Salinity Variation in a Mangrove Ecosystem: A Physiological Investigation to Assess Potential Consequences of Salinity Disturbances on Mangrove Crabs

Abstract : Dimitri Theuerkauff, Georgina A. Rivera-Ingraham, Jonathan A.C. Roques, Laurence Azzopardi, Marine Bertini, Mathilde Lejeune, Emilie Farcy, Jehan-Herve Lignot, and Elliott Sucre (2018) Salinity is one of the main environmental factors determining coastal species distribution. However, in the specific case of mangrove crabs, salinity selection cannot be understood through ecological approaches alone. Yet understanding this issue is crucial in the context of mangrove conservation, since this ecosystem is often used as biofilter of (low-salinity) wastewater. Crabs are keystone species in this mangrove ecosystem and are differentially affected by salinity. We hypothesize that crab salinity selection may be partly explained by specific salinity-induced physiological constraints associated with osmoregulation, energy and redox homeostasis. To test this, the response to salinity variation was analysed in two landward mangrove crabs: the fiddler crab Tubuca urvillei, which inhabits low-salinity areas of the mangrove, and the red mangrove crab Neosarmatium meinerti, which lives in areas with higher salinity. Results confirm that both species are strong hypo-/hyper-osmoregulators that deal easily with large salinity variations. Such shifts in salinity do not induce changes in energy expenditure (measured as oxygen consumption) or in the production of reactive oxygen species. However, T. urvillei is physiologically suited to habitats with brackish water, since it presents i) high hemolymph osmolalities over a wider range of salinities and lower osmoregulatory capacity in seawater, ii) high Na+/K+-ATPase (NKA) activity in the posterior osmoregulatory gills and iii) a thicker osmoregulatory epithelium along the posterior gill lamellae. Therefore, while environmental salinity alone cannot directly explain fiddler and red mangrove crab distributions, our data suggest that salinity selection is indeed influenced by specific physiological adjustments.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.umontpellier.fr/hal-02002277
Contributeur : Isabelle Vidal Ayouba <>
Soumis le : jeudi 31 janvier 2019 - 15:41:58
Dernière modification le : mardi 14 mai 2019 - 11:02:56

Identifiants

  • HAL Id : hal-02002277, version 1

Citation

Dimitri Theuerkauff, Georgina A. Rivera-Ingraham, Jonathan A. C. Roques, Laurence Azzopardi, Marine Bertini, et al.. Salinity Variation in a Mangrove Ecosystem: A Physiological Investigation to Assess Potential Consequences of Salinity Disturbances on Mangrove Crabs. ZOOLOGICAL STUDIES, 2018, 57. ⟨hal-02002277⟩

Partager

Métriques

Consultations de la notice

35