Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)
Résumé
The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in ohot spotso could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.