A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys - Université de Montpellier
Article Dans Une Revue European Journal of Mechanics - A/Solids Année : 2015

A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys

Résumé

We advance a three-dimensional phenomenological model for the magneto-mechanical behavior of magnetic shape memory alloys. Moving from micromagnetic considerations, we propose a thermodynamically consistent constitutive relation which is able to reproduce the magnetically-induced martensitic transformation in single crystals. Existence results for the constitutive relation problem as well as for the corresponding quasi-static evolution system are illustrated and convergence of time- and space–time-discretizations are recorded. Eventually, we present algorithmic considerations and we numerically test the model in order to assess its ability in reproducing the typical response of magnetic shape memory alloys, as well as in recovering standard shape-memory and pseudo-elastic behaviors when no magnetic field is present.
Fichier non déposé

Dates et versions

hal-02080983 , version 1 (27-03-2019)

Identifiants

Citer

Ferdinando Auricchio, Anne-Laure Bessoud, Alessandro Reali, Ulisse Stefanelli. A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. European Journal of Mechanics - A/Solids, 2015, 52, pp.1-11. ⟨10.1016/j.euromechsol.2014.12.011⟩. ⟨hal-02080983⟩
60 Consultations
0 Téléchargements

Altmetric

Partager

More