Coupled complex Monge-Ampère equations on Fano horosymmetric manifolds
Résumé
We address a general system of complex Monge-Ampère equations on Fano horosymmetric manifolds and give necessary and sufficient conditions for existence of solutions in terms of combinatorial data of the manifold. This gives new results about Mabuchi metrics, twisted Kähler-Einstein metrics and coupled Kähler-Ricci solitons and provides a unified approach to many previous results on canonical metrics on Kähler manifolds.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...