The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias
Résumé
Resistance to chemotherapeutic drugs is a major cause of treatment failure in Acute Myeloid Leukemias (AML). To better characterize the mechanisms of chemoresistance, we first identified genes whose expression is dysregulated in AML cells resistant to daunorubicin (DNR) or cytarabine (Ara-C), the main drugs used for the induction therapy. The genes found activated are mostly linked to immune signaling and inflammation. Among them, we identified a strong up-regulation of the NOX2 NAPDH oxidase subunit genes (CYBB, CYBA, NCF1, NCF2, NCF4 and RAC2). The ensuing increase in NADPH oxidase expression and ROS production, which is particularly strong in DNR-resistant cells, participates in the acquisition and/or maintenance of resistance to DNR. Gp91phox (CYBB-encoded Nox2 catalytic sub-unit), was found more expressed and active in leukemic cells from the FAB M4/M5 subtypes patients compared to FAB M0-M2 ones. Moreover, its expression was increased at the surface of patient’s chemotherapy resistant AML cells. Using a gene expression-based score we finally demonstrate that high NOX2 subunit genes expression is a marker of adverse prognosis in AML patients. The prognosis NOX score we defined is independent of the cytogenetic-based risk classification, FAB subtype, FLT3/NPM1 mutational status and age.
Domaines
Sciences du Vivant [q-bio]Origine | Publication financée par une institution |
---|---|
Licence |