Length-Lex Ordering for Set CSPs - Université de Montpellier
Communication Dans Un Congrès Année : 2006

Length-Lex Ordering for Set CSPs

Carmen Gervet
Pascal van Hentenryck
  • Fonction : Auteur

Résumé

Combinatorial design problems arise in many application areas and are naturally modelled in terms of set variables and constraints. Traditionally, the domain of a set variable is specified by two sets (R,E) and denotes all sets containing R and disjoint from E. This representation has inherent difficulties in handling car-dinality and lexicographic constraints so important in combinatorial design. This paper takes a dual view of set variables. It proposes a representation that encodes directly cardinality and lexicographic information, by totally ordering a set domain with a length-lex ordering. The solver can then enforce bound-consistency on all unary constraints in time˜Otime˜ time˜O(k) where k is the set cardinality. In analogy with finite-domain solvers, non-unary constraints can be viewed as inference rules generating new unary constraints. The resulting set solver achieves a pruning (at least) comparable to the hybrid domain of Sadler and Gervet at a fraction of the computational cost.
Fichier principal
Vignette du fichier
aaai06.pdf (146.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01742384 , version 1 (24-03-2018)

Identifiants

  • HAL Id : hal-01742384 , version 1

Citer

Carmen Gervet, Pascal van Hentenryck. Length-Lex Ordering for Set CSPs. AAAI, 2006, Boston, United States. ⟨hal-01742384⟩
114 Consultations
50 Téléchargements

Partager

More