From Operando Raman Mechanochemistry to “NMR Crystallography”: Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17 O-Labeling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Chemistry of Materials Année : 2022

From Operando Raman Mechanochemistry to “NMR Crystallography”: Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17 O-Labeling

(1) , (2) , (3) , (3) , (4) , (1)
1
2
3
4

Résumé

The description of the formation, structure, and reactivity of coordination networks and metal−organic frameworks (MOFs) remains a real challenge in a number of cases. This is notably true for compounds composed of Zn 2+ ions and terephthalate ligands (benzene-1,4-dicarboxylate, BDC) because of the difficulties in isolating them as pure phases and/or because of the presence of structural defects. Here, using mechanochemistry in combination with operando Raman spectroscopy, the observation of the formation of various zinc terephthalate compounds was rendered possible, allowing the distinction and isolation of three intermediates during the ball-milling synthesis of Zn 3 (OH) 4 (BDC). An "NMR crystallography" approach was then used, combining solid-state NMR (1 H, 13 C, and 17 O) and density functional theory (DFT) calculations to refine the poorly described crystallographic structures of these phases. Particularly noteworthy are the high-resolution 17 O NMR analyses, which were made possible in a highly efficient and cost-effective way, thanks to the selective 17 O-enrichment of either hydroxyl or terephthalate groups by ball-milling. This allowed the presence of defect sites to be identified for the first time in one of the phases, and the nature of the H-bonding network of the hydroxyls to be established in another. Lastly, the possibility of using deuterated precursors (e.g., D 2 O and d 4-BDC) during ball-milling is also introduced as a means for observing specific transformations during operando Raman spectroscopy studies, which would not have been possible with hydrogenated equivalents. Overall, the synthetic and spectroscopic approaches developed herein are expected to push forward the understanding of the structure and reactivity of other complex coordination networks and MOFs.

Domaines

Chimie
Fichier principal
Vignette du fichier
acs.chemmater.1c04132.pdf (10.71 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03681123 , version 1 (30-05-2022)

Licence

Paternité - Pas d'utilisation commerciale - Pas de modification - CC BY 4.0

Identifiants

Citer

César Leroy, Thomas-Xavier Métro, Ivan Hung, Zhehong Gan, Christel Gervais, et al.. From Operando Raman Mechanochemistry to “NMR Crystallography”: Understanding the Structures and Interconversion of Zn-Terephthalate Networks Using Selective 17 O-Labeling. Chemistry of Materials, 2022, 34 (5), pp.2292-2312. ⟨10.1021/acs.chemmater.1c04132⟩. ⟨hal-03681123⟩
31 Consultations
29 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More