Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass - Université de Montpellier
Article Dans Une Revue Geophysical Research Letters Année : 2017

Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

Jérôme Chave
M. Schlund
  • Fonction : Auteur
J. Barichivich
F. von Poncet
  • Fonction : Auteur

Résumé

Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.
Fichier principal
Vignette du fichier
2017GL074150.pdf (972.65 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02162210 , version 1 (17-09-2020)

Identifiants

Citer

E. Joetzjer, M. Pillet, Philippe Ciais, Nicolas Barbier, Jérôme Chave, et al.. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 2017, 44 (13), pp.6823-6832. ⟨10.1002/2017gl074150⟩. ⟨hal-02162210⟩
397 Consultations
106 Téléchargements

Altmetric

Partager

More