 0 0 0 0 4 2 0 0

FAE 0 9 1 3 2 0 2 1

FRA 0 0 0 0 1 0 1 0

GER 3 0 0 0 5 3 1 0

ICE 0 0 0 0 15 2 0 0

IRE 0 9 0 0 2 2 3 0

NOR 0 0 0 0 5 2 0 0

SCO 0 5 0 0 24 1 2 0

There does not seem to be a very good match between the originally sampled populations and the cluster assignments.
Thus, we repeat the analysis with a smaller number of clusters (K = 4) in a non-interactive way by specifying the
required options:

> o2b <- find.clusters(g2, n.pca = 40, n.clust = 4)

As above, we extract the ‘pop’ and ‘cluster’ information (not shown):

> table(pop, cluster)

cluster

pop 1 2 3 4

DEN 0 6 0 0

FAE 0 6 4 8

FRA 0 1 0 1

GER 6 5 0 1

ICE 2 15 0 0

IRE 2 4 0 10

NOR 2 5 0 0

SCO 0 26 0 6

We now perform the DAPC with 4 groups asking to output two discriminant axes:

> d2b <- dapc(g2, cluster, n.pca = 40, n.d = 2)

The output contains several elements, including the coordinates of the individuals and the group means. The plots
can now be done with R’s standard functions (see Supplementary Information) or with adegenet’s functions (Figs. 3,
4):

> col <- c("red", "blue", "gold", "darkgreen")

> scatter(d2b, posi.da = "topright", col = col)

> compoplot(d2b, legend = FALSE, col = col)
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Table 2: Data inter-operability.

Class File Class conversion
Input Output From To

DNAbin FASTA FASTA Bioconductor* genlight
Phylip Phylip
Clustal

genind Genetix loci loci
Structure
Fstat
Genepop
GenAlex

genlight PLINK DNAbin
loci Tabular files† Tabular files† genind genind

Genetix
VCF

vcfR VCF VCF DNAbin
genind
loci

*Several classes are supported.
†Tab-delimined, CSV, and similar formats.
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Table 3: Main R packages for population genetics and genomics. The packages not cited
in the text are hierfstat (Goudet 2005), poppr (Kamvar et al. 2014), and mmod (Winter
2012).

Package Main methods implemented

adegenet* Multivariate methods (sPCA, DAPC)
ape Evolutionary distances, distance-based phylogenetics, phylogenetic bootstrap
hierfstat* Hierarchical F -statistics
pegas Population differentiation (HWE,, AMOVA), haplotype networks, linkage maps
poppr* Applications to clonal organisms, distances for microsatellites
mmod* Population differentiation (FST , GST , ΦST , D)
stacksr Interface to STACKS
vcfR Tools for FASTA, GFF, and VCF files

*These packages use the class "genind".
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Fig. 1 LD maps at two different genomic scales for the fruit fly data: (a) for the 100

first loci on the chromosome 2L, and (b) for 100 loci regularly spaced along this552

chromosome. The horizontal axis indicates the position of the loci on the chromosome.

The linkage coefficients (r2) between each pair of loci are indicated as coloured squares:

the squares at the bottom of the triangle are for nearby loci, whereas the square at the555

top is for the two most distant loci.

Fig. 2 Results of finding clusters with the dolphin data. (a) Cumulated variance

explained by the principal components (PCs). (b) Bayesian information criterion (BIC)558

for the different values of K (number of clusters).

Fig. 3 Results of the DAPC with the dolphin data.

Fig. 4 Posterior probabilities of group membership from the DAPC with the dolphin561

data. The color scheme is the same than in Fig 3.
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Supplementary Information

R code for custom plot of the results from the DAPC on the dolphin data. This example564

shows how to extract the coordinates of the individuals and plot them with a symbol

representing the original populations (Fig. S1):

plot(d2b$ind.coord, type = "n")567

points(d2b$grp.coord, pch = 19, col = "grey50", cex = 4)

text(d2b$grp.coord, labels = 1:4, col = "white")

points(d2b$ind.coord, pch = (1:8)[pop])570

legend("top", legend = levels(pop), pch = 1:8, ncol = 4)
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Fig. S1: Results of DAPC with the dolphin data. The group means are shown with573

white numbers on grey.
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