
HAL Id: hal-01742384
https://hal.umontpellier.fr/hal-01742384v1

Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Length-Lex Ordering for Set CSPs
Carmen Gervet, Pascal van Hentenryck

To cite this version:
Carmen Gervet, Pascal van Hentenryck. Length-Lex Ordering for Set CSPs. AAAI, 2006, Boston,
United States. �hal-01742384�

https://hal.umontpellier.fr/hal-01742384v1
https://hal.archives-ouvertes.fr

Length-Lex Ordering for Set CSPs

Carmen Gervet∗ and Pascal Van Hentenryck
Brown University, Box 1910, Providence, RI 02912

Abstract

Combinatorial design problems arise in many applica-
tion areas and are naturally modelled in terms of set
variables and constraints. Traditionally, the domain of
a set variable is specified by two sets (R,E) and de-
notes all sets containing R and disjoint from E. This
representation has inherent difficulties in handling car-
dinality and lexicographic constraints so important in
combinatorial design. This paper takes a dual view of
set variables. It proposes a representation that encodes
directly cardinality and lexicographic information, by
totally ordering a set domain with a length-lex order-
ing. The solver can then enforce bound-consistency
on all unary constraints in time Õ(k) where k is the
set cardinality. In analogy with finite-domain solvers,
non-unary constraints can be viewed as inference rules
generating new unary constraints. The resulting set
solver achieves a pruning (at least) comparable to the
hybrid domain of Sadler and Gervet at a fraction of the
computational cost.

Introduction

Combinatorial design problems arise in a variety of ap-
plications in coding, sport scheduling, combinatorics,
networking and cryptography (Colbourn, Dinitz & Stin-
son 1999). Many of these problems are NP-hard and
are naturally modeled as set CSPs. In other words,
they typically feature set-variables of fixed cardinalities
and a variety of set-constraints such as inclusion, dis-
jointness, and intersection. Moreover, they are often
highly symmetric and hence lexicographic constraints
are a natural vehicle to reduce the search space.

Since their inception in constraint programming
(Puget 1992; Gervet 1997), set solvers have used a
subset-bound representation for domains. A set do-
main is a pair (R, E) –where R and E are sets– that
denotes the set of sets {s | R ⊆ s ⊆ U \ E}, where
U is the set of all possible elements. It is convenient
for implementing inclusion and disjointness constraints,
but it faces inherent difficulties in handling cardinality
and lexicographic constraints. Indeed, subset-bound

∗Partly funded by the Royal Academy of Engineering.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

domains are not expressive enough to represent car-
dinality or lexicographic information, which must be
represented as constraints. Moreover, these constraints
cannot be made bound-consistent and do not prune the
search space effectively. The problem is further exacer-
bated by the inherent difficulty of breaking symmetries
in set CSPs as shown in (Sellman & Van Hentenryck
2005). These limitations have been recognized by sev-
eral researchers. (Azevedo & Barahona 2000) added a
cardinality component to subset-domains for their digi-
tal design applications and proposed inference rules for
pruning the search space using cardinality information.
Unfortunately, the only interactions between the car-
dinality and subset-bound components occur upon in-
stantiation. (Sadler & Gervet 2004) addressed this lim-
itation by proposing a hybrid set domain with three
components (SB, C, L), where SB is a subset-bound
domain, C is the cardinality information, and L is a co-
lexicographic representation of the domain. The con-
sistency of the three domains is maintained by intra-
domain constraints. The hybrid domain strengthens
constraint propagation in the presence of cardinality in-
formation, allows for more effective symmetry-breaking,
but has two limitations. First, the intra-domain con-
straints are complex and computationally expensive as
they are polynomial in n = |U | which is typically much
greater than the cardinality k of the sets. Second,
the lexicographic ordering is only partially integrated
with the cardinality information, restricting the poten-
tial pruning of cardinality constraints.

Note that 0-1 matrix models in (Frisch et al. 2002;
Hnich et al. 2004) can be used to encode the character-
istic function of the subset-bound domain and to state
cardinality and lexicographic constraints. However, the
resulting representation takes O(n) space and is equiv-
alent to subset-bound domains semantically and opera-
tionally. Finally, it is important to mention the work of
(Hawkins, Lagoon & Stuckey 2005) on explicit domain
representation using BDDs. These representations are
effective for some classes of set constraints but have dif-
ficulties handling cardinality constraints efficiently.

This paper takes a dual view of set variables. It pro-
poses a set domain that directly represents cardinality
and lexicographic information, while using constraints

to reason about inclusion and disjointness. The key
technical idea is to use a length-lex ordering that to-
tally orders the sets first by length and then lexico-
graphically. As a result, arc consistency on cardinal-
ity and lexicographic constraints can be enforced in
time O(k). Moreover, it is also possible to enforce
bound-consistency on unary constraints for inclusion
and disjointness in time Õ(k), giving an elegant inte-
gration of inclusion, disjointness, cardinality, and lexi-
cographic constraints. Finally, in analogy with finite-
domain solvers (Van Hentenryck 1989), non-basic con-
straints can be viewed as inference rules that generate
basic constraints that once again interact through the
length-lex domain and produce a pruning at least com-
parable to the hybrid domain.1 As a result, the length-
lex domain enjoys four fundamental advantages besides
its simplicity and elegance.

1. The domains take O(k) space and their bounds sat-
isfy all unary constraints unlike subset-bound solvers.

2. The domains directly account for cardinality and lexi-
cographic constraints critical in combinatorial design.

3. Bound-consistency on all traditional unary con-
straints can be enforced in time Õ(k).

4. All constraint types prune the domains.

Moreover, all the algorithms presented herein can be
adapted to multisets, providing similar benefits for this
important structure as well.

The Length-Lex Domain

Notations We assume that sets take their value in
a universe U of integers {1, . . . , n}. Set variables are
denoted by X, Y, Z, possibly subscripted. Elements of
U are denoted by the letters e, x and sets are denoted by
the letters m, M, s, t. A subset m of U of cardinality k
is denoted {m1, m2, ..., mk} where m1 < m2 < m3... <
mk. Therefore, mj denotes the j-th smallest value in
m. We call k-set any set of cardinality k.

Length-lex Ordering The length-lex ordering to-
tally orders sets first by cardinality and then lexico-
graphically.

Definition 1 A length-lex ordering ≪ on sets of inte-
gers is defined by:

s ≪ t iff s = ∅ ∨ |s| < |t| ∨
|s| = |t| ∧ (s1 < t1 ∨ s1 = t1 ∧ s \ {s1} ≪ t \ {t1}).

Example 1 The subsets of {1, 2, 3} are ordered as

∅ ≪ {1} ≪ {2} ≪ {3} ≪ {1, 2} ≪ {1, 3} ≪ {2, 3} ≪ {1, 2, 3}.

A length-lex domain is a pair 〈m, M〉 that denotes all
the sets not smaller than m and not greater than M .

Definition 2 A length-lex domain is a pair 〈m, M〉
satisfying m ≪ M and denoting the set

{s | m ≪ s ≪ M}.

1A formal comparison is difficult, since the hybrid model
uses a co-lexicographic ordering for technical reasons.

Observe that the cardinality of any set s in 〈m, M〉
satisfies |m| ≤ |s| ≤ |M |. As a consequence, the domain
directly captures cardinality information.

Example 2 Consider a variable X with domain
〈{1, 2}, {1, 2, 3}〉. Variable X can take the sets
{{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. If the cardinality of X
is constrained to be strictly smaller than 3, its domain
can be updated to 〈{1, 2}, {2, 3}〉, which denotes all sets
of cardinality 2.

Fundamental Operations on Domains

Once set-variables use the length-lex representation,
their domains can be pruned very much like in tradi-
tional finite domains. This is a significant innovation for
set solvers whose bounds do not usually represent possi-
ble (set) values and are not easily amenable to pruning.
Example 2 already showed how cardinality constraints
can prune a domain. In general, the pruning of a do-
main 〈m, M〉 consists of finding the first successor of m
and the first predecessor of M satisfying some condi-
tion such as the inclusion or exclusion of a set of ele-
ments and cardinality restrictions. Set constraints use
a number of first and last functions to compute these
successors and predecessors and to prune the domains.

For space reasons, this paper only presents first func-
tions and restricts attention to k-sets (which is typically
the case in combinatorial design). The algorithms for
arbitrary cardinalities can be derived in a similar fash-
ion. The first functions share the same overall structure
as the algorithm for finding the length-lex successor of
a k-set (Kreher & Stinson 1999) (see Algorithm 1). The
algorithm assumes that m has a successor and proceeds
in two steps: a location phase and a reconstruction
phase. The location phase (lines 1–3) determines the
index i in the set as the start of the reconstruction.
The reconstruction phase determines the new values for
mi, . . . , mk.

Algorithm 1 succ≪(m): k-set successor algorithm

1: k ← |m|, m′ ← m, i← k;
2: while (i ≥ 0) and (mi = n− k + i) do

3: i← i− 1;
4: for j = i to k do

5: m′
j ← (mi + 1) + j − i;

6: return m′

Example 3 Let m = {1, 3, 6, 7} and U = {1, ..., 7}.
The first phase identifies that the successor of m must
start its reconstruction phase for i = 2, since 6 and 7
cannot be increased. The reconstruction phase fills the
positions 2–4 with values mi + 1, . . . , mi + 3 to obtain
succ≪(m) = {1, 4, 5, 6}.

The successor algorithm runs in O(k) time and all the
first functions share the same two-phase organization,
although the phases are in general more complex. Func-
tion first-r≪(m,R) (Algorithm 3) computes the first
successor of m that contains all elements in R (or m

itself if it contains R). It uses an auxiliary recur-
sive algorithm LR (Algorithm 2) to find the location
of the reconstruction phase. For a call LR(m, R, i, p),
R1, . . . , Rp−1 are present in m1, . . . , mi−1 and the func-
tion must determine if there exists a location j ≥ i
for the reconstruction phase that can accommodate
Rp, . . . , R|R|. When p > |R|, m contains R and no re-
construction is necessary (lines 1–2). If there is no room
left for Rp, . . . , R|R| or Rp < mi, the reconstruction
phase must start earlier than i (lines 3–4). If mi < Rp,
then the function is called recursively with i + 1 to de-
termine if a location greater than i can be found (lines
6–8). If no such location exists, the function returns
(i, p), since mi can be increased (line 9). Finally, if
mi = Rp, LR is called recursively with i + 1 and p + 1
since Rp is in m (line 12). This recursive call may fail,
in which case a location smaller than i must be found
since we cannot increase mi without losing Rp. Once
the location i is found, algorithm first-r≪(m,R) starts
the reconstruction from i like the successor algorithm 1.
However, it must make sure to include all elements of
R. This explains the loop conditions on line 6 and the
insertion of the remaining elements in R in lines 11–13.
The function runs in time O(k log |R|), which is Õ(k).

Algorithm 2 LR(m, R, i, p)

1: if p > |R| then

2: return (k + 1, p);
3: else if k − i < |R| − p ∨ mi > Rp then

4: return (⊥, p);
5: else if mi < Rp then

6: (i′, p′)← LR(m, R, i + 1, p);
7: if i′ 6= ⊥ then

8: return (i′, p′);
9: else

10: return (i, p);
11: else

12: return LR(m,R, i + 1, p + 1);

Algorithm 3 first-r≪(m,R)

1: (i, p)← LR(m,R, 1, 1);
2: if i = ⊥ then

3: m′ ← ⊥;
4: else

5: v ← mi + 1;
6: while k − i > |R| − p ∧ i ≤ k do

7: m′
i ← v;

8: if m′
i = Rp then

9: p← p + 1
10: i← i + 1, v ← v + 1;
11: while i ≤ k do

12: m′
i ← Rp;

13: i← j + 1, p← p + 1;
14: return m′

Example 4 Consider m = {1, 3, 6, 7}, R = {3, 4}, and
U = {1, ..., 7}. The call LR(m, R, 3, 2) fails because
m3 > R2, which implies that LR(m, R, 2, 1) also fails

(since m2 = R1). Since m1 < R1, LR(m, R, 1, 1) re-
turns (1, 1). The reconstruction is simple in this case
since all elements of R are among the smallest ones and
the algorithm returns {2, 3, 4, 5}.

Function first-e≪(m,E) (Algorithm 5) computes the
first successor of m that does not include any element
in E (or m itself if it is disjoint from E). It uses an
auxiliary recursive algorithm LE (algorithm 4) to find
the location and a function denoting ”availability”

av(v) = {e ∈ U \ E | e > v}

Intuitively, av(v) represents the set of elements in U
greater than v and not in E. We will show later on
how to implement the algorithms without this function
that depends on U . Observe first that the location can-
not be after the smallest index i such that mi ∈ E.
However, it may not be possible to start at i if there
are not sufficiently many elements available in av(mi)
to fill positions i, ..., k. To find out the location with
greatest index, the algorithm proceeds recursively from
left to right. If i = k + 1, m is disjoint from E and
no reconstruction is necessary. Otherwise, if mi /∈ E,
the algorithm is called recursively with i + 1 (line 4 in
Algorithm 4). If it succeeds and returns j 6= ⊥, j is the
desired location. Otherwise, if mi ∈ E or the recursive
call fails, the algorithm determines if there are enough
elements to start at location i, which is the purpose of
line 7. The reconstruction phase in Algorithm 5 fills
the remaining positions with the smallest elements in
av(mi). It remains to show how to implement function
av efficiently. Observe first that

|av (mi)| = n − mi − |{e ∈ E|e > mi}|.

If E is represented as a sorted array, it suffices to com-
pute the index of the largest element e ∈ E smaller or
equal to mi giving us |{e ∈ E|e > mi}| in O(log |E|)
time. The reconstruction can implement lines 4–5 by
starting Algorithm 5 from mi+1 and inserting elements
mi+2, ... whenever they are not in E. The overall com-
plexity is O(k+|E| log |E|) (including the sorting) which

is Õ(k) when |E| is O(k).

Algorithm 4 LE(m, E, i)

1: if i = k + 1 then

2: return i;
3: if mi 6∈ E then

4: j ← LE(m, E, i + 1);
5: if j 6= ⊥ then

6: return j;
7: if |av(mi)| ≥ k − i + 1 then

8: return i;
9: else

10: return ⊥;

Example 5 Consider m = {1, 7, 8}, U = {1, ..., 8},
and E = {3, 5, 7}. The call to LE with i = 2 fails as
only 8 is available to fill positions i = 2, i = 3. The call

Algorithm 5 first-e≪(m,E)

1: m′ ← m;
2: i← LE(m, E, 1);
3: if i 6= ⊥ then

4: for j = i to k do

5: m′
j ← av(mi)j−i+1;

6: return m′;
7: else

8: return ⊥;

to LE with i = 1 succeeds as av(1) = {2, 4, 6, 8} and
there are only three positions to fill. The reconstruction
phase gives {2, 4, 6}.

Finally, we also show the algorithm for computing the
successor to m of cardinality c, when the cardinality
is not fixed. There is no location phase here and the
reconstruction is simple.

Algorithm 6 first-c≪(m, c)

1: m′ ← m
2: if |m| = c then

3: return m;
4: else if |m| < c ∧ |M | ≥ c then

5: for j = 1 to c do

6: m′
j ← j;

7: return m′

8: else

9: return ⊥;

The Set Solver

A set solver with length-lex domains may follow the
architecture of fd-solvers (Van Hentenryck & Deville
1991). The solver is organized around the domain store
and includes basic and non-basic constraints. The set of
basic constraints is {s ⊆ X, s⊕X, |X | ≤ d, |X | ≥ c, X �
Y } where ⊕ denotes disjointness and � the length-lex
lexicographic constraint. The set-solver maintains at
least bound-consistency on basic constraints. The non-
basic constraints use the domain store to generate new
basic constraints that tighten the constraint store. The
rest of the paper defines (a subset of) the operational se-
mantics of the set-solver using a structural operational
semantic (SOS) style. The SOS semantic manipulates
configurations 〈γ, σ〉, where γ is a conjunction of con-
straints and σ is the domain store (i.e., a conjunction of
domain constraints). The semantic is specified in terms
of rewriting rules of the form

Conditions

〈γ, σ〉 7−→ 〈γ′, σ′〉

that specifies that 〈γ, σ〉 can be rewritten into 〈γ′, σ′〉
when the conditions hold. The SOS semantics is spec-
ified in terms of the reflexive and transitive closure of
the transition relation, which is denoted by

⋆
7−→. In

other words, given a configuration 〈γ, σ〉, the set-solver

returns a configuration 〈γ⋆, σ⋆〉 such that 〈γ, σ〉
⋆

7−→
〈γ⋆, σ⋆〉.

The following rules specify the semantics of conjunc-
tion in the constraint and domain stores.

〈γ1,σ〉7−→σ′

〈γ1∧γ2,σ〉7−→〈γ2,σ′〉
〈γ1,σ〉7−→〈γ′

1
,σ′〉

〈γ1∧γ2,σ〉7−→〈γ′

1
∧γ2,σ′〉

〈γ,σ1〉7−→〈γ′,σ′

1
〉

〈γ,σ1∧σ2〉7−→〈γ′,σ′

1
∧σ2〉

σ 7−→σ′

〈γ,σ〉7−→〈γ,σ′〉

The domain store must be consistent or the solver fails.
¬(m≪M)

X ∈ 〈m, M〉 7−→ ⊥

Basic Constraints
The semantics of the basic constraints is as follows.

Inclusion A constraint s ⊆ X reduces the domain
〈m, M〉 of X by taking the first successor of m contain-
ing s and the first predecessor of M that contains s.
Note that s ⊆ m′ and s ⊆ M ′ and the constraint is
bound-consistent wrt the new domain.

m′ = first-r≪(m, s), M ′ = last-r≪(M, s)
D

s ⊆ X, X ∈ 〈m, M〉
E

7−→
D

s ⊆ X, X ∈ 〈m′, M ′〉
E

Disjointness A constraint s⊕X is similar, uses first-
e and last-e, and is bound-consistent.

m′ = first-e≪(m, s), M ′ = last-e≪(M, s)
D

s⊕X, X ∈ 〈m, M〉
E

7−→
D

s⊕X, X ∈ 〈m′, M ′〉
E

Cardinality The cardinality constraints prune the
domain once and are completely solved. This is a real
strength of the length-lex domain.

m′ = first-c≪(m, c)
D

|X| ≥ c, X ∈ 〈m, M〉
E

7−→
D

∅, X ∈ 〈m′, M〉
E

M ′ = last-c≪(M, d)
D

|X| ≤ d, X ∈ 〈m, M〉
E

7−→
D

∅, X ∈ 〈m,M ′〉
E

Lexicographic Symmetries can be broken by impos-
ing length-lex lexicographic constraints. These con-
straints are arc-consitent and represent another great
strength of the domain.

m′
Y = max(mX , mY), M ′

X = min(MY , MX)
D

X � Y, {X ∈ 〈mX , MX 〉, Y ∈ 〈mY , MY 〉}
E

7−→
D

X � Y, {X ∈ 〈mX , M ′
X 〉, Y ∈ 〈m

′
Y , MY 〉}

E

Note that the min and max are taken on the length-lex
ordering. We are in position to present the main result
on basic constraints. Observe that all constraints are
monotone and contractant, so that there is a unique
fixpoint when applying these rules.

Theorem 1 (Bound Consistency) Let
〈

γ, σ
〉

be a
configuration and 〈γ⋆, σ⋆〉 be the configuration such that

〈γ, σ〉
⋆

7−→ 〈γ⋆, σ⋆〉. Then, the basic constraints in γ⋆

are bound-consistent wrt σ⋆ and σ⋆ does not contain
any unary cardinality constraints.

Note also that each transition rule takes time Õ(k).

Required and Possible Elements

It is interesting to discuss the required and excluded el-
ements in a configuration 〈γ, σ〉. Some of the required
elements can be deduced from the unary inclusion con-
straints in γ. However, the lexicographic, cardinality,
and disjointness constraints may have reduced the do-
main, implying that some elements are now required.
These required elements may be computed in time O(k)
and highlight another strength of the representation.
We now specify inductively the set req(X,〈γ, σ〉) of re-
quired elements of a set-variable X in 〈γ, σ〉.

req(X,
D

γ, σ
E

) = req(X, γ) ∪ req(X, σ);

req(X, γ1 ∧ γ2) = req(X, γ1) ∪ req(X, γ2);
req(X, σ1 ∧ σ2) = req(X, σ1) ∪ req(X, σ2);
req(X, s ∈ X) = s;
req(X, X ⊆ 〈m,M〉) = R(〈m, M〉);
req(X, •) = ∅ otherwise.

It remains to show how to compute the required ele-
ments in a domain. The following rules can be used to
compute R(D) where

D = 〈{m1, . . . , mi}, {M1, . . . , Mi}〉 (i ≤ k).

If M1 > m1 + 1, then

R(D) = ∅.

If M1 = m1 + 1 ∧ m1 + i < n, then

R(D) = ∅.

If M1 = m1 + 1 ∧ m1 + i = n, then

R(D) = {mj | mj = n − (i − j) & 1 ≤ j ≤ i}. (1)

Otherwise, if M1 = m1, then

R(D) = {m1} ∪ R(〈{m2, . . . , mi}, {M2, . . . , Mi}〉). (2)

Example 6 Consider 〈{1, 2, 4, 5}, {2, 3, 4, 5}〉 and U =
{1, 2, 3, 4, 5}. From (1), {4, 5} is required. Finally,
consider 〈{1, 3, 4, 6, 7}, {1, 4, 5, 6, 7}〉 and U = {1, ..., 7}.
From (2) and (1), {1, 6, 7} is required.

It is also possible to compute the set P(D) of elements
in U that may belong to a domain. More precisely,
P(D) can be defined inductively as follows. Let

D = 〈{m1, . . . , mi}, {M1, . . . , Mi}〉 (i ≤ k).

Observe first that P(D) can never include any element
smaller than m1. If M1 > m1 + 1,

P(D) = {m1, .., n}

as all the elements of U belong to some sets starting
with m1 + 1. If M1 = m1 + 1, P(D) is the union of

P(〈{m1, . . . , mi}, {m1, n − i + 2, . . . , n}〉, (3)

i.e., the elements in the sets starting with m1, and

P(〈{m1 + 1, . . . , m1 + i}, {M1, . . . , Mi}〉 (4)

i.e., the elements in the sets starting with m1 +1. Case
3 produces the sets

{m1} ∪ {m2, . . . , n}

while case 4 gives the element

{m1..Mi} if Mi−1 = m1 + i + 1
{m1..n} if Mi−1 > m1 + i + 1.

Finally, if M1 = m1,

P(D) = {m1} ∪ P(〈{m2, . . . , mi}, {M2, . . . , Mi}〉).

Observe that the above derivation generates at most
O(k) intervals and it is possible to design an algorithm
computing P(D) running in O(k) space and O(k log k)

time (and hence in Õ(k) time by sorting the intervals).

Non-Basic Constraints
Non-basic constraints can be defined as inference rules
that generate basic constraints using the domain store.
Space requirements prevent us from discussing all tra-
ditional constraints and we focus on the binary disjoint-
ness constraints. The goal of the section is to demon-
strate that pruning rules for inclusion, disjointness, and
cardinality constraints synergically cooperate in reduc-
ing the domains efficiently.

Binary Disjointness The disjointness constraint
X ⊕Y imposes that required elements in X cannot ap-
pear in Y and vice-versa. The following transition rule
implements the traditional subset-bound pruning and
generates the implied unary constraints in O(k) time.

γX ≡ req(Y, 〈γ, σ〉)⊕X
γY ≡ req(X, 〈γ, σ〉)⊕ Y

D

X ⊕ Y ∧ γ, σ
E

7−→
D

〈X ⊕ Y ∧ γX ∧ γY ∧ γ〉, σ
E (5)

The disjointness constraint also implies some cardinal-
ity restrictions that prune the length-lex domains ac-
tively. Inference rules about cardinalities have been
published in (Azevedo & Barahona 2000) for many con-
straints. In particular, the disjointness constraint im-
plies |X | + |Y | ≤ p, where p represents the number of
values that may belong to X or Y .

σ ⇒ X ∈ 〈mX , MX〉 ∧ Y ∈ 〈mY , MY 〉
p = |P(〈mX , MX〉) ∪ P(〈mY , MY 〉)|
γX ≡ |X| ≤ p− |mY |
γY ≡ |Y | ≤ p− |mX |

D

X ⊕ Y, σ}
E

7−→
D

〈X ⊕ Y ∧ γX ∧ γY 〉, σ
E (6)

The inferred cardinality constraints can be generated
in time Õ(k) and may prune the length-lex domains,
illustrating the synergy between the subset-bound and
cardinality inferences.

Example 7 Consider the disjointness constraint X⊕Y
and the domain store
〈

X ∈ 〈{1, 2}, {1, 2, 3}〉 ∧ Y ∈ 〈{1, 2, 3}, {2, 3, 4, 5}〉
〉

Rule 5 used in subset-bound solvers does not make any
deduction since there are no required elements in either
variable. Rule 6 produces the new domain store

X ∈ 〈{1, 2}, {2, 3}〉 ∧ Y ∈ 〈{1, 2, 3}, {3, 4, 5}〉

illustrating the pruning from cardinality constraints.

Global Constraints

The strength of the length-lex domain in pruning the
domains also benefits global constraints. Once again,
space restrictions do not allow us to discuss this topic
in depth. However, the section illustrates the significant
domain reductions that global constraints and length-
lex domains can jointly produce. It uses a global con-
straint disjoint�(X1..q) combining disjointness and lex-
icographic constraints. Its semantics, when the Xi’s are
k-sets, is specified by

disjoint�(X1..q) ≡
∀1 ≤ i < j ≤ q : Xi ⊕ Xj ∧ Xi � Xj .

Assume that the implementation first generates all the
binary disjointness and lexicographic constraints for
simplicity. We will present two additional pruning rules
that exploit the fact that the sets are both disjoint and
lexicographically ordered and dramatically improve the
pruning of subset-bound solvers. The first rule is simple
and removes the smallest element of Xi from Xi+1.

σ ⇒ Xi ∈ 〈m,M〉 (1 ≤ i < q)
γ ≡ {m1} ⊕Xi+1

D

disjoint�(X1..q), σ}
E

7−→
D

{disjoint�(X1..q) ∧ γ, σ
E

The second rule reduces the upper bound of the do-
mains and ensures that sufficiently many elements are
left for subsequent sets to be both lexicographically
smaller and disjoint.

1 ≤ i < j ≤ q
σ ⇒ Xj ∈ D
v = max(P(D))− k(j − i + 1) + 1
γ ≡ Xi � {v, n− k + 2, . . . , n}

D

disjoint�(X1..q), σ}
E

7−→
D

{disjoint�(X1..q) ∧ γ, σ
E

The global disjoint and partition constraints over k-
sets have been addressed by subset bound solvers using
global propagators that run in O(qn2) (Bessière & al.
2004; Ilog Solver 1998). The following example con-
trasts their respective pruning.

Example 8 Let U = {1, . . . , 10} and X1..3 have initial
domains 〈{1, 2, 3}, {8, 9, 10}〉. disjoint�(X1..3) with
the above rules produces the new domains

X1 ∈ 〈{1, 2, 3}, {2, 9, 10}〉
X2 ∈ 〈{2, 3, 4}, {5, 9, 10}〉
X3 ∈ 〈{3, 4, 5}, {8, 9, 10}〉.

Observe that X1 has only 64 sets in its domain. In
contrast, a subset-bound solver returns the domain

X1 ∈ [∅, {1, .., 10}]
X2 ∈ [∅, {2, .., 10}]
X3 ∈ [∅, {3, .., 10}]

and X1 has 210 sets in its domain. These global prop-
agators do not prune here (they only prune when sub-
partitions are discovered) and the only reduction comes
from the lexicographic constraints.

This strength of the propagation in length-lex domains
is derived from two fundamental properties: (1) the
domain and the lexicographic constraints use the same
ordering; 2) the cardinality is intrinsic to the domain
ordering and precedes the lexicographic ordering.

References
Azevedo, F., Barahona, P. 2000. Modelling Digital Circuits
Problems with Set Constraints. in CL-2000.

Barnier, N., Brisset, P. 2001. Solving the Kirkman’s
Schoolgirl Problem in a Few Seconds. In CP -2001.

Bessière, C., Hnich, B., Hébrard, E., Walsh, T. 2004. Dis-
joint, Partition and Intersection Constraints for Sets and
Multiset Variables. In CP -2004.

Colbourn, C. J. , Dinitz, J.H., Stinson. 1999. Applications
of Combinatorial Designs to Communications, Cryptogra-
phy, and Networking. In Surveys in Combinatorics, Lon-
don Mathematical Society Lecture Note Series 187, Cam-
bridge University Press.

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.
2002. Global Constraints for Lexicographic Ordering. In
CP -2002.

Gervet, C. 1997. Interval Propagation to Reason about
Sets: Definition and Implementation of a Practical Lan-
guage. In Constraints journal, volume 1(3). Kluwer.

Hawkins, P., Lagoon, V., Stuckey, P. 2005. Solving Set
Constraint Satisfaction Problems using ROBDDs. JAIR
Journal , 24.

Hnich, B., Kiziltan Z., Walsh, T. Combining Symmetry
Breaking with Other Constraints: lexicographic ordering
with sums. In Proc. of Int. Symposium on AI & Maths-
2004.

Ilog Solver 4.4, Reference Manual, Ilog SA, Gentilly,
France. 1998.

Kreher, D.L., Stinson, D.R. 1999. Combinatorial Algo-
rithms. The CRC Press Series on Discrete Mathematics
and its Applications.

Puget,J-F. 1992 PECOS a High Level Constraint Pro-
gramming Language In Proc. of Spicis.

Sadler, A., Gervet, C. 2004. Hybrid Set Domains to
Strengthen Constraint Propagation and Reduce Symme-
tries. In CP -2004.

Sellman, M., Van Hentenryck, P. 2005. Structural Sym-
metry Breaking. In IJCAI -2005.

Van Hentenryck, P. Constraint Satisfaction in Logic Pro-
gramming. The MIT Press, 1989.

Van Hentenryck, P., Deville, Y. Operational Semantics of
Constraint Logic Programming over Finite Domains. in
PLILP-2001.

