Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research

Abstract : Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.umontpellier.fr/hal-02573627
Contributeur : Yannick Brohard <>
Soumis le : vendredi 15 mai 2020 - 09:48:07
Dernière modification le : jeudi 16 juillet 2020 - 14:45:34

Fichier

biaa044.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Katelin Pearson, Gil Nelson, Myla Aronson, Pierre Bonnet, Laura Brenskelle, et al.. Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research. Bioscience, Oxford University Press (OUP), 2020, 70 (7), pp.610-620. ⟨10.1093/biosci/biaa044⟩. ⟨hal-02573627⟩

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

135