Can volume predict Bitcoin returns and volatility? A quantiles-based approach

Abstract : Prior studies on the price formation in the Bitcoin market consider the role of Bitcoin transactions at the conditional mean of the returns distribution. This study employs in contrast a non-parametric causality-in-quantiles test to analyse the causal relation between trading volume and Bitcoin returns and volatility, over the whole of their respective conditional distributions. The nonparametric characteristics of our test control for misspecification due to nonlinearity and structural breaks, two features of our data that cover 19th December 2011 to 25th April 2016. The causality-in-quantiles test reveals that volume can predict returns- except in Bitcoin bear and bull market regimes. This result highlights the importance of modelling nonlinearity and accounting for the tail behaviour when analysing causal relationships between Bitcoin returns and trading volume. We show, however, that volume cannot help predict the volatility of Bitcoin returns at any point of the conditional distribution.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.umontpellier.fr/hal-02008551
Contributeur : Martin Donnat <>
Soumis le : mardi 5 février 2019 - 17:17:34
Dernière modification le : jeudi 6 juin 2019 - 14:42:10

Identifiants

Citation

Mehmet Balcilar, Elie Bouri, Rangan Gupta, David Roubaud. Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 2017, 64, pp.74--81. ⟨10.1016/j.econmod.2017.03.019⟩. ⟨hal-02008551⟩

Partager

Métriques

Consultations de la notice

43