Antibacterial properties of Ag–TiO 2 composite sol–gel coatings
Résumé
In this work the long-term antibacterial activity of silver doped titania coatings is studied systematically as a function of the titania layer structure (with and without molecular template) and the amount and physical properties of the silver dopant. Silver was incorporated in two different ways into the titania sol–gel films, either by co-deposition, i.e., adding the silver ions directly to the precursor sol of the layer or by post-synthetic impregnation of the mesoporous titania coating. The structure and morphology of the layers were investigated using transmission and scanning electron microscopy, whereas the silver content was determined by Rutherford backscattering spectrometry. Antibacterial properties against Escherichia coli bacteria were studied by colony forming unit assay and agar diffusion method. It was found that directly after preparation, all composite coatings show antibacterial activity both in the dark and under visible light illumination. The antibacterial activity of the co-deposited samples vanished after the first use despite their high and constant remaining silver content (2.597 at%). This type of coating was not effective in agar diffusion tests at all. The antibacterial activity of the impregnated coatings with lower silver contents (0.596 at% and 1.961 at%), however, showed long-lasting antibacterial effect both in the colony forming unit assay and in agar diffusion tests as well. This can be attributed to the fact that the silver content is distributed over the mesoporous network of the titania coating and is effective during the long-term tests.
Domaines
ChimieOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|