Achieving exceedingly constructional characterization of magnesia-yttria (MgO-Y2O3) nanocomposite obtained via oxalate precursor strategy - Université de Montpellier Accéder directement au contenu
Article Dans Une Revue Measurement - Journal of the International Measurement Confederation (IMEKO) Année : 2020

Achieving exceedingly constructional characterization of magnesia-yttria (MgO-Y2O3) nanocomposite obtained via oxalate precursor strategy

Résumé

Magnesium yttrium oxide (MgO-Y2O3) nanocomposites have been purposefully tailored using an oxalate precursor pathway. Commonly, MgO-Y2O3 nanocomposites possessed a significant technological challenge in electroceramics; particularly remarkable as the anode material for solid oxide fuel cells (SOFC). In this regard, different weight ratios, % of MgO and Y2O3 including (20:80), (50:50) and (80:20) were fabricated based on oxalic acid as a fuel in acidic medium. Indeed, the impact of the annealing temperature on the phase composition, crystallite size, morphology and optical properties was investigated using X-ray diffraction, field emission electron microscope (FESEM), TEM, FTIR and UV-VIS-NIR spectrophotometer. The FESEM results showed the nanocomposite had a cubic like structure with the fine grain sizes of 0-150 nm because of the rapid solidification. The band gap energy was found to be 4.83, 5.10 and 5.08 eV with increasing the ratio of Mg2+ ion from 20 to 50 and 80, respectively. Eventually, our currently studies consider to be an important achievement to investigate and recognize the features of the MgO-Y2O3 system for different applications involving microwave systems, advanced displays (field emission display, plasma display, electroluminescent display), ultra-fast sensors, durable, infrared windows and lasers.

Domaines

Chimie
Fichier principal
Vignette du fichier
Measurement, 2020, 150, 106888.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02364848 , version 1 (31-05-2021)

Identifiants

Citer

Ali Omar Turky, Ahmed Esmail Shalan, Emad M.M. Ewais, Hailei Zhao, Mohamed Rashad, et al.. Achieving exceedingly constructional characterization of magnesia-yttria (MgO-Y2O3) nanocomposite obtained via oxalate precursor strategy. Measurement - Journal of the International Measurement Confederation (IMEKO), 2020, 150, pp.106888. ⟨10.1016/j.measurement.2019.106888⟩. ⟨hal-02364848⟩
39 Consultations
69 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More