
HAL Id: tel-01742415
https://hal.umontpellier.fr/tel-01742415v1

Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Set Intervals in Constraint Logic Programming:
Definition and implementation of a language

Carmen Gervet

To cite this version:
Carmen Gervet. Set Intervals in Constraint Logic Programming: Definition and implementation of a
language. Artificial Intelligence [cs.AI]. Université de Franche Comté Besançon, 1995. English. �NNT :
�. �tel-01742415�

https://hal.umontpellier.fr/tel-01742415v1
https://hal.archives-ouvertes.fr

No d�ordre � ���

THESE

pr�esent�ee devant

L�Universit�e de Franche�Comt�e

U�F�R� des Sciences et Techniques

pour obtenir le titre de

Docteur de l�Universit�e de Franche�Comt�e

mention Informatique

Doctor Communitatis Europeae

Set Intervals in Constraint Logic Programming�
De�nition and implementation of a language

par

Carmen Gervet

soutenue le �� septembre ���� devant la commission d�examen

MM� Yves Deville Rapporteurs
Herv�e Gallaire

Ugo Montanari

Mr� Bruno Legeard Directeur

MM� Pierre Baptiste Examinateurs
Jean�Jacques Chabrier

Alexander Herold

Mark Wallace

i

A mes parents�

mille mercis�

ii

Remerciements

Ce travail a b�en�e�ci�e de nombreuses contributions mais il y a deux personnes sans
lesquelles ce qui suit n�aurait pas vu le jour� Jean�Yves Cras et Mark Wallace�

Jean�Yves Cras qui� autour d�un grand caf�e noir� m�a propos�e ce sujet de th	ese�
Sa fougue et sa foi en l�avenir de la programmation par contraintes ont su
 pour me
convaincre du devenir de ce projet� Qu�il en soit grandement remerci�e�

Mark Wallace m�a invit�ee 	a int�egrer l��equipe CORE �COnstraint REasoning�
	a l�ECRC pour r�ealiser ce projet son enthousiasme� son aide dans la mise en oeu�
vre d�id�ees nouvelles et sa joie de vivre� ont fait de ces ann�ees de th	ese une aventure
heureuse� Ses commentaires m�ont �et�e d�une grande aide pour la version �nale de cette
th	ese� Qu�il en soit grandement remerci�e�

A Bruno Legeard� qui en tant que directeur de recherche a assur�e le bon d�eroulement
de ces trois ann�ees de th	ese� en m�accordant sa con�ance et ses nombreux conseils tant
sur les plans scienti�que que pratique� merci�

A R�emi Lescoeur et toute l��equipe Charme qui m�ont chaleureusement accueillie
pendant un an au centre d�intelligence arti�cielle de Bull �CEDIAG� et m�ont initi�ee
	a la programmation par contraintes avant que je ne gagne l�ECRC� merci�

A Alexander Herold et toute l��equipe ECLiPSe 	a l�ECRC� qui ont fait part d�un sou�
tien actif en m�int�egrant dans une bulle anglophone au milieu d�un monde germanico�
bavarois� merci�

A G�erard Comyn et Alessandro Giacalone qui m�ont donn�e de travailler 	a l�ECRC�
un lieu de recherche id�eal pour faire une th	ese� merci�

A Pascal Brisset� Micha Meier et Joachim Schimpf� qui m�ont appris 	a d�evelopper
proprement un langage de programmation pour leur aide technique d�une grande
richesse et leur disponibilit�e de chaque instant� merci�

A Yves Deville� Herv�e Gallaire et Ugo Montanari qui ont consacr�e une part de leur
temps pr�ecieux pour se plonger dans mes travaux et �evaluer cette th	ese� merci�

Aux examinateurs� Pierre Baptiste� Jean�Jacques Chabrier� Alexander Herold�
Bruno Legeard� Mark Wallace� qui ont accept�e d��etre membres du jury� merci�

Une partie de ce document est bas�ee sur un papier publi�e� A Yves Deville� Pascal
Van Hentenryck� Joxan Ja�ar et les correcteurs anonymes� qui ont lu ce papier et dont
les commentaires ont �et�e d�une grande valeur� merci�

A tous ceux qui ont contribu�e 	a la r�ealisation de ce document par leurs conseils�
commentaires et relectures� Jean�Marc Andreoli� Fr�ed�eric Benhamou� St�ephane Bres�
san� Pascal Brisset� Alexander Herold� Gabriel Kuper� Bruno Legeard� Mark Wallace�
et tout particuli	erement Gabriel Kuper et Alexander Herold qui ont lu et relu les ver�
sions pr�eliminaires de cette th	ese en portant un jugement critique et constructif tant
sur le fond que sur la forme de mon fran�glais� merci�

En�n� pour leur soutien sans mesure et leur profonde amiti�e� Armelle� Fran�cois�
Axel�Frank� Bob� Thom et Andr�ea� merci 	a vous�

iv Remerciements

Abstract

We propose a formal and practical framework for de�ning and implementing a
new constraint logic programming language over sets called Conjunto� The main
motivation for this work was to overcome current problems in solving set�based
combinatorial search problems� A set in Conjunto is constrained to range over a
so called set domain speci�ed as a set interval� Until recently� most work on em�
bedding sets in logic programming and constraint logic programming has focused
on set constructors and complete solvers� These approaches aimed at exploiting
the expressiveness of sets� Our study of these languages came to the conclusion
that complete solvers have severe e�ciency problems due to the nondeterministic
nature of set uni�cation�

Set�based search problems are modelled in the language as set domain con�
straint satisfaction problems� in which the nodes are variables ranging over a set
domain� and the arcs are set constraints� In addition it provides a set of additional
constraints� namely the graduated constraints� which de�ne a relation between
sets and integers or integer domains� We are thus able to deal with set�based
optimization problems which apply cost functions to quanti�able� i�e� arithmetic�
terms� while working on sets�

Conjunto has been implemented using a constraint logic programming plat�
form� The constraint solver is based on consistency techniques� a set of transfor�
mation rules perform interval reasoning over the domain bounds to infer local
consistency� For e�ciency reasons� completeness of the solver has been given up�
The solver is described as a transition system checking one constraint at a time�

The formal framework describes how elements from the computation domain�
i�e� the class of de�nable sets� can be approximated by elements from the con�
straint domain 	set intervals
� over which the computations are performed� It
describes the approximations and closure operations guaranteeing that any com�
putable solution lies in the approximations�

The practical viability of the language is demonstrated by a set of applica�
tions from operations research and combinatorial mathematics� They show the
ability of the language to model set based problems in a natural and concise way
while keeping the solving process e�cient� Therefore they show that the trade�o�
between expressiveness and e�ciency proposed in this thesis leads to a practical
system�

vi Abstract

Contents

Introduction �

Motivation �

Domains in CLP �

Sets in LP and CLP �

Intervals in CLP �

Short outline �

Part I Sets and Intervals in CLP Languages �

� Constraint Logic Programming ��

��� A logic�based language ��

��� The CLP scheme ��

��	 Constraint solving �	

��� Constraint domains ��

� Sets in CLP ��

��� CLP
��� �

��� CLPS ��

��	 flogg ��

� Interval and domain reasoning in CLP ��

	�� Constraint satisfaction problems �	

	�� Constraint satisfaction ��

	���� Algorithms ��

	���� Search Techniques ��

	�	 Constraint satisfaction in LP � 	�

	�	�� CLP
FD� 	�

	�	�� CLP
Intervals� 	�

viii Contents

Part II The Language ��

� Formal Framework ��

��� Basics of powerset lattices � 	�

����� Lattices � 	�

����� Intervals as lattice subsets � 	�

����	 Graduations ��

��� Set intervals in CLP ��

����� Abstract syntax and terminology � � � � � � � � � � � � � � � � � � ��

����� Computation domain �	

����	 Constraint domain �	

����� Set interval calculus ��

����� Graduations �

����� Extended constraint domain ��

��	 Execution model ��

��	�� De�nition of an admissible system of constraints � � � � � � � � � ��

��	�� From n�ary constraints to primitive ones � � � � � � � � � � � � � � ��

��	�	 Consistency notions ��

��	�� Inference rules ��

��	�� Operational semantics ��

� Practical Framework ��

��� Design of Conjunto ��

����� Syntax ��

����� Terminology and semantics ��

����	 Constraint solving ��

����� Programming facilities ��

��� Implementation of Conjunto ��

����� Set data structure ��

����� Set uni�cation procedure �

����	 Local transformation rules �

����� Constraint solver �

����� Execution of a Conjunto program� architecture � � � � � � � � � �

Contents ix

� Applications �	

��� Set domain CSPs �

����� Problem statement �

����� Labelling ��

����	 Optimization ��

��� Modelling facilities ��

����� Ternary Steiner problem ��

����� The set partitioning problem ��

��	 E�ciency issues� A case study ��

��� Conclusion �	

Conclusion ��

Related work ��

Further developments �

Future work ��

A The set domain library
 user manual ���

A�� Syntax ���

A�� The solver ���

A�	 Constraint predicates ���

A�� Examples ���

A���� Set domains and interval reasoning � � � � � � � � � � � � � � � � � ���

A���� Subset�sum computation with convergent weight � � � � � � � � � ���

A�� When to use set variables and constraints��� � � � � � � � � � � � � � � � � ���

A�� User�de�ned constraints ���

A���� The abstract set data structure ���

A���� Set Domain access ���

A���	 Set variable modi�cation ���

A� Example of de�ning a new constraint ���

A�� Set Domain output ���

A�� Debugger ���

Index ���

Bibliography ���

x Contents

List of Figures

��� Constraint Solving� one resolution step � � � � � � � � � � � � � � � �

��� REVISE procedure ��

��� Complexity of AC algorithms ��

��� AC�� algorithm ��

�� Derivation rule of the operational semantics � � � � � � � � � � � � �

��� Example� search tree of the prede�ned labelling procedure � � � � �

��� Example� cutting branches of the search tree � � � � � � � � � � � � ��

��� Interval re�nement for primitive set constraints � � � � � � � � � � ��

�� Projection functions associated to the set union relation � � � � � � ��

��� Projection functions associated to the set intersection relation � � ��

��� Projection functions associated to the set di�erence relation � � � ��

��� Transformation rules for the set cardinality constraint � � � � � � � �

��� Transformation rules for the weight constraint � � � � � � � � � � � �

��� General algorithm ��

���� Execution of a Conjunto program � � � � � � � � � � � � � � � � � � ��

xii List of Figures

Introduction

Ne corrige pas le mauvais�

mais augmente le bon��

�All the citations given in this document are from �Dialogues avec l�ange�� a document taken

down by Gitta Mallasz�

� Introduction

Motivation

Once upon a time there was a big universe called a �universal set	
 formed by
the union of subparts or subsets� The least element of the universe was a black
hole which was so dense that it could contain hardly anything� Subsets of the
universe could contain arbitrary elements� A system built from this universe was
based on various relations applied to the subsets� The satis�ability of the system
was a crucial issue
 but it could be partially ensured by the local consistency of
the de�ned relations
 and this could be done independently of the nature of the
subset elements� This allowed us to reason about the subsets of the universe at a
reasonable cost� The powerset lattice is the mathematical term for the structure
of this system�

This thesis proposes a new means to tackle set based combinatorial search
problems in a constraint logic programming framework� The main contribution
of the work is a new constraint logic programming language allowing set based
constraint satisfaction problems to be modelled and solved in an elegant way� We
introduce the notion of set domain following the concept of �nite integer domain
�Fik���� The elements of a set domain are known sets containing arbitrary values�
and the set domain itself represents a powerset� It is de�ned as a set interval
speci�ed by its lower and upper bounds� The constraints of the language are
built�in relations applied to variables ranging over set domains� The solver is based
on an extension of constraint satisfaction techniques � originating in arti�cial
intelligence� to deal with set constraints�

Domains in CLP

Logic programming �Kow���CKC��� �Llo��� is a powerful programming
framework which enables the user to state nondeterministic programs in rela�
tional form� In the recent years� the concept of �nite domain �HD��� i�e�� set of
natural numbers� has been embedded in logic programming to allow for e�cient
tackling of combinatorial search problems modelled as Constraint Satisfaction
Problems 	CSP
�Mac���� A CSP is commonly described by a set of variables
ranging over a set of possible values 	the domains
 and a set of constraints ap�
plied to the variables� It is well know that combinatorial search problems are
NP�complete �PS���� The solving of a CSP is based on constraint satisfaction
techniques �Mac����MF���� They are preprocessing techniques aiming at pruning
the search space� associated to a CSP� before the search procedure 	eg� backtrack�
ing
 starts� There are two di�erent uses of these techniques in logic programming
coming from two distinct motivations� One consists in programming CSPs and

Introduction 	

constraint satisfaction techniques at a meta level� with respect to a logic pro�
gramming language �RM����MR���� This approach shows how to use logic pro�
gramming for solving CSPs and how to transform logic programs using constraint
satisfaction techniques� The second aims at extending a logic�based language with
constraint satisfaction techniques at the language level �HD���� This has led to
the �rst development of a Constraint Logic Programming 	CLP
 language on
�nite domains� CHIP �DSea��� 	Constraint Handling In Prolog
�

CHIP extends the application domain of logic programming to the e�cient
solving of combinatorial search problems� Typical examples are scheduling appli�
cations� warehouse location problems� disjunctive scheduling� cutting stock� etc
�DSH��a� which come from arti�cial intelligence or operations research� The suc�
cess of CHIP prompted the development of new �nite domain CLP languages�
classi�ed as CLP	FD
 languages� but also raised the question of its limitations�
Some of the limitations are concerned with the di�culties CLP	FD
 languages
have to model and solve a class of combinatorial problems based on the search
for sets or mapping objects� Set partitioning� set covering� matching problems
are such combinatorial search problems� The main motivation of our work is
to provide an elegant solution to this problem� So far� a �nite domain CSP
approach models a set either as a list of variables taking their value from a
�nite set of integers 	�x�� ���� xn�� xi � f�� �� �� g
� or as a list of ��� variables
	�y�� ���� ym�� yi � f�� �g
� The �rst approach requires the removal of order and
multiplicities among the elements of the list� which is achieved by adding order�
ing constraints 	x� � x� � ��� � xn
� Constraints over sets are modelled using
arithmetic constraints� This is not natural� costly in variables� and this often
makes the program non�generic� The second approach� based on the use of ���
variables� originates from ��� Integer Linear Programming 	ILP
 �Sch���� It makes
use of the one�to�one correspondence which exists between a subset s of a known
set S and a boolean algebra� This correspondence is de�ned by the characteristic
function�

f � yi �� f�� �g� f	yi
 � � i� i � s� � otherwise

In other words� to each element in S a ��� variable is associated� which takes the
value � if and only if the element belongs to the set s� This approach requires
a lot of variables� In addition it does not ease the statement of set constraints
such as the set inclusion� because the inclusion of one list into another requires
considering a large amount of linear constraints over the ��� variables� This is
not very natural� nor concise� To cope with this problem� two solutions have been
proposed� One consists in de�ning a class of built�in predicates� referred to as
global constraints �Bel��a��BC��� which allow for concise statement and global
solving of a collection of constraints� One way to achieve such a global reasoning is
to use operations research techniques in a CLP setting� This approach aims both

 Introduction

at providing a better pruning of the variable domains by taking into account sev�
eral constraints at a time� It also extends the programming facilities of CLP	FD

languages to handle e�ciently speci�c problems such as the disjunctive schedul�
ing� the computation of circuits in a graph� etc� The second solution
 presented in
this thesis
 aims at extending the expressiveness of the language to embedding sets
as objects searched for
 and to provide set and mapping constraints for general
purposes� This requires investigating how CLP languages based on sets tackle
the set satis�ability problem and how well expressiveness can be combined with
e�ciency�

Sets in LP and CLP

Most of the recent proposals to embed sets as a high level programming ab�
straction assume a logic�based language as the underlying framework� This is a
result of the declarative nature of logic programming which combines well with
set constructs� and from its nondeterminism which is suitable for stating set�
based programs� For instance� a pure logic programming language is adopted in
�BNST��� �Kup��� �DOPR��� �STZ���� an equational logic language in �JP����
and a CLP language in �Wal��� �LL��� �DR��� �BDPR��� Constraint Logic Pro�
gramming 	CLP
 languages dealing with sets� CLP	Sets
� are de�ned as instances
of the CLP scheme �JL��� over a speci�c computation domain describing the class
of allowed sets and set constructs� CLP combines the positive features of logic pro�
gramming with constraint solving techniques� The concept of constraint solving
replaces the uni�cation procedure in logic programming and provides� among oth�
ers� a uniform framework for handling set constraints 	eg� x � s� s � s�� s � s�
�

The various CLP	Sets
 languages aim at modelling and prototyping set based
problems in a natural and concise manner� They deal with extensional sets de�
�ned by a set constructor 	eg� fxg � S� fx�� ���� xng
 such that the set equality
is either Associative� Commutative and Idempotent 	ACI
�LL��� or commutative
and right�associative �DR���� These properties are de�ned by axiomatizing a set
theory� Regarding the set satis�ability problem� it is NP�complete or even NP�
hard �LS��� �PPMK��� �KN��� �Hib���� depending on the class of axioms and
predicates considered� In addition� the satisfaction of the ACI axioms introduces
non determinism in the uni�cation procedure itself� Each of these languages pro�
vides a sound and complete solver� This infers that the complexity of solving set
problems in exponential and that the resolution procedure is equivalent to ap�
plying an exhaustive search procedure when solving an NP�complete problem�
In �LLLH���� variables in a set fx�� ���� xng can range over �nite domains� and
the solver makes use of consistency techniques to prune the domains� This prun�

Introduction �

ing is rather weak since the satisfaction of the ACI axioms introduces another
source of non determinism� This prevents us from pruning the search space before
the search procedure starts� This lack of e�ciency is not a limitation when we
take into account the objective of these languages� namely dealing with theorem
proving �DR��� or combinatorial problem prototyping �LL���� but it is a problem
when from prototyping we move to problem solving�

To achieve a better e�ciency� the nondeterministic set uni�cation procedure
of constructed sets should be replaced by a deterministic procedure over sets
represented as variables� In addition� sets should range over domains so as to
make use of preprocessing techniques such as constraint satisfaction techniques�
To achieve this� we propose a language which enables us to model a set�based
problem as a set domain CSP where set variables range over set domains

and which tackles set constraints by using constraint satisfaction techniques� A set
domain can be a collection of known sets like ffa� bg� fc� dg� fegg� It might happen
that the elements of the domain are not ordered at all� and thus if large domains
are considered� it is not possible to approximate the domain reasoning by an
interval reasoning as in some CLP	FD
 systems� To cope with this� we propose to
approximate a set domain by a set interval speci�ed by its upper and lower bounds

thus guaranteeing that a partial ordering exists� This allows us to make use of
constraint satisfaction techniques by reasoning in terms of interval variations

when dealing with a system of set constraints� The set interval �fg� fa� b� c� d� eg�
represents the convex closure of the set domain above�

The strengths of handling intervals in CLP have recently been proved when
dealing� in particular� with integers and reals� On the one hand� interval reasoning
does not guarantee that all the values from a domain are consistent� versus domain
reasoning� On the other hand� it removes at a minimal cost some values that can
never be part of any feasible solution� This is achieved by pruning the domain
bounds instead of considering each domain element one by one� Interval reasoning
is particularly suitable to handle monotonic binary constraints 	e�g� x � y� s �
s�
� where it guarantees the correctness properties of domain reasoning while
being more e�cient in terms of time complexity�

Intervals in CLP

The introduction of real intervals into CLP aims at avoiding the errors result�
ing from �nite precision of reals in computers� A real interval is an approximation
of a real and is speci�ed by its lower and upper bounds� It does not denote the
set of possible values a variable could take but a variation of an in�nite num�
ber of values� Cleary �Cle��� introduced a relational arithmetic of real intervals

� Introduction

in logic programming based on the interpretation of arithmetic expressions as
relations� Such relations are handled by making use of projection functions and
closure operations� which correspond to the de�nition of transformation rules ex�
pressing each real interval in terms of the other intervals involved in the relation�
These transformation rules approximate the usual consistency notions �Mac����
The handling of these rules is done by a relaxation algorithm which resembles
the arc�consistency algorithm AC�� �Mac���� This approach prompted the devel�
opment of the class of CLP	Intervals
� A formalization of this approach is given
in �Ben����

While CLP	Intervals
 languages make use of constraint satisfaction tech�
niques� they do not model CSPs because the solving of a problem modelled in
a CLP	Intervals
 language searches for the smallest real intervals such that the
computations are correct� It guarantees that the values which have been removed
are irrelevant� but does not bound the real variables to a value� On the one hand�
set intervals in constraint logic programming resemble the real interval arith�
metic approach in terms of interpreting set expressions as relations and using
interval reasoning to perform set interval calculus when handling the constraints�
We make use of similar projection functions which are the only way to handle
set expressions 	e�g� s � s�� s � s�
 as relations� We also approximate the set do�
main of a set expression by a convex interval� On the other hand� set intervals
in constraint logic programming contribute to the de�nition of a language which
allows one to model and solve discrete CSPs in the CLP framework� In practice�
this corresponds to providing a labelling procedure in order to reach a complete
solution� Regarding optimization problems� it is necessary to allow the de�nition
of cost functions which necessarily deal with quanti�able� i�e�� arithmetic� terms�
This requires the de�nition of a class of functions� interpreted as constraints�
which map sets to integers 	e�g� the set cardinality
� and a cooperation between
two solvers 	set solver and �nite domain solver
� These requirements di�er from
that of CLP	Intervals
 languages where the completeness issue is still an open
problem because of the in�nite size of real intervals�

Short outline

Part I� Sets and Intervals in CLP languages�

This part has three sections� Section � presents the constraint logic program�
ming scheme and its operational model� Section � presents the class of CLP	Sets

languages� with a particular attention given to the relationship between their
application domains and their constraint solvers� Section � surveys consistency
notions and algorithms and describes their embedding into the class of CLP	FD

Introduction

and CLP	Intervals
 languages�

Part II� The Language�

This is the central part of the dissertation� This part contains three main sections�
Section � describes the formal framework of a constraint logic programming lan�
guage over set domains� It comprises the description of the system� that is the
constraint domain �over which set interval calculus is performed� and the oper�
ational semantics� Section � describes the CLP language over set domains� called
Conjunto� which we have designed and implemented using the constraint logic
programming platform ECLiPSe �ECR��� This section shows how constraint
satisfaction techniques can be adapted to deal with constraints over set intervals
using interval narrowing techniques� Section � presents applications developed in
Conjunto� The applications illustrate the modelling facilities of the language and
its ability to solve in an e�cient way large problems� Comparative studies are
made with �nite domain CSP approaches�

Conclusion�

In this part� we give an evaluation of the results achieved� present the related lines
of work� and discuss further possible research in terms of improving the current
kernel and designing further extensions�

� Introduction

Part I

Sets and Intervals in CLP

Languages

�

Constraint Logic Programming

Constraint logic programming is a relatively new programming framework 	����

which aims at extending the applicability of logic programming to mathematical
calculus 	arithmetic calculus� set calculus� etc
� Constraint logic programming
de�nes a class of languages CLP	X
 parameterized by their computation domain
X 	eg� �nite domains� reals� sets
� This chapter describes the constraint logic
programming scheme� the constraint solving paradigm� and gives a short overview
of the computation domains which currently exist�

��� A logic�based language

A Constraint Logic Programming 	CLP
 language is a logic�based language
�Kow�� �CKPR��� 	cf� Prolog �CKC���
 that is a nondeterministic programming
language where procedures are de�ned in a relational form� The syntax of a CLP
program is that of a logic�based program based on a collection of Horn clauses
�Llo����

De�nition � A Horn clause is a disjunction of atoms with at most one non�
negated atom�

	Q� 	
P� 	 ��� 	
Pn
 or 	Q� � P� � ��� � Pn

where Q� and the Pi are atoms and the variables appearing in the atoms are
assumed to be universally quanti�ed�

The declarative interpretation of a Horn clause corresponds to�

Q� is true if P�� ���Pn are true

A program goal is a clause of the form� � G�� G�� ���Gn where the Gi are
atoms�

To distinguish atoms from constraint relations� a CLP program is formally
de�ned by a collection of rules of the form

Q� � C� � ���� Cn�P� � ��� � Pm

�� Constraint Logic Programming

where Q� is an atom� the Pi are atoms and the Ci are constraints� A goal is a
collection of constraints and atoms� and corresponds to a rule without head� here
without Q��

��� The CLP scheme

The CLP scheme de�ned by Ja�ar and Lassez �JL��� describes a formal seman�
tics which subsumes logic programming� CLP de�nes a class of languages param�
eterized by their computation domain� A CLP language is characterized by its
computation domain� its set of allowed constraints� and its constraint solver� The
CLP scheme de�nes the following properties to be satis�ed by a constraint logic
programming language CLP	X
 which is an instance of the scheme�

Let us consider the computation domain D and the set L of constraints� The
structure 	D� L
 describes the constraint domain over which constraint solving is
performed� This structure must have a compactness property which guarantees
that every element from the underlying computation domain is �nitely de�nable
using the constraints of the constraint domain� Consider a theory T which ax�
iomatizes some of the properties of constraints in L applied to elements from
D� The formal semantics de�ned in the CLP scheme describes the algebraic se�
mantics of the language and its correspondence with the logical semantics� Ja�ar
and Lassez introduced new concepts to deal with the constraint domain structure
and the theory which are the ones of solution�compact structure and a satisfaction
complete theory�

De�nition 	 A structure �D
 L� is solution�compact if every element in D is
the unique solution of a �nite or in�nite set of contraints in L
 and every element
in the complement of the solution space of a constraint c belongs to the disjoint
solution space of some �nite or in�nite family ci of constraints�

The correspondence between the theory T and the computation domain D aims
at ensuring that T and D correspond on the satis�ability of elements from L and
that every unsatis�able constraints in D is also detected by T � This is de�ned by
the three following conditions�

 D is a model of T �

 for every constraint c � L�D j� �c i� T j� �c

 T is satisfaction�complete with respect to L if for every constraint c � L� c
is either provably true or false T j� �c or T j�
�c�

Constraint solving �	

If we consider a CLP program P and a goal G� the logic programming inference
mechanism searches for a substitution � such that G� 	possibly in�nite set of
instances
 is a logical consequence of P � A CLP goal can also be seen as a logical
consequence of a program� provided it is also a logical consequence of the theory
T � Considering the Ci as a conjunction of constraints� we have�

P�T j� �	C�� C�� ���� Cn � G

The satisfaction�complete property of the theory plays a role in the complete�
ness of the constraint solver� In practice it turns out that e�cient constraint
solving methods over certain structures cannot be combined with completeness
of the solver� Indeed� as soon as the satis�ability problem over a computation do�
main 	eg� �nite domains� sets
 is an NP�complete problem� the special purpose
constraint solver will necessarily take exponential time to guarantee complete�
ness of the satisfaction procedure� For e�ciency reasons� some solvers achieve a
partial constraint solving based on consistency techniques� These solvers will be
subsequently described�

Recently� Saraswat et al� �SRP��� proposed a generalization of the CLP scheme
which de�nes the framework of concurrent constraint programming� It is based on
two operators ask � tell which correspond respectively to constraint entailment
and contraint statement actions� This framework has been adapted by Van Hen�
tenryck and Deville to formalize the incompleteness of some constraint solvers
dealing with linear constraints over �nite domains �HD��� �HSD����

��� Constraint solving

CLP is a generalization of LP where uni�cation �the basic operation of LP
languages� is replaced by constraint solving techniques� With regard to the con�
straint solving mechanism of a CLP program� Colmerauer �Col��� de�ned a gen�
eral operational semantics which establishes an analogy with the SLD�resolution
procedure embedded in LP� The SLD�resolution takes as input a set of clauses� It
uni�es the expressions� stores a sequence of substitutions and returns as output
the successful substitution� The resolution of CLP goals replaces uni�cation by
constraint solving and returns as output a set of satis�able constraints� It can be
de�ned as a transition system on states comprising goals and constraints� Each
transition rule can be interpreted as a rewriting process which derives a new state
from the previous one� A solution is found when the �nal state does not contain
goals to be solved� In case the set of constraints is not satis�able� the resolution
fails�

� Constraint Logic Programming

One computation step of the constraint resolution procedure can be repre�
sented by analogy with one SLD�derivation step as follows� C�C� are sets of
constraints� G�B sets of predicates 	or terms
 and a one predicate� It is depicted
in the �gure ����

from� C � G and a� C� � B

infer � C� � 	� G � B

if merge 	f� G � ag � C� � C
 into C�

� G represents the �rst left atom in G� � G represents the remainder 	cf� �Coh���

Figure ��� Constraint Solving� one resolution step

The merge function is the essential one in the solver� It checks that the new
constraints related to the goal are satis�able in conjunction with the current ones�
If this new set of constraints is not satis�able the procedure fails� otherwise it
returns the simpli�ed set of constraints� This approach was originally de�ned for
the CLP language Prolog III �Col��� �Col����

However this function� which embeds two actions 	satis�ability checking and
simpli�cation process
� can not be applied for constraint solvers that only ensure
partial constraint solving and make use of delay mechanisms 	where a constraint
is neither considered satis�able nor simpli�ed
� Consequently� it can not be gen�
eralized to any special�purpose constraint solver� Several operational models have
been de�ned for speci�c constraint domains� Ja�ar and Maher �JM�� proposed
a fairly general framework also based on the transition system on states� but
which splits the merge function into several functions each of which derives dis�
tinct transitions corresponding to a resolution 	simpli�cation
� an addition of new
constraints� a consistency checking� etc� It also distinguishes between active and
passive constraints� The active constraints are those which can lead to simpli�
�cations� and the passive ones are those which can only be checked� but might
become active once they are completely solved�

��� Constraint domains

Various computation and more exactly constraint domains have been investigated
in recent years� but only some of them will been mentioned here� A more detailed
description can be found in �JM��� The most widely known are�

Constraint domains ��

 Linear rational arithmetic 	CHIP �DSea���� Prolog III �Col���� Prolog IV
�BT���
 and real arithmetic 	CLP	R
 �JM���
� Their solvers are based on
the simplex algorithm� generalized to take into account handling of dise�
quations and incrementality of the solving�

 Boolean algebra 	CHIP� Prolog III
� whose solvers are based� respectively�
on Boolean uni�cation and on a combination of the SL resolution and sat�
uration�

 Linear arithmetic over �nite domains 	CHIP and others
� whose solver is
based on consistency techniques�

 Real intervals 	eg� BNR�Prolog �OV���� CLP	BNR
 �OB���� Interlog
�Lho���� Prolog IV� ICHIP �LvE��� Newton �BMH��
 whose solvers adapt
consistency techniques to perform interval reasoning�

 Set calculus 	flogg �DOPR��� �DR���� CLPS �LL���
 and regular sets
	CLP	��
 �Wal���
� These languages aim at guaranteeing the soundness
and completeness of their respective solvers� They deal with set constructs�
and provide a collection of allowed set operations and constraints�

The last three constraint domains� which have some common points with our
work are presented in the next two sections�

�� Constraint Logic Programming

�

Sets in CLP

Most of the recent proposals to embed sets as a high level programming abstrac�
tion assume a logic�based language as the underlying framework� It follows from
to the declarative nature of logic programming� which well combine with set con�
structs� and its nondeterminism which is suited to stating set�based programs�
This chapter describes the class of CLP	Sets
 languages which embed sets in con�
straint logic programming� Particular attention is put into the description of the
computation domains and the constraint solvers of CLP	��
 which deals with
regular sets� flogg 	reviewed from a LP to a CLP point of view
 which axioma�
tizes a set theory and CLPS which aims at prototyping combinatorial problems
using sets� multisets and sequences�

��� CLP	��

CLP	��
 �Wal��� represents an instance of the CLP scheme over the computation
domain of regular sets� A regular set is a �nite set composed of strings which are
generated from a �nite alphabet �� CLP	��
 has been designed and implemented
to provide a logic�based formalism for incorporating strings into logic program�
ming in a more expressive manner than the standard string�handling features
	eg� concat� substring
� A CLP	��
 program is a Prolog program enriched with
regular set terms and built�in constraints�

Operations on regular sets comprise concatenation R��R�� disjunction or union
R��R� 	i�e�� R� �R�
 and the closure operator R�

�
which describes the least set

R� such that R� � � � 	R�� R�
� These operations allow us to build any regular
expression when combined with the identity elements under concatenation 	�

and union 	�
� This language provides an atomic constraint over set expressions
which is the membership constraint of the form x in e where x is either a variable
or a string and e is a regular expression� For exampleA in 	X���ab���Y
 states that
any string assigned to variable A must contain the substring ab�

�� Sets in CLP

Overview of the solver The constraint paradigm allows to replace the uni�ca�
tion procedure by constraint solving in the computation domain� The satis�ability
of membership constraints over regular sets clearly poses the problem of termi�
nation� In the above example� if Y is a free variable there is an in�nite number of
instances for A� The solver guarantees termination by� 	i
 applying a scheduling
strategy which selects the constraints capable of generating a �nite number of
instances� 	ii
 applying a satis�ability procedure based on deduction rules which
check and transform the selected atomic constraints� The non selected ones are
simply �oundered�

The selected constraints x in e are such that either e is a string or e is a
variable and x a string� The conditional deduction rules over each of these con�
straints infer a new constraint or a simpli�ed one if a given condition is satis�ed�
Each condition represents a possible form of selected set constraints�

�
B� w � w��w�

�� � ��w��

�
in e�

�� � ��w��

�
in e�

�
CA and

�
�� � X� in e�
�� � X� in e�

�

�� � �� � ��w�� in e��e� �X � 	X���
�	X���
� � X in e��e�

The �i are idempotent substitutions� which means that given two substitutions
�� and ��� ����� produces the most general idempotent substitution if one exists
that is more speci�c than the two previous ones�

Soundness and completeness of the deduction rules are guaranteed only if
there are no variables within the scope of any closure expression e� in addition
to the criteria of constraint selection�

This approach constitutes a �rst attempt to compute regular sets by means
of constraints like the membership relation� The complexity of the satis�ability
procedure is not given� but in�nite computations are avoided thanks to the use
of �oundering�

��� CLPS

The CLPS �LL��� �LL��� language is a CLP language based on a three sorted
logic� The three sorts correspond to sets� multi�sets and sequences of �nite depth
	eg� s � fffe� agg� cg is a set of depth three
� The concept of depth is equivalent
for each sort� Atomic elements can be any Herbrand term� arithmetic expression
or integer domain variable� Set expressions are built from the usual set operator
symbols 	���� n��
� Set variables are constructed either iteratively by means of
the set constructor fxg � s or by extension by grouping elements within braces

CLPS ��

�eg� fx�� ���� xng�� The language also embeds �nite integer domains and allows set
elements to range over a �nite domain� Sequences and multi�sets are built using�
respectively� the constructors sqf���g and mf���g� Basic constraints �implemented
in the language� are relations from f���� ��� ����g interpreted in the usual math�
ematical way together with a depth ���� and a type checking operator� Note that
set equality relation sould be associative� commutative and idempotent� These
properties are speci�ed by the ACI notation 	LS
���

The satis�ability problem for sets� sequences and multisets is NP�complete
	LS
�� To cope with this� CLPS provides several methods whose use depends on
the characteristics of the CLPS program at hand�

Overview of the solver The CLPS solver makes use of various techniques
comprising� �i� a set of semantical�consistency rules� �ii� an arc�consistency al�
gorithm of type AC�� 	Mac

� combined with a local search procedure �forward
checking� and �iii� a transformation procedure� The rules in �i� check the con�
sistency of each set constraint with respect to homogeneity of types� depth and
cardinality� For example the system

fxg � fy� zg

is semantically�consistent if y � z�

A semantically�consistent system of set constraints is then solved in two stages�
The solver �rst divides the system in two independent subsets� One� written
SCfd contains set constraints whose constrained sets are sets of integer domains
variables� The other one� written SCv contains sets and set constraints where
set elements are free variables or known values� The solver applies �ii� and �iii�
respectively to check satis�ability over SCfd and SCv�

� A system SCfd is consistent if each of the set constraints it contains is arc
consistent� This is achieved by removing all values from the domains of the
set elements which cannot be part of any feasible solution� For example� the
above system is consistent if x � f�� �g and 	y� z� � f�� �g� Completeness
of the resolution is guaranteed by the labelling procedure which performs
forward checking combined with the �rst fail principle� It amounts to assign�
ing a value to a set element from its domain and to inferring possible new
domain modi�cations� However� it might happen that due to the ACI prop�
erties of set equality� distinct selected values for the elements will generate
identical values for the sets� This nondeterminism in the uni�cation of con�
structed sets requires in the worst case an exponential number of choices
to be made� The system 	x�� ���� xn� � f�� ����mg� fx�� ���xng � f�� ����mg
corresponds to �n�m computable solutions�

�� Sets in CLP

� A system SCv is satis�able if its equivalent integer linear programming form
is satis�able� To check satis�ability� the system provides a correct and com�
plete procedure which transforms the set constraint system into an equiv�
alent mathematical model based on integer linear programming 	HLL����
This procedure consists in �attening each set constraint and reducing the
system of �attened formulas to an equivalent system of linear equations and
disequations over �nite domain variables� The derived system is then solved
using consistency techniques� The �attening algorithm works by adding ad�
ditional variables to reach forms from �x � y� x � y� x � fx�� ���� xng� x �
y � z� x � y � z� x � y n z� etc��� The reduction to linear form is performed
by associating to each set variable xi a new variable Cxi which represents
its cardinality and to each pair of variables �xi� xj� a new binary variable
Qij denoting possible set equality constraints� If there are n constraints the
complexity of the reduction procedure is in O�n�� 	HLL��� 	Hib����

The proposed solving methods are among the most appropriate for handling
set constraints over constructed sets� They �t the application domain of the lan�
guage which aims at prototyping combinatorial search problem dealing with sets�
multi�sets� or sequences� Unfortunately the nondeterminism in the uni�cation of
set constructs prevents an e�cient pruning of the domains attached to set ele�
ments �in case they represent domain variables�� The focus is put on the expressive
power of the language rather than on the e�cient solving�

��� flogg

flogg 	DR��� is an instance of the CLP scheme designed and implemented mainly
for theorem proving� It embeds an axiomatized set theory whose properties guar�
antee soundness and completeness of the language� Set terms are constructed
using the interpreted functors with and fg� e�g� � with x with �� with y
with z� � ffz�yg�xg� The language includes a limited collection of predicates
����� ��� ��� as set constraints� The axiomatized set theory consists of a set of
axioms which describe the behaviour of the constructor with� For example the
extensionality axiom shows how to decide if two sets can be considered equal�

v with x � w with y 	
�x � y
 v � w� � �x � y
 v with x � w� �
�x � y
 v � w with y� ��z �v � z with y
 w � z with x�

Using the axioms� a set of properties are derived describing the permutativity
�right associativity� and absorption of the with constructor�

flogg ��

For example� the permutativity property is depicted by�

�x with y� with z � �x with z� with y �permutativity�

Overview of the solver The complete solver consists of a constraint simpli��
cation algorithm de�ned by a set of derivation rules with respect to each primitive
constraint� A derivation rule for the equality constraint is� for example�

h with ftn� ���� t�g � k with fsm� ���� sog

If h and k are not the same variables then select non�deterministically one
action among�

� t� � s� and h with ftn� ���� t�g � k with fsm� ���� s�g
� t� � s� and h with ftn� ���� t�g � k with fsm� ���� s�g
� t� � s� and h with ftn� ���� t�g � k with fsm� ���� s�g
� h with ftn� ���� t�g � N with s�� N with s� � k with fsm� ���� s�g
otherwise select i in f�� ����mg and apply one action from another set of
rules�

This non deterministic satisfaction procedure reduces a given constraint to a
collection of constraints in a suitable form by introducing choice points in the
constraint graph itself� This leads to a hidden exponential growth in the search
tree� since in the worst case all computable solutions have to be investigated �if
s� � s� and �s� � n� there are �n computable solutions�� But completeness is
required if one aims at performing theorem proving� Thus� there is no possible
compromise here between completeness and e�ciency�

A recent extension to the language introduces intensional sets in constraint
logic programming 	BDPR���� Allowing for set grouping capabilities� the inten�
sional de�nition is handled by reducing the set grouping problem to the problem
of dealing with normal logic programs� i�e�� programs containing negation in the
body of the clauses�

�� Sets in CLP

�

Interval and domain reasoning in CLP

Two classes of CLP languages deal with variables ranging over intervals and�or ��
nite domains� The class of CLP�FD� languages dealing with �nite integer domains
considers linear arithmetic over natural numbers as well as some symbolic con�
straints� provided that the variables take their value from a �nite set of integers�
They aim at modelling and solving constraint satisfaction problems in a con�
straint logic programming framework� The second class is that of CLP�Intervals�
languages which deal with real interval arithmetic� The use of intervals is meant to
approximate real numbers so as to avoid rounding errors� This chapter describes
these two classes of languages� whose solvers are based on consistency techniques�

��� Constraint satisfaction problems

Formally� a Constraint Satisfaction Problem �CSP� is a tuple �V�D�C� where�

� V is a set of variables fV�� ���� Vng�

� D is a set of domains fD�� ����Dng where Di is the domain associated to the
variable Vi�

� C is a set of constraints fC�� ���� Cmg where a constraint Cj involves a subset
of the variables�

The constraint set in a CSP is such that each variable appearing in a constraint
should take its value from a given domain� The constraint set is often represented
by a constraint network whose nodes are the variables with their associated do�
mains and whose arcs are the constraints� A CSP models NP�complete problems
as search problems where the corresponding search space is represented by a
Cartesian product space D�D� ���Dn of the domains �cf� Golomb 	GB����

�� Interval and domain reasoning in CLP

��� Constraint satisfaction

The solution of a CSP is a set �or subset as noted in 	MR���� of variables as�
signed to one value� The solving of a CSP amounts �rst to applying a set of
preprocessing methods referred to as consistency techniques and then applying
some search techniques or labelling procedure� Consistency techniques aim at
pruning the search space before a standard search procedure like backtracking
is applied and thus at improving the average complexity of standard backtrack�
ing 	Wal��	GB��� Consider a search tree as the abstract representation of an
NP�complete problem where one branch is a combination of values� Backtrack
programming 	Flo
� aims at computing a feasible solution �or all solutions� of
such problems using an exhaustive searching process� This process explores all
the branches and stops searching one branch as soon as it encounters a failure�

Formally� the backtracking algorithm aims at �nding a solution speci�ed by
a vector �x�� x�� ���� xn� with xi � Di such that it satis�es a set of constraints
represented by a �criterion function� ��x�� x�� ���� xn�� The solution vector might
not be unique� and it may su�ce to �nd one such vector or be necessary to �nd all
of them depending on the problem� The criterion function is usually two valued
�true or false�� If a partial vector �x�� x������ ������ is unacceptable� all possible
solutions containing x� and x� can be ruled out without having to be considered
individually� The search is stopped in this branch�

Non deterministic algorithms are convenient representations of systematic
search procedures� but they turn out to be ine�cient for large problems� Ex�
haustive search combined with the thrashing� phenomenon leads in the general
case to computations that are exponential in the size of the Cartesian product of
the domains� A solution to this problem consists in removing inconsistent values
before any attempt is made to include them in the sample vector� This prepro�
cessing step is achieved by consistency techniques�

The current consistency algorithms perform di�erent degrees of preprocessing�
Their behaviour amounts to going through the constraint network in a node�
driven way and checking among other methods� the consistency of each node
�node consistency�� of each arc �arc�consistency� 	Ull� 	Fik
�� 	Wal
�� 	Mac

��
of each path of length two 	Mon
�� 	Mac

� 	MH��� of each path of length k
	Fre
���

The de�nitions of node� arc and path consistency are usually given for unary
and binary constraints denoted� respectively� Pk�xk�� Pij�xi� xj�� This restriction
does not prevent consistency techniques from being applied to n�ary constraints�

�Thrashing means that some unacceptable values will be considered at several steps of the

search even though they can never be part of any feasible solution�

Constraint satisfaction ��

since any n�ary constraint can be expressed in terms of binary ones� Let us recall
the de�nitions of node� arc and path consistency 	Mac

��

De�nition � A node i is node consistent if and only if for any value x � Di�
Pi�x� is true�

De�nition � An arc �i� j� is arc consistent if and only if for any value x � Di

such that Pi�x�� there is a value y � Dj such that Pj�y� and Pij�x� y��

De�nition � A path of length m through the nodes �i�� i�� ���� im� is path
consistent if and only if for any values x � Di� and y � Dim such
that Pi��x�� Pim�y� and Pi��im�x� y� hold� there is a sequence of values z� �
Di� � ���zm�� � Dim�� such that�

�i� Pi��z�� and ��� and Pim���zm��� hold�
�ii� Pi��i��x� z�� and Pi� �i��z�� z�� and��� and Pim�� �im�zm��� y�

These de�nitions can be generalized to the notions of node� arc or path con�
sistency of a constraint network� which correspond to having every node� arc or
path �in the corresponding directed graph� consistent�

����� Algorithms

The node consistency algorithm checks that� for each variable Vi appearing in an
unary constraint Pi�Vi�� all the elements x in its domain Di satisfy the constraint
Pi�x�� If some elements do not satisfy this constraint� they are removed from the
domain Di� This algorithm is quite simple and requires a single pass through all
the unary constraints �cf� 	Mac

���

The various arc�consistency algorithms requiremore complex processing� They
are based on the following observation �cf� 	Fik
���� if for some x � Di there is no
y � Dj such that Pij�x� y� holds then x should be removed from the domain Di�
This test should be done for each x � Di to conclude if one arc is consistent or
not� This test resembles the criterion function used in backtrack programming�
but it di�ers in that it does not choose a value x for a variable but it tests if this
value is an acceptable one� Thus the assignment process is replaced by a test�
The result of this action should be an answer to whether the domain Di has been
modi�ed� This action� depicted in the REV ISE��i� j�� procedure in �gure ���� is
the kernel of current arc consistency algorithms�

� Interval and domain reasoning in CLP

procedure REVISE��i�j���
begin
DELETE � false
for each x � Di do

if there is no y � Dj such that Pij�x� y� then
begin
delete x from Di�
DELETE � true

end�
return DELETE

end

Figure ��� REVISE procedure

REV ISE��i� j�� returns the answer to whether a domain modi�cation was
required to infer arc consistency of a binary constraint� When the arc consistency
of the constraint network is concerned� the process is more complicated� Indeed�
checking an arc �j� k� might require revisions of the domain of j and consequently�
the as yet consistent arc �i� j� might not be consistent anymore� Therefore� as
opposed to the node consistency algorithm� arc consistency over a network can
seldom be achieved in a single pass through all the arcs� At this point the various
arc consistency algorithms proposed so far di�er� The problem is to reconsider as
few arcs as possible for complexity� and thus for e�ciency reasons� The various
generic arc consistency algorithms developed so far are �the �rst three have been
called AC�� AC�� AC�� by Mackworth in 	MF�����

� AC�� �embedded in the �rst constraint system REF�ARF 	Fik
���� This
is the simplest algorithm� It repeatedly passes through all the arcs each
time one domain is revised until there is no change on an entire pass� At
this point the network must be consistent� This approach is intuitive but
obviously ine�cient� because a single modi�cation of the domain causes all
the arcs to be revised� whereas only a subset of them might be a�ected�

� AC�	 �based in spirit on Waltz�s �ltering 	Wal
���� Noting the weaknesses
of AC��� Waltz�s idea was that arc consistency can be achieved in one pass
over all the nodes by taking into account the order of the nodes covered
and by ensuring that when a node i is considered in an arc �i� j�� all the
arcs �g� h� where g� h � i must have previously been made consistent� The

Constraint satisfaction ��

crucial improvement is that when a node j is considered� all the arcs leading
from it and to it may have become inconsistent and must be revised again�

� AC�� �proposed by Mackworth 	Mac

��� This approach moves from the
node�driven reasoning of AC�� to an arc�driven reasoning� All the arcs are
stored in one queue and REVISE is applied to each of them sequentially�
The basic idea consists in selecting and removing one arc �i� j� from the
queue� applying REVISE to it and if the answer is yes �Di modi�ed� adding
to the queue all those arcs f�k� i�g that might need to be reconsidered�
This algorithm is so far the principal one embedded in most constraint
satisfaction solvers� Its description is given below�

� AC�� �proposed by Mohr and Henderson 	MH�� and based on the tech�
niques developed in the constraint satisfaction system ALICE 	Lau
����
While AC�� is driven by arcs �i� j�� AC�� reasons over arcs �i� c� where
i is a node and c an inconsistent value in the domain of i� It moves from
handling domains of variables �eg� Di�Dj� to dealing with inconsistent val�
ues associated to one domain� This comes together with the storing of a
counter which represents the number of possible values of j such that for
each value b � Di� �b� j� holds� This counter� associated to each string
	�i� j��b�� is decremented each time an arc �e�g� �b� c�� becomes inconsistent�
The basic idea consists in handling the set of arcs f�i� c�g for each c � Dj

as well as the number of values which are consistent with one speci�c value�
This approach leads to the optimal arc consistency algorithm with respect
to time complexity� However it might be costly in memory utilization due
to the amount of information it has to maintain�

� AC�� �proposed by Van Hentenryck and Deville 	HDT����� In contrast to
the previous algorithm� this one aims at reducing the time complexity by
considering the semantics of the constraints at hand� It distinguishes pred�
icates according to their underlying properties �functional� anti�functional�
monotonic� etc����� While AC�� deals with arcs �i�c�� AC�� manipulates ele�
ments � �i� j�� v � where �i� j� is an arc and v is a value removed from Dj

which requires reconsideration of �i� j�� Optimal procedures for the class of
functional� anti�functional and monotonic constraints have been proposed�
The speci�c case of the monotonic constraints permits performing reasoning
over the domain bounds only �assuming the domains are totally ordered��
Like AC��� AC�� propagates unconsistent values� but instead of decrement�
ing a counter attached to each possible value of one node it adds to the list
of the elements all those which correspond to newly inconsistent arcs with
respect to one value� The interesting point in both AC�� and AC�� is that
only necessary information is propagated�

�� Interval and domain reasoning in CLP

Complexity issues� Mackworth and Freuder show the complexity of AC���
AC�� and AC�� in 	MF���� Let us consider a to be the largest domain size� e the
number of arcs and n the number of nodes� The results in the �gure below are
given in terms of worst case time complexity�

NC AC�� AC�� AC�� AC�� AC��
O�an� O�a�ne� cf� AC�� O�a�e�� O�ea�� O�ea����

Figure ��	 Complexity of AC algorithms

� This complexity result assumes that the constraint network is connected �it
implies e � n� ���

�� This time complexity can be reduced to O�ea� for the class of functional�
anti�functional and monotonic constraints� and their generalization to piecewise
functional� anti�functional and monotonic constraints �see 	HDT��� for the de��
nition of piecewise decomposition of constraints��

The following AC�� algorithm is the one upon which most improvements and
variations of arc consistency algorithms have been performed� The set of arcs in
the constraint graph G is marked by arcs�G� in �gure ����

begin
for i� � until n do node consistency�
Q� f�i� j� j �i� j� � arcs �G�� i �� jg
while Q not empty do

begin
select and delete any arc �k�m� from Q�
if REVISE ��k�m�� then
Q� Q � f�i� k� j �i� k� � arcs�G�� i �� k� i �� mg

end�
end

Figure ��� AC�� algorithm

Other approaches toward e�cient algorithms are based on the study of the
topology of the constraint graph itself �see 	Fre��� 	Nad��� 	RM����� But these

Constraint satisfaction ��

methods have not been embedded so far in CLP solvers� possibly because of the
particular properties of the constraint graph they require �which are seldom
those of a CSP program�

����� Search Techniques

While consistency techniques aim at �ltering the domains before starting the
search� the search techniques embed various degrees of arc�consistency within
a standard backtracking procedure� They correspond to the notions of forward
checking� partial lookahead and full lookahead 	McG
�� 	HE���� The pruning
achieved by these search techniques ranges between that of backtracking and
that of arc consistency�

Consider the initial description of the backtracking process� based on a Carte�
sian product space D� D� ��� Dn� a solution or sample vector �x�� ���� xn�
where xi � Di� and a criterion function to be satis�ed ��x�� ���� xn�� A step k in
the computation is denoted �x�� ���� xk��� ������ which corresponds to having the
partial state �x�� ���� xk� locally consistent�

Forward checking� Whenever a value xk�� is successfully added to
the current state of the sample vector �x�� ���� xk��� ������ � i�e� we have
��x�� ���� xk� xk����� ������ � ��� the domains Dk��� ����Dn of all as yet uninstanti�
ated variables are �ltered to contain only those values that are relevant with this
new instantiation� This can be represented by the rule�

�l � fk � �� ���� ng�xl � Xl such that ��x�� ���� xk� xk����� ����� � xl��� ������ � �

If the domain of any of these uninstantiated variables becomes empty� the con�
straint fails and backtracking occurs� This method adds to standard backtracking
a preprocessing step in which some irrelevant values are removed before they may
be taken into account� These values will come only from the domain of each vari�
able directly connected with xk���

Full lookahead� Whenever a value xk�� is successfully added to the current
state of the sample vector �x�� ���� xk��� ������ the forward checking conditions
must be satis�ed and the domain of each variable �as yet uninstantiated� must
be �ltered� so that it should only contain those values which are relevant with
respect to at least one value in all the domains of the variables they are connected
with� This is described by the rule�

�� Interval and domain reasoning in CLP

� l � fk � �� ���� ng� � xl � Xl such that�
� m � fk � �� ���� ng� m �� l� �xm � Xm which satis�es
��x�� ���� xk� xk����� ������ xl��� ������ xm��� ������ � �

The full lookahead method performs less pruning than arc consistency algo�
rithms because it performs one single pass through all the binary constraints� A
consistent arc will never be reconsidered whatever new re�nements of the domains
of the variables involved may have been performed�

Partial lookahead� This method has been introduced by Haralick 	HE��� to
augment the �ltering process achieved by the forward checking method� It acts
some where in between forward checking and full lookahead� The basic idea is
not to �lter one Xl by considering all the other variables as yet uninstantiated�
but to consider only those that are ahead of Xl� which falls as�

� l � fk � �� ���� n� �g� � xl � Xl such that�
�m � fl� �� ���� ng� �xm � Xm which satis�es
��x�� ���� xk� xk����� ������ xl��� ������ xm��� ������ � �

��� Constraint satisfaction in LP

The solving of CSPs using Logic Programming �LP� has been investigated from
two di�erent perspectives� One� proposed by Montanari and Rossi� aims at de�n�
ing a CSP as a logic program and de�ning the constraint satisfaction or relaxation
algorithm 	RM��� 	MR��� at a meta level� This approach shows that modelling
CSPs and consistency algorithms in LP is adequate� It also shows how logic pro�
grams can be transformed and simpli�ed using relaxation algorithms� The second
approach aims at providing a language enriched with programming facilities so as
to solve search problems in a way transparent to the user� This approach which
led to the class of CLP�FD� languages is presented here�

For a di�erent purpose� constraint satisfaction techniques have been embedded
in LP to deal with real intervals� This corresponds to the class of CLP�Intervals�
languages based on approximations of reals using real intervals�

����� CLP�FD�

Van Hentenryck and Dincbas 	HD�� embedded constraint satisfaction techniques
into logic programming by extending the concept of logical variable to the one
of domain�variables which take their value in a �nite discrete set of integers�

Constraint satisfaction in LP ��

The key idea is to introduce the domain concept inside logic programming� This
requires extending the uni�cation procedure to the case of domain variables�
thus making it possible to handle constraints using consistency techniques as
inference rules� In particular the search techniques �forward checking� lookahead
and partial lookahead� have been embedded into logic programming as inference
rules 	HD�
�� The idea is that the way these techniques handle constraints can
be applied locally to speci�c constraints� thus allowing for the most appropriate
solving method� For example� the partial look�ahead inference rule deals e�ciently
with arithmetic expressions involving a large amount of variables� In practice this
amounts to reasoning over domain bound variations� This has given birth to
the �rst �nite domain constraint logic programming language CHIP �Constraint
Handling In Prolog 	DSea����� Constraints are arithmetic equations� inequalities
and disequations over natural numbers as well as some symbolic constraints�

This �clever� manipulation of constraints which leads to e�cient pruning with
respect to one constraint follows the basic idea of earlier solvers for CSPs like
REF�ARF 	Fik
�� and ALICE 	Lau
��� REF is a nondeterministic programming
language accepted by the problem solver ARF� The solver is based on the notions
of node and arc consistency� In ALICE� the constraints are expressed in a mathe�
matical language based on relation theory and some notions of graph theory� The
searched objects are functions which should satisfy a set of constraints� The solver
combines a depth��rst search method with sophisticated constraint manipulation
techniques and a set of powerful heuristics� The lack of �exibility of these seminal
systems both in the language representation and the solving strategy motivated
the design and implementation of CHIP�

The success of CHIP in the solving of a large class of combinatorial search
problems like car�sequencing� warehouse location� investment planning� etc�
	DSH��a� 	DSH��b� 	DHS���� 	Hen��� started the development of new �nite do�
main CLP languages based on new features and implementations� The basic dif�
ference is that the user is not able any longer to specify how to use constraints
unless they are user�de�ned constraints� Most of the systems solve the constraints
using some local transformation rules based on consistency notions which are han�
dled by a relaxation algorithm resembling AC��� It uses a delay mechanism and
suspension handling coroutines to wake the constraints which have to be recon�
sidered�

Later systems include ECLiPSe based on the notion of attributed variables
	Hui���	Hol��� and a suspension mechanism which handles the delay and wak�
ening of goals and constraints� It provides the features necessary to allow a user
to develop his own constraint solver over a speci�c computation domain� cc�FD�
	HSD��� is another successor of CHIP based on the AC�� arc consistency algo�

�� Interval and domain reasoning in CLP

rithm� This language is de�ned as an instance of the cc framework� over �nite
domains� It adds to the �nite domain library of CHIP a set of additional general�
purpose combinators �such as cardinality� implication� constructive disjunction��

The early designers of CHIP also developed a new version CHIP V� which
includes a set of new global constraints 	Bel��b� 	BC���� These constraints aim
at reasoning globally over a set of constraints� versus local reasoning over one
constraint� Recently some powerful techniques from operations research have been
considered to increase the e�ciency of the solving� From a practical point of view�
they extend the application domain of the CHIP language to tackle e�ciently
graph and scheduling problems�

The �nite domain library of CHIP has also given birth to a class of indus�
trial languages like CHARME 	OPL���� SNI�Prolog� Decision Power� ILOG solver
	Pug���	CP��� among others�

����� CLP�Intervals�

This class of languages embeds the notion of domain with a di�erent meaning�
A domain speci�ed by an interval does not represent a set of possible values a
variable could take� but an approximation of a value� This research has been
motivated by the errors resulting from �nite precision arithmetic in computers�
Each interval is marked by its lower and upper bounds which may or may not be
included in the interval �open and closed intervals�� This approach has been �rst
implemented in Prolog from a functional viewpoint 	Bun���� It provides correct
information about the range of the functions� but it prevents us from representing
a logical real variable and from solving equations �eg� 	����� ������ � X � Y can
not be solved��

Cleary 	Cle�
� introduced a relational arithmetic of real intervals into logic
programming to avoid the weaknesses of the functional approach� The relational
form of interval arithmetic is based �rst on the internal representation of reals as
approximated intervals and second on the interpretation of arithmetic expressions
as relations� This relational form can be nicely embedded into logic programming�
Such a relation is speci�ed as a subset of a Cartesian product of the real inter�
vals involved in it� To make sure that the approximated intervals are the unique
smallest ones which contain acceptable real values� Cleary makes use of projection
functions and convex closure operations which allow the representation of each
real interval appearing in a relation in terms of the other intervals which appear in
the Cartesian product� The closure operations aim at guaranteeing that the com�
puted intervals are convex that is they do not contain �holes�� They constitute

�concurrent constraint framework� cf� ask � tell connectives

Constraint satisfaction in LP ��

a second level of approximation� Indeed� some projection functions associated to
the multiplication relation� for example� do not necessarily derive convex inter�
vals� Thus the derived disjunctions of intervals are approximated by a closed one�
This approach which does not allow �holes� in the intervals� might infer that
some values in the intervals are inconsistent but are kept to avoid manipulating
unions of intervals� Cleary proposed a solution to this problem� consisting in split�
ting the consistent intervals into sub�intervals and then checking whether some
further restrictions can be deduced by performing nondeterministic computations
over the disjunctive intervals�

A relaxation algorithm based on Waltz� �ltering algorithm 	Wal
�� �or AC���
processes a system of constraints by handling the various projection functions�
It makes use of delay mechanisms to reconsider the relations whose Cartesian
product has changed� The practical framework described by Clearly has been
embedded in various languages referred to as CLP�Intervals�� All of them are
based on the relational form of interval arithmetic and the use of a relaxation
algorithm to process a system of constraints� They do not handle the splitting of
real intervals since it has been shown that handling disjunctions of intervals leads
to a combinatorial explosion because of the large number of choice points which
are generated once a disjunction is maintained and propagated�

A theoretical framework for the class of CLP�Intervals� languages has been de�
scribed in 	BMH���	Ben���� It describes the key notion of approximation and the
one of �narrowing operators� �cf� the projection functions� which derive the clos�
est intervals from the previous ones so that the non relevant values are removed�
The relaxation algorithm is referred to as the �xed point algorithm but provides
the same constraint propagation and handling of the narrowing operators�

This class of CLP�Intervals� languages di�ers from that of CLP�FD� languages
in the sense that an interval which is not reduced to one value might be a possible
solution� This does not �t with CSP solving where a domain is a set of possible
values and a solution should contain only variables instantiated to one domain
value� The notion of approximated reals is very much related to the correctness
issues and does not aim at solving a CSP�

�� Interval and domain reasoning in CLP

Part II

The Language

�

Formal Framework

C�est au sommet de tes questions�

que tu trouveras la r�eponse�

This chapter describes the formal framework of a constraint logic program�
ming language dealing with sets which range over a �nite domain �i�e�� sets
which belong to a powerset� The �rst step is the de�nition of the computation
domain and syntax of the language that consists of the usual set operations and
relational symbols ����� n���� The second step is the constraint solving part�
The set satis�ability problem is NP�complete and thus partial constraint solving
is required �to the detriment of completeness but improving e�ciency�� The focus
is on the de�nition of the constraint logic programming system which performs
local consistency techniques over constraints of the language� The main idea is
to specify each set domain by a set interval and to check the consistency of the
constraints using set interval reasoning� In particular� it is described how the con�
straint domain of the system should be structured so as to deal with set intervals�
This requires� among other things� to approximate the domain of a set expres�
sion �which might contain �holes�� by a set interval and to de�ne a set interval
calculus� It is then shown how computations are performed over the constraint
domain using a top�down execution model�

A constraint logic programming language with sets� set operations and rela�
tions is not expressive enough to tackle set based search problems� In particular
optimization problems require the statement of an optimization function which
necessarily deals with quanti�able� i�e� arithmetic� terms� To cope with this� an
extension of the language is presented and consists in adding to the language syn�
tax and to the constraint domain of the system a class of functions which map
sets to integers �e�g� the set cardinality �� the set weight� etc��� These functions
are called graduations when they map elements from a lattice �e�g� a powerset
equipped with the operations ��� and the partial ordering �� to the set of in�
tegers�

�� Formal Framework

��� Basics of powerset lattices

Some de�nitions� properties and results on lattices are necessary to understand
the main features of the formal language description� These can be found in 	Bir
�
	BM
�� 	Gea���� The particular lattice we deal with is the powerset lattice� To
give an intuitive idea of the subsequent use of these de�nitions� some examples
relating to powerset lattices are given� Readers familiar with these notions can
skip this section�

����� Lattices

De�nition
 A poset �also known as partially ordered set� is a set S equipped
with a binary relation � �formally a subset of S S� that satis�es the following
laws�

P�� Re	exivity �x� x � x
P
� Antisymmetry �x � y and y � x� � �x � y�
P�� Transitivity �x � y and y � z� � x � z

Example � Let S be a �nite set and P�S� the set of all subsets of S or powerset
of S� Then the set inclusion � is easily seen to be a partial order on P�S�� P�S�
is a poset�

De�nition � Let S be a poset� X a subset of S and y an element of S� Then y
is a meet or greatest lower bound or glb for X i��

y is a lower bound for X� i�e�� if x � X then y � x and�
if z is any other lower bound for X then z � y

The notation we use is y �
V
�X��

De�nition Let S be a poset� X � S and y � S� Then y is a join or least
upper bound or lub for X i��

y is an upper bound for X� i�e�� if x � X then y � x and�
if z is any other upper bound for X then z � y

The notation we use is y �
W
�X��

Proposition �� Let S be a poset and X a subset� Then X can have at most one
meet and at most one join�

Basics of powerset lattices ��

Proof By P
� meet and join are clearly unique whenever they exist� If a and
b are two meets then we have on the one hand a � b and on the other hand
b � a� This infers a � b��

The following property establishes a link between � and the pair �
V
�
W
� as

actual meet and join�

Property �� �Consistency property� Let S be a poset� Then for all x� y � S�

x � y � x �
V
�fx� yg�

x � y � y �
W
�fx� yg�

De�nition �	 A poset is a lattice i� every �nite subset has a meet and a join�

Corollary �� A poset S is a lattice i� every two elements have a meet and join�

Example �� The powerset P�X�� is a lattice where the meet operator is the
intersection � and the join operator is the union �� Every two elements x� y of
P�X� have a meet x � y and a join x � y�

The partial order as set inclusion � satis�es the consistency property�

x � y � y � x � y � x � y � x

This equivalence de�nes the correspondence between the relational de�nition of
the structure in terms of properties of the partial order �existence of a glb and a
lub� with the algebraic one �properties of the operations��

De�nition �� A lattice L is distributive i� for every x� y and z � L we have�

x
 �y � z� � �x
 y� � �x
 z�

Example �
 The powerset lattice is a distributive lattice�

����� Intervals as lattice subsets

Reasoning with and about intervals within a powerset lattice constitutes the core
of our language� The following de�nitions and properties give the basic properties
of intervals in lattices� An interval delimited by two elements x and y is speci�ed
by 	x� y��

De�nition �� An interval of two arbitrary elements x� y in a lattice is the set
	x
 y� x � y��

�� Formal Framework

De�nition �� A subset S of a lattice L is convex if x� y � S imply

	x
 y� x � y� � S

Corollary � A convex subset of a lattice is itself a lattice�

Corollary 	� A closed interval 	x
 y� x � y� is convex�

Example 	� Let S be a subset of the powerset P �X�� For every two elements
x� y � S we have 	x � y� x � y� � S� This interval is convex� Furthermore it is
unique since the meet and join of x and y are unique�

Property 		 The meet and join operators in a lattice are isotone �preserve the
order��

x � y � x
 z � y
 z
x � y � x � z � y � z

Example 	� This property is extremely useful when reasoning about intervals
in a powerset lattice P �X�� Consider the following inclusion relations between
elements of P �X��

a � x � b and c � y � d

x and y belong to the respective intervals 	a� b� and 	c� d�� From property ��� we
infer a � c � x � y � b � d and dually for the union operation� So if x and y are
only de�ned from the intervals they belong to� their union and intersection can
be approximated by the new intervals 	a � c� b � d� and 	a � c� b � d��

����� Graduations

A graduation is a speci�c function which maps elements from a partially ordered
set to the set of integers� For example� the powerset P�X� is graduated by the car�
dinality function� The following de�nitions give necessary conditions to consider
graduations for a given set�

De�nition 	� A set S provided with an order relation � is graduated if there
exists a function f from S to Z �positive and negative integers� which satis�es�

x � y � f�x� � f�y� �� is a strict ordering� � the arithmetic inequality�
x precedes y� f�x� � f�y� � �

An element xi precedes an element xi�� if in the chain of elements x � x� �
x� � ��� � xn � y in S there is no other element between them�
f is the graduation of S�

Set intervals in CLP ��

The existence of a graduation of a set which does not correspond to a chain
�e�g� a set of set intervals� is guaranteed if the set is a lower semi�modular lattice�

De�nition 	� A lattice L is lower semi�modular if�

x� y� z � L x � z and y � z � ��t � t � x and t � y�

Property 	
 The lattice of closed set intervals is a lower semimodular lattice�

Proof The semi�modularity of a lattice of set intervals derives directly from the
existence of a lower and upper bound for any two intervals� Consider the strict
orderings 	a�� b�� � z and 	a�� b�� � z� z exists since the interval 	a� � a�� b� � b��
is one possible value for z� Then t � 	a� � a�� b� � b�� satis�es the condition�
t � 	a�� b�� and t � 	a�� b����

Consequently there exists a graduation for the lattice of closed intervals�

Property 	� If there exists one graduation of a set� then there exists an in�nite
number of graduations of this set�

��� Set intervals in CLP

Consider a set as an element of a powerset� Take the convex superset of this
collection of sets �powerset�� This convex part denotes a set interval� This con�
cept of set interval is the means we will use to reason with and about sets in
a Constraint Logic Programming �CLP� language�� On the one hand� the user
manipulates sets in a logic�based language and on the other hand set interval
calculus is performed to search for set values� The logic�based language is charac�
terized by a set of prede�ned function and predicate symbols needed to deal with
sets� This section describes the abstract syntax of the language and the algebraic
structure of the system called the constraint domain� This is the structure over
which set interval calculus is performed�

����� Abstract syntax and terminology

The syntax of the language comprises the set of prede�ned function and predicate
symbols relative to sets� the set of constants� the variables� etc�

�A CLP language is a logic�based language parameterized by its computation domain and

more generally by its constraint domain�

�� Formal Framework

The alphabet The set of prede�ned function and predicate symbols necessary
to reason with and about sets is the alphabet S �

 S � f������ n�����a�b�g

The predicate symbol ��a�b� applied to a variable s will be interpreted as the
double ordering a � s � b�

Constants and terms The set of constants de�nes the domain of discourse
of the language� It extends the Herbrand universe to provide the concept of set
constant�

De�nition 	� The domain of discourse is the powerset

DS � P�Hu� where Hu refers to the Herbrand universe

A set constant is any element from P�Hu� represented by the abstract syntax
fe�� ���� eng where the ei belong to Hu�

De�nition 	 A set variable is any variable taking its value in P�Hu��

De�nition �� A set term is de�ned by�

��� any set constant a is a set term
�
� any set variable s is a set term

De�nition �� A set expression S of DS where S�� S� are set expressions is
inductively de�ned by�

a j s j S� � S� j S� � S� j S� n S�

Formulas and programs An atomic formula is a �rst�order atom �or atom�
or a prede�ned constraint built from set terms� function and predicate symbols
in S �

De�nition �	 An atomic formula is de�ned as follows�

If p is an nary predicate and t�� ���� tn are terms� then p�t�� ���� tn� is an atom�

Set intervals in CLP ��

A program built from the logic�based language is based on de�nite clauses of
the form�

��� A � �B�� ���� Bn and ��� � �G�� ���� Gn

where A is an atom and the Bi� Gi are atoms or constraints� ��� is called
a program clause and ��� a program goal� While atoms are not subject to a
speci�c interpretation in the language� the prede�ned constraints characterize
the language�

Notations Set variables will be represented by the letters x� y� z� s� Set con�
stants will be represented by the letters a� b� c� d� Natural numbers will be repre�
sented by the letters m�n and integer variables by v�w� All these symbols can be
subscripted�

����� Computation domain

The computation domain of the language is the powerset algebra DS which inter�
prets �over the domain of discourse DS� the function symbols ���� n belonging to
 S in their usual set theoretical sense �i�e�� � is the empty set� n the set di�erence�
etc���

The interpreted set union and intersection symbols have the following alge�
braic properties�

C� x � y � y � x x � y � y � x commutativity
As� �x � y� � z � x � �y � z� �x � y� � z � x � �y � z� associativity
I� x � x � x x � x � x idempotence
Ab� x � �x � y� � x x � �x � y� � x absorption

����� Constraint domain

The constraint domain represents the structure of the system over which set in�
terval calculus is performed� This structure is built from the computation domain
equipped with the predicate symbols ����a�b� belonging to S and interpreted as
constraint relations� The predicate symbol � is interpreted as the set inclusion
and the predicate ��a�b� is interpreted as the set domain constraint� This relation
constrains a set variable to take its value in a speci�c domain� Since the main
idea of the system is to perform set interval calculus� we must guarantee that the
domain of any set is an interval�

�� Formal Framework

The structure 	DS ��� describes a powerset lattice with the partial order ��
Any two of its elements a� b have a unique least upper bound a � b and a unique
greatest lower bound a� b �cf� section �������� The existence of limit elements for
any set fa� bg belonging to DS allows us to de�ne a notion of set domain as a
convex subset of DS � that is a set interval 	a � b� a � b��

De�nition �� A set interval domain or set domain is a convex subset of DS

speci�ed by 	a� b� such that a � b and a� b � P�Hu��

De�nition �� A set variable s is said to range over a set domain 	a� b� if and
only if s � 	a� b��

The greatest lower bound a of the set domain contains the de�nite elements
of s and the least upper bound b contains possible elements of s �comprising the
de�nite ones��

Example �� The constraint s � 	f�� �g� f�� �� �� g� means that the elements �� �
belong to s and that � and are possible elements of s�

Set intervals have been used so far to specify the domain of a set variable�
Regarding set expressions� the domain of a union or intersection of sets is not a set
interval because it is not a convex subset of DS �e�g� I � 	f�g� f�� �g�� 	fg� f�� g��
f�� �g� fg � I but 	fg� f�� �� g� �� I�� It is possible to maintain such disjunctions
of domains during the computation� but this leads to a combinatorial explosion�
This handling of �holes� can be avoided by considering the convex closure of a set
expression domain� Consequently� the constraint domain of the system is de�ned
as the powerset lattice over the convex parts of P�DS� �convex subsets of DS��
equipped with a convex closure operation�

De�nition �
 The set of all convex parts of P�DS� is a subset of P�DS� ordered
by set inclusion and designated by !DS �

De�nition �� The constraint domain CD is the algebraic structure of the lattice
!DS of set intervals ordered by set inclusion such that�

CD � 	!DS �DS �����a�b��

The set equality can be derived from the double inclusion x � y� x � y and y �
x�

Set intervals in CLP ��

Convex closure operation� To ensure that any set domain is a set interval�
we de�ne a convex closure operation which associates to any element of P�DS�
its convex closure as being a set interval� element of !DS �

De�nition �� The convex closure operation �conv � P�DS�	 !DS is such that
�conv � x	 x satis�es�

x � fa�� ���� ang 	 x � 	
�

ai�x

ai�
�

ai�x

ai�

Example � The convex closure of the setff�� �g� f�� �� �g� f�gg belonging to
P�DS� is the set interval 	f�g� f�� �� �� �g��

Property �� An element x of P�DS� is convex under the above convex closure
operation when x is equal to its �closure� x�

Corollary �� All singleton sets are convex�

In the following� the operations
T
ai�x ai and

S
ai�x ai will be respectively writ�

ten glb�x� and lub�x� which stand for greatest lower bound and least upper bound
of x� respectively�

Property �	 The operation �conv�x� � x � 	glb�x�� lub�x�� has the following
properties�

C�� x � x Extension
C
� x � x Idempotence
C�� If x � y� then x � y Monotony

If we consider the � relation as a logical implication� the extension property C�
can be interpreted by �any element of x belongs to x �thus to glb�x�� and any
element de�nitely not in x �not in lub�x�� does not belong to x�� This allows the
set calculus to be performed in !DS while ensuring that the computed solutions
are valid in DS � Property C� guarantees that the partial order � is preserved in
!DS �

!DS equipped with the operation �conv allows us to de�ne the constraint
domain from an algebraic point of view� i�e�� from the properties of the union and
intersection operations in !DS �

� Formal Framework

De�nition �� The constraint domain CD is a powerset lattice 	DS �����a�b�� with
the family !DS of set intervals that satis�es�

P�� Each union of elements of !DS is also an element of !DS

P
� Each �nite intersection of elements of !DS is also an element of !DS

P�� P�DS� and the empty set fg are elements of !DS �

Properties P� and P
 de�ne the distributivity of � and � in !DS � The condi�
tions in P� de�ne !DS as a topology on P�DS�� It follows from P
 and the �rst
statement of P� �P�DS� � !DS� that a convex closure operation satisfying C�
C� is de�ned in CD� This operation is �conv� Because of P� and P
 this operation
satis�es

x � y � x � y and x � y � x � y

Finally P� implies that � � ��

����� Set interval calculus

In order to satisfy the properties P�� P
 and P�� we de�ne a set interval calcu�
lus within !DS � This consists in deriving equality relations from the following
ordering relations�

	a� b�� 	c� d� � 	a � c� b � d� and 	a� b�� 	c� d� � 	a � c� b � d�

This is achieved by making use of the convex closure operation� The resulting
set interval calculus is described as follows�

	a� b� � 	c� d� � 	a � c� b � d�

	a� b� � 	c� d� � 	a � c� b � d�

P�Ds� � P�Ds� and � � �

With regard to the set di�erence operation 	a� b� n 	c� d�� its set theoretical
de�nition is x n y � x� y� where y� is the complement of y� The complement of a
set interval is characterized only by the fact that it does not contain the elements
in the lower bound �e�g� c in this case�� So the convex closure of a set interval
di�erence is�

	a� b� n 	c� d� � 	a n c� b n c�

Set intervals in CLP ��

The consistency property x � y � y � x�y and x � y� x � x�y �cf� �����
property ��� establishes a link between � and the set operations of a powerset
lattice� This embeds the notions of right inclusion �y � x � y�� which de�nes the
consistency of y with respect to x� and the left inclusion �x � x � y�� Intuitively
the right inclusion aims at possibly adding elements to y and the left inclusion at
possibly removing elements from x� Consequently� if a set interval 	a� b� speci�es
the set domain of a set variable x� the right inclusion is applied to a and the left
inclusion to b� This is due to the fact that a contains elements which are already
in x and b contains possible elements of x�

De�nition �� Assuming that 	a� b�� 	c� d� specify set domains� the consistency
property in CD is de�ned by�

	a� b� � 	c� d� � b � b � d� c � c � a

This de�nition of consistency is fundamental from an operational point of
view� It gives us the necessary conditions to be satis�ed when checking and�or
inferring consistency of the set inclusion constraint over set domain variables�

����� Graduations

The expressivity of the language can be increased if some �graded� functions
are applied to set terms� A graded function maps a non quanti�able term to an
integer value denoting a measure of the term� The set cardinality is one example of
such a function� They allow the user to deal with optimization functions in a set�
based language �e�g� minimizing the cardinality of a set�� The constraint domain
presented so far does not contain any such graded functions� In this subsection� we
extend the alphabet of the language and the constraint domain of the system to
deal with such functions� In lattice theory� a function which maps elements from
a lattice structure �e�g� the constraint domain� to the set of integers� is called
a graduation� Not all lattices can be equipped with graduations� One su�cient
condition for this is that the lattice is lower semi�modular �cf� subsection �������
This is the case for 	DS ��� and for 	!DS ����

In order not to limit the extension of the language to the set cardinality
function� the general case of an arbitrary graduation f is studied�

De�nition �� A graduation f is a function from 	DS ��� to Z �set of positive
and negative integers� which maps each element x � DS to a unique m such that
f�x� � m�

�� Formal Framework

The convex closure of a graduation f is required to deal with elements from
!DS � The closure function� written f � maps elements from !DS to a subset of
the powerset P�Z� containing intervals of positive and negative integers� This
subset is designated by !Z�

Example �
 Let s be a set and �s its cardinality �a positive integer�� Consider
the constraint s � 	fg� f�� �g�� The cardinality function � is approximated by ��
Intuitively we have ��s� � 	�� ���

De�nition �� Let f � DS 	 Z� The function f � !DS 	 !Z is derived from f
as follows�

f�	a� b�� � 	f�a�� f�b��

Property �� If x � 	a� b� then f�x� � f�	a� b���

Proof� By de�nition f is a graduation� So if a � x � b then we have f�a� �
f�x� � f�b�� Consequently f�x� � 	f�a�� f�b�� which means f�x� � f�	a� b����

This property guarantees that the output of the function f applied to a set
domain contains the actual graduation value of the concerned set variable�

����	 Extended constraint domain

Graduations add expressive power to the language� They can be embedded as
prede�ned symbols in the language� if the constraint domain is extended to deal
with integer intervals and integer variables� The constraint domain associated
with integer intervals is that of integer interval domains �subset of the standard
constraint domain over �nite integer domains�� It is de�ned by the structure�

FD � 	!Z� �Z������ �������m�n��

where the relation ��m�n� is interpreted in !Z as the integer domain constraint
such that� x ��m�n� 	m�n� is equivalent to m � x � n� The other symbols are
interpreted in their usual arithmetic sense� The extended constraint domain of
our system should contain FD�

De�nition � The extended constraint domain CDe with graduations� is the
structure�

	!DS �DS � f�����a�b�� � FD

CDe interprets graduation symbols as unary set operations with respect to
their intended meaning� For example the symbol � is interpreted as the set car�
dinality operation�

Execution model ��

��� Execution model

The execution model is based on constraint solving in CDe� It is a top�down
execution model which de�nes the operational semantics of the system� The model
describes how the constraints are processed over CDe and what they lead to� Since
the set satis�ability problem isNP�complete� it is a fortioriNP�complete in CDe�
For e�ciency reasons� partial constraint solving is therefore required� The idea
consists in transforming a system of constraints in CDe as follows� Let each set
variable range over a set domain� The transformation of a system of constraints
in CDe aims at removing some values of the set domains that can never be part
of any feasible solution� This is achieved by making use of constraint satisfaction
techniques�

A transformed system is commonly called a consistent system� One necessary
condition for dealing with constraint satisfaction techniques is that each set vari�
able ranges over a set domain� This section de�nes the various consistency notions
for each prede�ned constraint in the system� gives the transformation rules used
to infer consistency� and describes the operational semantics of the system as a
transition system on states�

����� De
nition of an admissible system of constraints

The set of prede�ned constraints in CDe can contain any of the following�

� set domain constraints s � 	a� b� where s is a set variable�

� set constraints S � S� where S� S� are set expressions �comprising con�
stants� variables and possibly set operation symbols in f���� ng��

� graduated constraints f �S� � 	m�n� where f is any prede�ned graduation
and 	m�n� any element in !Z �i�e�� an integer if m � n or an integer
domain��

De�nition �� An admissible system of constraints in CDe is a system of con
straints such that every set variable s ranges over a set domain�

����� From n�ary constraints to primitive ones

The prede�ned constraints might denote n�ary constraints like s� � s� � s� � s��
The partial solving of constraints requires us to express each set variable in terms

�� Formal Framework

of the others� Since there is no inverse operation for ���� n there is no way to
move all the operation symbols on one side of the constraint predicate� So it is
necessary to decompose n�ary constraints into primitive ones�

Consider the following set of basic set expressions fs � s�� s � s�� s n s�g� The
proposed method consists in approximating each basic set expression by a new
set variable with its appropriate domain� The resulting constraints are binary or
unary ones called primitive constraints�

De�nition �� A primitive constraint is ��� a prede�ned set constraint contain
ing at most two set variables or� �
� a graduated constraint containing at most
one set variable�

In the former example the n�ary constraint is approximated by the system of
constraints�

s� � s� � s��� s� � s� � s��� s�� � s��

This approach is similar to the relational form of arithmetic constraints over
real intervals introduced by Cleary 	Cle�
��

A relation denoting a basic set expression represent a subset of the Cartesian
product of the set domains attached to each set variable� In order to deal with
the consistency of these relations� we de�ne projection functions which allow
each set domain to be expressed in terms of the others� Consider a relation r �
	a�� b�� 	a�� b�� 	a�� b��� The set it denotes must belong to the domain !DS

over which the computations are performed� Since !DS contains convex sets�
each value of a projection function must be a convex set� that is a set interval�
Consequently� to each projection function designated by 	i we associate its closure
	i� The closure is derived from 	i by making use of the closure operator de�ned
above which satis�es�

	i � �conv�	i�

	i represents the approximation of this projection of the relational form r on the
si�axis�

De�nition �	 The ith projection function 	i of a relation r denoting a set ex
pression is the mapping �

	i � �convfsi � 	ai� bi� j ��sj� sk� � 	aj� bj�	ak� bk� such that j� k �� i � �si� sj� sk� �
rg

These relational forms of set expressions are not visible to the user but they are
necessary to de�ne the consistency of an n�ary constraint�

Execution model ��

����� Consistency notions

The consistency notions provide necessary conditions to ensure the partial satis�
faction of primitive constraints� The standard notions of consistency applied to
integer domains state conditions that must be satis�ed by each element belonging
to a variable domain� This approach is not useful to us since set domains speci�ed
by set intervals can contain an exponential number of elements �in the size of the
powerset described by the domain bounds�� Instead� we derive conditions that
must be satis�ed only by the domain bounds� These conditions guarantee that
any relation which does not hold for the bounds of the variable domains will not
hold for any element between these bounds� Consider a set variable s� The lower
and upper bounds of the domain of s will be respectively de�ned by the functions
glb�s� and lub�s�� The upper letters S� S� denote set expressions�

Preliminary de�nitions With regard to the consistency properties of the set
inclusion constraint� the concepts of lower and upper orderings have been infor�
mally introduced� Their formal de�nitions are given here since they will be of
much use in the subsequent de�nitions� Assume the following notations� �L for
the lower ordering and �U for the upper ordering�

De�nition �� Let a� b denote ground sets� The lower ordering is the relation�

a �L b� �x � a� x � b

De�nition �� Let a� b denote ground sets� The upper ordering is the relation�

a �U b� �x �� b� x �� a

These preliminary de�nitions allow us to de�ne the consistency notions for
primitive constraints�

De�nition �� Let s � s� be a primitive set constraint� We say that this con
straint is consistent if and only if�

SC�� glb�s� �L glb�s�� and
SC�� lub�s� �U lub�s���

The consistency of a primitive set constraint is equivalent to the standard no�
tion of arc�consistency �i�e�� interval consistency is equivalent to domain consis�
tency�� Correspondingly� if a set constraint is an unary constraint� its consistency
is equivalent to node consistency�

Property �
 A primitive set constraint is consistent if an only if it is arc
consistent�

�� Formal Framework

Proof� This property holds because the operations � and � are isotone� The
constraint s � 	a� b� is equivalent to �es � 	a� b� we might have s � a � es� The
isotony of � means that a � es � b� a � es � a � b �since a � b��

Assume the domain constraints s � 	a� b�� s� � 	c� d�� The set constraint s � s�
is consistent i��

a �L c and b �U d � �es � 	a� b� a � es �L c � es and b � es �U d � es
�es � 	a� b�� �es� � 	c� d�� es� � c � es such that
es � es�
s � s� is arc�consistent�

�

De�nition �� A primitive graduated constraint f �s� � 	m�n� is consistent i��

SC�� f �s� � f�s� � 	m�n�

The consistency of the relational forms of basic set expressions is de�ned
through the consistency of the projection functions� Since the set domain of a
basic set expression is approximated it is clear that we can not get the equivalent
of arc�consistency� Some elements in the resulting set interval are meant to ful�ll
�holes� and are not expected to be part of any feasible solution�

Theorem �� A relation r denoting the relational form of a basic set expression
is consistent if and only if each of the projection functions 	i describing r is
consistent�

De�nition � A projection function 	i associated to the relation
r � "j�f�������g	aj� bj� is consistent i��

SC�� glb�	i� �L ai and bi �U lub�	i�

����� Inference rules

The consistency notions de�ne conditions to be satis�ed by set domain bounds so
that a set constraint is consistent� If such conditions are not satis�ed this means
that elements in the domain are irrelevant� Consistency can be inferred by moving
such elements �out of the boundaries of the domain� which means pruning the
bounds of the domain� The essential point is that a re�nement of both bounds
allows us to prune a domain� Reducing the set of possible values a set could
take can be achieved either by extending the collection of de�nitive elements of
a set i�e�� satisfying the lower ordering� or by reducing the collection of possible
elements i�e�� satisfying the upper ordering� Both computations are deterministic
and are derived from the consistency notions�

Execution model ��

������� For set constraints

Consider the constraint s � s� such that s � 	a� b�� s� � 	c� d�� Inferring its con�
sistency by means of a domain bound reasoning amounts to satisfying the lower
ordering by possibly extending the lower bound of the domain of the set variable
s� and satisfying the upper ordering by possibly reducing the upper bound of the
domain of s� This is depicted by the following inference rule�

I��
b� � b � d � c� � c � a

fs � 	a� b�� s� � 	c� d�� s � s�g ��	 fs � 	a� b�� � s� � 	c�� d�� s � s�g

When s� s� denote set expressions� the relational forms are created and the
following additional inference rule is necessary to deal with the projection func�
tions� For each projection function 	i describing the domain of an si appearing
in a set expression� we have�

I��
a�i � ai � c � b�i � bi � d

f si � 	ai� bi�� 	i � 	c� d� g ��	 f si � 	a�i� b
�
i�g

Two additional inference rules describe the cases where the set domain of a set
is reduced to one value or is inconsistent�

I��
a � b

f si � 	a� b� g ��	 f s � ag
I���

a � b

f si � 	a� b� g ��	 fail

������	 For primitive graduated constraints�

The constraint f�s� � 	m�n� such that s � 	a� b� describes a mapping from an
element belonging to a partially ordered set to an element belonging to a totally
ordered set� Consequently� it might occur that two distinct elements in 	a� b� have
the same valuation in 	m�n�� This implies that inferring the consistency of this
constraint might require re�ning 	a� b� only if a single element in 	a� b� satis�es the
constraint� If this element exists� it corresponds necessarily to one of the domain
bounds since they are uniquely de�ned and are strict subset �or superset�� of any
element in the domain� Thus� the value of the graduation mapped onto them can
not be shared� The inference mechanism is depicted by the following rules�

I��
	m�� n�� � 	m�n� � f �s�

f s � 	a� b� � f �s� � 	m�n�g ��	 fs � 	a� b� � f �s� � 	m�� n�� g

I��
n � f �a�

f s � 	a� b� � f �s� � 	m�n�g ��	 fs � a g

I�
m � f �b�

f s � 	a� b� � f �s� � 	m�n�g ��	 fs � b g

�� Formal Framework

����� Operational semantics

The inference rules described so far can be applied to individual constraints�
The operational semantics shows how to check and infer the consistency of a
system of constraints� This system should correspond to an admissible system
of constraints� The consistency of such a system results from the consistency of
each constraint appearing in it� The operational semantics is based on one non
deterministic transition rule which takes as input a goal comprising a collection
of ��� set domain constraints A� ��� other constraints C� ��� two sets of atoms G
and B and ��� one clause among the possible ones in the program whose head
can be uni�ed with the leftmost atom in G� The leftmost atom in G is marked
out by � G� and the remainder of G by � G� This rule returns a new goal to be
solved such that the set of constraints is consistent and possibly simpli�ed� It is
depicted in the following �gure� The notation � is used to distinguish the sets of
atoms from the sets of constraints�

from � A�C � G and a� C� � B
infer � A�� C� � �� G � B�
if f A� f� G � ag � C � C�g ��	 f A�� C� g

Figure ��� Derivation rule of the operational semantics

The crucial point lies in the inference rule de�ned in the if statement� The
inference rules de�ned so far deal with one constraint� From inferring of the
consistency of one constraint� we move to inferring the consistency of a collection
of constraints� At the same time� this inference rule possibly transforms the set
of domain constraints and the set of the other constraints� The reason is that the
consistency of some constraints might result from the requirements for domain
re�nements and thus a replacement of the previous set domain constraints �cf�
I�� I�� and additionally some constraints might be simpli�ed which leads to a
transformation of the set of other constraints �cf� I�� I�� I�� This inference rule
corresponds to a set of simple rules which describe the process in more detail�

The process amounts to considering a transition system on states where each
state contains the new constraints as yet unconsidered� the �set� integer� domain
constraints and the constraints which have already been checked out� One state
is speci�ed by a tuple hC�As �Ai� Si containing the following collections of con�
straints�

Execution model ��

A set of as yet not considered constraints designated by C�
A set of set domain constraints designated by As�
A set of integer domain constraints Ai�
A set of consistent constraints S�

As� Ai and S are usually referred to as the constraint store� When As and Ai

do not need to be distinguished their union is denoted A� The initial state of the
transition system is hC� �� �i where all the constraints need to be checked�

The inference rule in the if statement contains di�erent con�gurations of state
transition� For example� one transition might be that the consistency of one con�
straint is inferred without any requirement for domain modi�cation� or that it
requires domain re�nements which leads to the inconsistency of some already
stored constraints� The following set of transition rules corresponds to the various
possible transformations which are derived when checking or inferring consistency
of one constraint in conjunction with the constraint store� The �rst two transi�
tion rules deal with consistency checking and the last two with the consistency
inference�

T�� hC � c�As� Si �	c hC�As� S � ci

if c is consistent in conjunction with the set As and consequently with the con�
straint store� c is then added to the set of consistent constraints S�

T�� hC�A� Si �	c fail

if at least one set domain or integer domain constraint in A is inconsistent� This
transition is derived if the inference rule I�� succeeds over at least one set do�
main constraint� A similar inference rule for the case of integer domains is quite
straightforward and corresponds to the case where x � 	m�n� and n � m�

T�� hC � c�As� Si �	i hC�A�
s� S � ci

if the consistency of c is inferred by requiring a pruning of some set domains
thus requiring to modify the set of set domain constraints As� This transition is
derived if any of the inference rules I�� I� and I� is successfully applied�

T�� hC � c�As �Ai� Si �	i hC�A�
s �A�

i� S � ci

if the consistency of c is inferred by requiring a pruning of some integer domain
�I�� and possibly some set domain �I�� I�� Consequently the sets As� Ai might
get modi�ed�

Each derivation rule takes an element from C and moves it to S� So the �nal
state of the transition system is either fail or h�� A�� S�i�

� Formal Framework

Theorem
� A system of constraints S is consistent if and only if all the domain
constraints that it contains are consistent�

Proof This follows simply from the various inference rules� Inferring the con�
sistency of a system amounts to considering the consistency of each constraint in
conjunction with the already consistent ones� The system is detected inconsistent
if and only if the inference rule I�� is successfully applied��

������� Satis�ability issue

Ensuring the satis�ability of a consistent system requires guaranteeing that a
solution exists� This is in not possible when an n�ary set constraint happens to
belong to the system since we work on domain approximations� But whenever
dealing with unary and binary set constraints� property �� �cf� equivalence be�
tween set constraint consistency and the usual consistency notions� guarantees a
solution� The lower or upper bounds of the set domains will always be possible
values for the sets� With respect to graduated constraints� consistency does not
guarantee satis�ability since a consistent graduated constraint f �s� � m does
not guarantee that some elements of the domain of s might satisfy the constraint�

Theorem
� A system of set constraints containing only unary and binary set
constraints is satis�able if and only if it is consistent�

Proof� This follows simply from the property �� which holds thanks to the
monotony of the operations �����

�

Practical Framework

Le mot est cr�eateur�

car il concentre tout� il centre�

Le mot construit�

Ce n�est pas sans raison que telle pierre

s�imbrique dans telle autre�

Autrement� ce que tu construis s��ecroulerait�

This section describes the Conjunto� language� a constraint logic programming
language designed and implemented to reason with and about sets ranging over
a set domain� Its design is based on the notion of set de�ned as an individual
element from a subset of a powerset universe� The functionalities of Conjunto
�apart from those of a logic�based language� are set operations and relations
from set theory together with some graduations which provide set measures like
cardinality� weight� etc� We describe how these graduations can be reconsidered
so as to map set domains to subsets of the natural numbers ��nite domains��

The implementation of Conjunto is concerned with the way set calculus is
achieved in algorithmic terms� Searching for a complete solution is an intractable
problem since set satis�ability is an NP�complete problem� The basic principle
of the Conjunto solver is to check and infer a coherent system of set constraints
which guarantees that set values which have been removed from the set domains
can never be part of any feasible solution� This is achieved by adapting local con�
sistency techniques to a domain bound reasoning� Particular attention is given
to the description of the local transformation rules which perform domain re�
�nements to infer local consistency of individual constraints� We then describe
how the solver which infers�checks the consistency of a system of constraints�
handles the calls to these rules by making use of delay mechanisms� Their ade�
quacy to establish a dynamic cooperation between two solvers �Conjunto solver
and �nite domain solver� is illustrated by the handling of graduated constraints
in conjunction with other constraints�

�Conjunto means �set� in Spanish

�� Practical Framework

��� Design of Conjunto

This section describes the functionalities of the Conjunto language� We omit a
detailed description of the traditional predicates and functions on Prolog terms
	CKC����

����� Syntax

The Conjunto language is a logic�based programming language with the alphabet
of a Prolog language �constants� predicates� functions� connectives� etc�� It is
characterized by a signature which contains the following set of prede�ned
function and predicate symbols in their concrete syntax�

� the constant ���

� the binary set predicate symbols f��� ���� �		�
� weightg and arith�
metic predicate symbols f���� ��g�

� the binary set function symbols f��� ��� �g and the arithmetic sum sym�
bol �

A Conjunto atomic formula is a �rst�order atom �referred to as atom� or any
atomic formula referred to as primitive constraint built from variables� function
and predicate symbols in �

The language is based on de�nite clauses of the form�

��� a � �b�� ���� bn and ��� � �g�� ���� gn

where a is an atom and the bi� gi are atoms or constraints� While atoms are not
subject to a speci�c interpretation in the language� the constraints constitute the
core functionalities of the language and are characterized by a speci�c terminology
and semantics�

����� Terminology and semantics

The main objective of Conjunto is to perform set calculus over sets de�ned as
elements from a powerset domain� Some constraints like set cardinality or set
weight require us to deal also with �nite domains� that is integers and arithmetic
constraints�

Design of Conjunto ��

De�nition
	 The computation domain is the set D � P�HU� � HU where
P�HU � is the powerset of the Herbrand universe�

����	�� Terminology

The terminology gives names to the predicate and function symbols in and
de�nes the notions of set domains and set terms necessary to reason with and
about sets in D�

The symbols in f��� ���� �		�
� weightg refer respectively to the set
inclusion constraint predicate� the set disjointness constraint predicate� the set
domain constraint� the set cardinality constraint predicate and the weight con�
straint predicate� The symbols in f��� ��� �g represent the concrete syntax of
the set operations ���� n� The other symbols in refer simply to the arithmetic
operations they denote�

De�nition
� A ground set is an element of P�HU� which represents a �nite
set of Herbrand terms delimited by the characters f and g�

Example
� �����f�f�u�o��� is a ground set�

De�nition
� A set domain is a convex set of ground sets semantically equiv
alent to a set interval� It is denoted by 	a� b� where a and b are ground sets such
that a � b�

De�nition

 A weighted set domain is a speci�c set domain where each ele
ment of the set domain bounds has the syntax �e�m� such that e is a Herbrand
term and m is an integer�

De�nition
� A set variable is a logical variable whose value lies in a set or
weighted set domain� Its syntax is s � s�	a�b���

Example
� S� S����a�������a�����c�����d������ is a set variable whose
weighted set domain is the set interval ���a�������a�����c�����d������

De�nition
 A set term is a ��� a ground set� or �
� a set variable�

De�nition �� A set expression s is inductively de�ned by�

s ��� ts j s� �� s� j s� �� s� j s� � s�

where s�� s� are set expressions� and ts a set term�

� Practical Framework

Similarly� variables denoting integers will take their value in a �nite set of
integers ��nite domain�� In Conjunto these domains are approximated by integer
interval domains� An integer interval domain is the convex closure of a �nite set
of integers and will be simply referred to as an integer interval�

De�nition �� An integer variable is a logical variable whose value lies in an
integer interval�

����	�	 Semantics

The interpretation of the elements of in D is given by distinguishing set con�
straints from graduated constraints�

Notation� Conjunto�s predicate and function symbols are written in a bold
font� Set variables are denoted s� v� w� set expressions t� integer variables are
denoted x� y� z� ground sets a� b� c� d� integers m�n� These symbols may be sub�
scripted�

A primitive set constraint is one of the following constraints�

� s �		 	a� b� is semantically equivalent to a � s � b�

� s �� s� is equivalent to the set inclusion relation s � s��

� s ��� s� is equivalent to the empty intersection of the two sets s� s��

Remark The set disjointness constraint ��� which was not included in the
formal part has been embedded as a primitive constraint in Conjunto mainly for
practical reasons� Since the disjointness of two sets appears in almost all set based
problems� it is simpler to use a speci�c syntax and more e�cient to handle it as
a primitive constraint�

A primitive graduated constraints is one of the following�

�
�s� x� is equivalent to the arithmetic equality �s � x where �s is the
standard cardinality function of set theory�

� weight�s� x� is semantically equivalent to the arithmetic operation
P

imi �
x such that �ei�mi� � s�

�cf� the ��a�b�a�b predicate in the formal part�

Design of Conjunto ��

The function symbols ��� ��� � are interpreted as the set operations ���� n�
respectively� in their usual set theoretical sense� The set di�erence is a comple�
mentary di�erence �e�g� s n s� � fx � s j x �� s�g��

De�nition �	 The constraint system of a Conjunto program is an admissible
system� of set constraints and graduated constraints where every set variable is
constrained by a set domain constraint�

In this admissible system of constraints the searched objects are the sets� The
integer variables are not part of the initialization of the search space which is
attached to the system� They constitute essentially a means to get to the �nal
solution� This is described in the following corollary�

Corollary �� An admissible system of set and graduated constraints is a set do�
main constraint satisfaction problem i�e�� a constraint satisfaction problem where
the initial search space is de�ned by the set domains attached to the set variables�

����� Constraint solving

The constraint solving in Conjunto focuses on e�ciency rather than on com�
pleteness� Since the set satis�ability problem is NP�complete� partial constraint
solving is required� The Conjunto solver aims at checking and inferring the con�
sistency of an admissible system of constraints� This is achieved by�

� applying some local transformation rules� which allow the consistency of
one constraint to be checked�inferred� using a top�down search strategy�

� delaying consistent constraints which are not completely solved�

The Conjunto solver considers one constraint at a time and checks�infers
its consistency in conjunction with the set of delayed constraints� This process
might require the consistency of some delayed constraints to be reconsidered�
These constraints are woken using a data driven mechanism based on suspension
handling mechanisms�

The solver acts like a transition system on states� One state is denoted by a tu�
ple of as yet unconsidered constraints together with a constraint store containing
the delayed constraints� Each newly consistent constraint is added to the con�
straint store� The �nal state of the program is achieved when all atoms appearing
in a goal clause have been checked and when no further domain re�nement is

�cf� de�nition in the formal part 	�	�

� Practical Framework

required� This state is either denoted by �fail� when some constraints have been
marked inconsistent or it contains a set of delayed constraints together with the
set variables and their associated domains�

Example �� The goal�

	� S �		 ���������������� S� �		 �������� �� ���� S �� S��

produces the re�ned domains�

S � S��������������� S� � S������������������

and the delayed goal� S �� S�

Example �� The goal�

	� S �		 ����������������
�S����

produces the instantiation S � ��� and no delayed goal since the initial goal
is completely solved�

����� Programming facilities

One of the application domains we have investigated using Conjunto is the mod�
elling and solving of set based combinatorial problems� To allow the user to state
short and concise programs� some programming facilities have been added to the
initial set of primitive constraints� They consist of a collection of constraints de�
�ned from the primitive ones� some predicates necessary to access information
related to the variable domains� and a built�in set labelling procedure� The most
important ones are presented below� others are given in the annexe A�

������� Set constraints

The set equality t �� t� requires two set expressions to be equal� This con�
straint is simply derived from a double set inclusion� t �� t�� t� �� t and is handled
as such�

The membership and nonmembership e in s � e notin s are handled in
a passive way in the sense that they are considered once e is ground� They are
respectively de�ned in terms of set inclusion and set disjointness constraints if e
is ground� and delayed otherwise� feg �� s and feg ��� s�

Design of Conjunto ��

The global union all�union�	s�� ���� sn�� s� requires the union of all the set
terms in 	s�� ���� sn� to be equal to s� In case s is a free variable� it becomes a set
variable and its domain is the union of the set domains or set values attached
to the set terms� It is de�ned by means of pairwise unions� The handling of this
constraint does not perform a global reasoning over the si but amounts to dealing
with a collection of set equality constraints over a set variable and the union of
two set variables� Even though this process is not visible to the user� the set
equality constraints which are not completely solved appear in the set of delayed
goals�

Example �
 The goal�

	� �S��S��S�� �		 �����a�b�c��� all�union��S��S��S��� �a�b��

produces the re�ned domains�

S� � S�������a�b���� S� � S�������a�b���� S� � S�������a�b���

and the set of delayed goals�

S�S� �� S� �� �a�b� and S� �� S� �� S�S�������a�b���

The global disjointness all�disjoint�	s�� ���� sn�� requires all the set terms
in 	s�� ���� sn� to be pairwise disjoint� It is de�ned by means of disjointness con�
straints over every couple of si� It is handled in a way similar to the global union
constraint�

������	 Set domain access

Set domains are represented as abstract data types� and the users are not sup�
posed to access them directly� So two predicates are provided to allow operations
on set domains � glb�s� sglb� and lub�s� slub�� If s denotes a set variable� each
term is respectively assigned the value of the domain�s lower and upper bound�
Otherwise it fails�

������� Set labelling

Assigning a value to a set variable is a nondeterministic problem which can be
tackled by di�erent labelling strategies� Since the Conjunto solver uses partial
constraint solving� an adequate strategy should aim at making an active use of
the constraints in the constraint store� On the one hand� a procedure which would
consist in instantiating a set by directly selecting an element from the set domain
makes a passive use of the constraints whose consistency is only partial� In the

� Practical Framework

worst case this process might require considering all the elements belonging to
a set domain even if some of them are irrelevant� On the other hand re�ning a
set domain by adding one by one elements to the lower bound of the domain is
more likely to minimize the possible choices to be made� The refine predicate
embedded in Conjunto behaves as follows�

refine�s� labels s� if s is a set variable� If there are several instances of s� it
creates choice points� If s is a ground set� nothing happens� If not� the following
actions are performed recursively until the set gets instantiated� ��� select an
element e from the ground set lub�s� n glb�s�� ��� add the membership constraint
e in s to the program� This added constraint is handled by the solver which
checks its consistency in conjunction with the actual constraint store� In case of
failure the program backtracks and ��� the nonmembership constraint is added
�successfully� to the program so as to remove the irrelevant value e from the
domain� The points ��� and ��� correspond to the disjunctive set of constraints�

� e in S � e notin S�

Example �� Consider the goal�

	� S �		 ������������� refine�S��

The search tree generated during the labelling procedure and covered using a
depth �rst search strategy is described in �gure ����

S{[{},{2,3}]}

S{[{2},{2,3}]}

S{[{},{1,2,3}]}

S{[{1},{1,2,3}]}

S{[{1},{1,3}]}S{[{1,2},{1,2,3}]}

S={1,2,3} S={1}S={1,3} S={2,3} S={2} S={3} S={}

S{[{},{3}]}

S={1,2}

Figure ��� Example� search tree of the prede�ned labelling procedure

The strategy� which consists in adding membership constraints to the program�
aims in particular at making an active use of those graduated constraints whose
consistency is only partial�

Design of Conjunto ��

Example �� Consider the goal�

	� S �		 �������������
�S���� refine�S��

The irrelevant branches of the search tree are cut in an a priori way i�e�� no useless
choice point is created� The search tree generated during the solving of this goal
is depicted in �gure ��
�

S{[{},{2,3}]}

S{[{},{1,2,3}]}

S={2} S={3}

S{[{},{3}]}S{[{2},{2,3}]}

S{[{1},{1,2,3}]}

S={1}

Figure ��	 Example� cutting branches of the search tree

������� Optimization predicates

The notion of optimization is common in problem solving� It aims at minimizing
or maximizing a cost function which denotes a speci�c arithmetic expression� The
notion of cost de�nes a kind of measure or quanti�cation applied to some terms� A
set can not denote a quantity and is not measurable� Only its possible graduations
are� Thus there are no speci�c optimization predicates for sets� Existing predicates
embedded in a �nite domains solver �e�g� for a branch and bound search� can
be directly applied to expressions over integer intervals occurring in graduated
constraints� For example� minimizing a set cardinality acts over a set through the
link existing between a set variable and its cardinality�

������� Relations and constraints

When dealing with sets� it sounds quite natural to deal with relations and func�
tions as well� Functions are more restrictive than relations since they constrain
each element from its DS�domain� to have exactly one image� Providing relations
at the language level extends the expressive power of the language when dealing

�DS�domain stands here for departure set

 Practical Framework

for example with circuit problems and matching problems originating from Op�
erations research� In relation theory 	Fra��� a relation R is represented as a set
of ordered pairs �xi� yj� such that xi belongs to the DS�domain d of R and yj to
its AS�range	 a� In other words� a relation R on two ground sets d and a is a
subset of the Cartesian product d a� Keeping this representation to deal with
relations as speci�c set terms containing pairs of elements can be very costly in
memory� Indeed� the statement of the Cartesian product referring to a relation
requires us to consider explicitly a huge set of pairs� This is very inconvenient�
Instead� a relation in Conjunto is represented as a speci�c data structure which is
characterized by two ground sets �DS�domain and AS�range� and a list contain�
ing the successor sets attached to each element of DS�domain 	Ger��a� 	Ger��b��
Considering one successor set per element splits the domain of a relation into a
collection of set domains� The resulting value of a relation is clearly the union of
the successor sets� This approach is close to the one introduced in the seminal
work ALICE 	Lau
�� which dealt essentially with functions� However in ALICE
there is no explicit notion of set domain�

De�nition � Let a relation be r � d a� The successor set s of an element
x � d is the set s � fy � a j �x� y� � rg�

De�nition �� A relation variable r is a logical variable whose value is a com
pound term birel�l� d� a� such that birel is a functor of arity three� l is a list of
�d set variables si such that si �		 �fg� a� and d� a are two ground sets�

This compound term is associated to a free variable by means of the predicate
r bin�r d ��� a�

Example �� The goal�

	� R bin�r ����� ��� �a�b�c��

creates the term�

R � birel��Set�������a�b�c���� Set�������a�b�c����� ������ �a�b�c��

The de�nition of constraints applied to relation variables abstracts from stat�
ing directly constraints over the set DS�domain and AS�range or over the successor
sets� The following constraints have been embedded in Conjunto�

�AS�range stands here for arrival set

Design of Conjunto ��

� �i� j� in�r r� �i� j� notin�r r which adds or retrieves pairs to the relation
� funct�r� which constrains a relation to be a function�
� inj�r� which constrains a relation to be an injective function�
� surj�r� which constrains a relation to be an surjective function�
� bij�r� which constrains a relation to be an bijective function�

The schema of these constraints is directly derived from their usual interpre�
tation issued from relation theory 	Fra��� They are represented below using the
the mathematical cardinality operation �� the usual set operation symbols �����
and the arithmetic inequality ����

Constraints Interpretation

r bin�r d ��� a r � birel�l� d� a� where l � fsi j �i � d� si � fg��ag
�i� j� in�r r if i � d� j � a then j � si
�i� j� notin�r r if i � d� j � a then j �� si
funct�r� �i � d� �si � �
inj�r� �d � �a� �d � n

s� � s� � �� s� � s� � �� ���� sn�� � sn � �
�i � d� �si � �

surj�r� �d � �a� �d � n
s� � s���� � sn � a
�i � d� �si � �

bij�r� �d � n� �a � n
s� � s� � �� s� � s� � �� ���� sn�� � sn � �
�i � d� �si � �

These constraints do not require any speci�c solver since the reasoning is based
on the successor set variables�

Example �	 The goal�

	� R bin�r ��� �� ��� �a� b� c�� funct�R��

creates the term�

R � birel��Set�������a�b�c���� Set�������a�b�c����� ������ �a�b�c��

and the list of delayed goals�

�Set�������a�b�c���� ���
�Set�������a�b�c���� ��

Since the created compound term is not visible to the user� a collection of
predicate relations allow him to access to the properties of the relation�

� Practical Framework

� succs�r� l� instantiates l to the list of successor sets of r�
� dom�r� s� instantiates s to the DS�domain of r�
� ran�r� s� instantiates s to the AS�range of r�
� succ�r� e� s� instantiates s to the successor set of the element e

belonging to DS�domain� such that s � fx j �e� x� � rg�

��� Implementation of Conjunto

The implementation of Conjunto was done in the ECLiPSe 	ECR��� systemwhich
extends the plain Prolog language with features dedicated to the implementation
of speci�c constraint solvers� The main features provided at the language level
comprise the attributed variable data structure and the suspension handling pred�
icates� An attributed variable is a special data type 	Hui���	Hol��� which consists
of a variable with a set of attributes attached and whose behaviour on uni�cation
can be explicitly de�ned by the user in a way that di�ers from Prolog uni�cation�
Attributed variables aim at dealing with speci�c computation domains distinct
from the Herbrand universe� The suspension handling predicates provide means
to ��� delay a goal or constraint� ��� store it in a speci�c list with respect to one or
several variables� ��� awake a list of delayed goals when some given conditions are
satis�ed� The suspension handling predicates allowed us to implement the data
driven constraint handling in Conjunto� In addition� the Conjunto solver makes
use of the �nite domain library of ECLiPSe to deal with integer interval terms
�as well implemented as attributed variables��

����� Set data structure

A set variable is not represented as a standard Prolog variable� but as an at�
tributed variable which is subject to a dedicated uni�cation algorithm� The in�
ternal representation of ground sets is also given since it in�uences the time
complexity of the transformation rules� Both the data structure and the internal
representation of ground sets are not visible to the user and will be ignored in
the description of the transformation rules�

��	���� Set variable representation

A set variable is an attributed variable comprising the following list of attributes�
This structure stores for each set variable all the necessary information regard�
ing its domain� cardinality� and weight �null if unde�ned� together with three
suspension lists� The attribute arguments have the following meaning�

Implementation of Conjunto ��

� setdom� �Glb�Lub� represents the set domain� The user can access it using
the built�in predicates glb� lub�

� card� C represents the set cardinality� This attributeC is initialized as soon
as a set domain is attached to a variable� It is either an integer interval or
an integer� It can be accessed and modi�ed using speci�c built�in predicates
from a �nite domain library�

� weight� W represents the set weight�W is intialized to zero if the domain
is not a weighted set domain� otherwise it is computed as soon as a weighted
set domain is attached to a set variable� It can be accessed and modi�ed
using speci�c built�in predicates from a �nite domain library�

� del�glb� Dglb is a suspension list that should be woken when the lower
bound of the set domain is updated�

� del�lub� Dlub is a suspension list that should be woken when the upper
bound of the set domain is updated�

� del�any� Dany is a suspension list that should be woken when any set
domain re�nement is performed�

��	���	 Ground set representation

The choice for the internal representation of sets is independent of the algorithms�
and not visible to the user� However� it plays a role in the time complexity of the
di�erent set operations� In contrast to integer intervals� the time complexity for
operations on ground sets � �� � versus �� �� n� can not be considered as constant
for it closely depends on the internal representation of a set� In Conjunto each
ground set is represented by a sorted list where the time complexity for any set
operation ��� �� n� is bounded from above by O��d� where d is �lub�s���glb�s�
and s the set with the largest domain�

Since we work essentially on set domains� another approach has been tried
out which consists in representing a set domain as a boolean vector mapped onto
a list containing the actual value of the elements� The upper bound is speci�ed
by the set of elements whose corresponding ��� variable has the value � or ���
�undetermined�� The lower bound is speci�ed by the set of elements whose corre�
sponding ��� variable has the value �� This approach reduces the time complexity
of the � and � operations to O��lub�s�� where lub�s� is the largest domain up�
per bound� But this leads to much larger memory usage due to the size of the
domains used in practice and to the handling of two lists �the list of ��� variables
and the list of actual values��

� Practical Framework

From now on� the value of d in the complexity results will always stand for
�lub�s� � �glb�s��

����� Set uni
cation procedure

A Conjunto program attaches a speci�c semantics to set terms� This semantics
requires to extend the Prolog uni�cation to the one of set terms� The behaviour
of the set uni�cation procedure comprises the following tests and inferences�

� the uni�cation of a logical variable and a set variable� The logical variable
is bound to the set variable�

� the uni�cation of a ground set and a set variable� The set variable is instan�
tiated to the ground set if it belongs to its domain�

� the uni�cation of two set variables� The two variables are bound to a new
variable whose domain is the convex intersection of the two domains �cf�
set interval calculus�� If this domain is empty the uni�cation fails�

� the uni�cation of a set variable with any other term fails�

The uni�cation procedure is used in the generic algorithm for a system of
Conjunto constraints� It will be implicitly referred to by the connective��

����� Local transformation rules

Consistency notions for primitive set constraints and graduated constraints have
been de�ned in the formal part �cf� ������� By making use of these de�nitions�
the following transformation rules check and infer the consistency of primitive
Conjunto constraints� They are based on interval reasoning techniques which are
approximations of the constraint satisfaction techniques� The basic idea consists
in pruning the set domains attached to the set variables by removing set values
which can never be part of any feasible solution� Set values are removed by adding
elements to the lower bound of the domain and�or by removing elements from
the upper bound�

��	���� Transformation rules for primitive set constraints

Primitive set constraints are s �� s� and s ��� s� where s and s� denote set
variables ranging over a set domain� The transformation rules are depicted in
�gure ����

Implementation of Conjunto ��

Consider the set inclusion constraint s� �� s� such that s� � d�� s� � d�� The
transformation rule makes use of the lower and upper ordering of the set inclusion�
Making this constraint consistent might require adding elements to the lower
bound of the domain d� and removing elements from the upper bound of d�� The
re�nements lead to the new domain bounds�

T�� glb�d��� � glb�d�� lub�d��� � lub�d�� � lub�d��
T�� glb�d��� � glb�d�� � glb�d�� lub�d��� � lub�d��

Consider the disjointness constraint s� ��� s� such that s� � d�� s� � d�� The only
possible re�nement aims at removing elements from each upper bound of a set
domain which are de�nite elements that belong to the other set� This constraint
is consistent if the re�ned domains for the variables are�

T�� glb�d��� � glb�d�� lub�d��� � lub�d�� n glb�d��
T�� glb�d��� �glb�d�� lub�d��� � lub�d�� n glb�d��

Figure ��� Interval re�nement for primitive set constraints

Thanks to the monotony of the set operations ������ the interval reasoning
applied is equivalent to domain reasoning i�e�� it guarantees that each element in
the domains is a possible value for the set�

Complexity issues� The time complexity for each transformation is bounded
by O�d� since only one set operation is applied each time�

��	���	 Projection functions for n�ary constraints

Constraints over set expressions have not been dealt with so far� These n�ary
constraints require a special handling mechanism due to the properties of the
set operations� If there is more than one set operation in the constraint� it is
practically impossible to express each set variable in terms of the others� since
set operations have no direct inverse� This point requires us to tackle n�ary con�
straints as �mini�programs�� The approach implemented in Conjunto consists in
approximating an n�ary constraint by ��� associating each basic set expression
�s� �� s�� s��� s�� s��s�� with its relational form� ��� applying inductively this
process until the n�ary constraint can be expressed as a binary one� The rela�
tional forms of set expressions are derived by creating a new set variable whose

� Practical Framework

domain is approximated by using the set interval calculus� The relational forms
correspond to the following constraints�

union �s�� s�� s� � s� �� s� �� s
inter �s�� s�� s� � s� �� s� �� s
diff �s�� s�� s� � s� � s� �� s

The local consistency of these ��ary constraints ensures that no triples satisfy�
ing the constraint are excluded� The inference is performed using transformation
rules that make use of the projection functions each of whose describing each
set domain in terms of the others �cf� formal part ������� Each such projection
uniquely de�nes a smallest set domain which contains the possible solution val�
ues� Three projection functions are required per relational constraint� They are
depicted in �gures ���� ���� ���

Projection functions associated to the constraint union�s�� s�� s� such that s� �
d�� s� � d�� s � d� T� holds also for s��

T�� glb�d��� � glb�d�� � glb�d� n lub�d��
lub�d��� � lub�d�� � lub�d�

T� glb�d�� � glb�d� � glb�d�� � glb�d��
lub�d�� � lub�d� � lub�d�� � lub�d��

Figure ��� Projection functions associated to the set union relation

The union of two sets represents a logical disjunction� So it is very unlikely
that the addition of new elements to glb�d� requires modifying the lower bound
of the domains of s� or s�� The one case which requires such a re�nement occurs
if some elements belong to the lower bound of d and can never belong to one of
the two sets �cf� T��� Consequently they should be added to the other one�

Projection functions associated to the constraint inter�s�� s�� s� such that s� �
d�� s� � d�� s � d� T
� holds also for s��

T
� glb�d��� � glb�d�� � glb�d�
lub�d��� � lub�d�� n ��lub�d�� � glb�d��� n lub�d��

T�� glb�d�� � glb�d� � glb�d�� � glb�d��
lub�d�� � lub�d� � lub�d�� � lub�d��

Figure ��� Projection functions associated to the set intersection relation

The intersection of two sets represents a logical conjunction� So any addition

Implementation of Conjunto ��

of elements to one of the three domains requires modifying at least one of the
lower bounds of the domains� A pruning of the upper bound of these domains
is rarer� However� it might occur in the case depicted in T
 which corresponds
to the following con�guration� some elements are de�nite ones of s� �or s�� and
possible ones of s� �or s��� If they cannot belong to s then they should be removed
from the upper bound of the domain of s� �respectively s���

Projection functions associated to the constraint diff�s�� s�� s� such that s� �
d�� s� � d�� s � d�

T�� glb�d��� � glb�d�� � glb�d�
lub�d��� � lub�d�� n �lub�d�� n �lub�d� � lub�d����

T��� glb�d��� � glb�d��
lub�d��� � lub�d�� n glb�d�

T��� glb�d�� � glb�d� � glb�d�� n glb�d��
lub�d�� � lub�d� � lub�d�� n glb�d��

Figure ��
 Projection functions associated to the set di�erence relation

The second part of the rule T� considers a particular case where the upper
bound of d� should be pruned� If lub�d�� contains elements which do not belong
both to the upper bound of d and to the upper bound of d�� then these elements
cannot belong to s�� Both conditions must be satis�ed to prune lub�d���

Complexity issues� Time complexity for each transformation rule is bounded
by O�d� times the number of basic set operations� which is bounded by � for the
rules T
 and T��

Remark� The relational constraints are transparent to the user at the program�
ming level� However� any temporary state of a program is given in terms of these
newly created constraints�

Example �� A partially solved constraint of the form� S� �� S� �� S� �� S�

is stored using the set of delayed goals�

union�S�� S�� S����

inter�S�� S�� S����

S�� �� S���

� Practical Framework

��	���� Graduated constraints� cardinality and weight constraints

Graduated constraints deal with set variables and integer variables� Inferring the
partial consistency of these constraints might require re�ning the integer domains
or assigning a value to a set� Since graduations are not bijective functions� a
modi�cation of the integer domains is not a su�cient condition to require a set
domain re�nement� The pruning achieved by the following transformation rules
guarantees that ��� the values removed from the domains cannot be part of any
feasible solution� ��� if a solution exists� its value lies in the remaining set and
integer domains�

Consider the set cardinality constraint
�s� x� where s � d and x � 	m�n�� x is
an integer variable� We have�

T��� 	m�� n�� � 	m�n� � 	�glb�d�� �lub�d��
T��� d� � glb�d� if �glb�d� � n
T��� d� � lub�d� if �lub�d� � m

Figure ��� Transformation rules for the set cardinality constraint

The transformation rules for the weight constraint are similar� The only dif�
ference lies in the initial computation of the integer intervals�

Consider the weight constraint weight�s� y� where s � d� y � 	m�n� andP

ek�mk�� glb
d�mk � wglb and

P

ek �mk�� lub
d�mk � wlub� We have�

T���� 	m�� n�� � 	m�n� � 	wglb� wlub�
T���� d� � glb�d� if m � wlub

T���� d� � lub�d� if n � wglb

Figure ��� Transformation rules for the weight constraint

����� Constraint solver

The transformation rules described so far deal with individual constraints� The
constraint solver applies these rules to check�infer the consistency of an admissible
system of constraints in an incremental way� Incrementality refers to the nature
of the Conjunto solver which stores each newly consistent constraint and handles
the consistency of each constraint in conjunction with the constraint store�

Implementation of Conjunto ��

The algorithm� Let a tuple �c��s� denote a constraint c over a set of variables
designated by �s� The initial set of constraints to be considered is designated by G�
A list C which represents the constraint store contains all the constraints whose
consistency has been checked� The solver selects one constraint c at a time in G
and applies to it the adequate local transformation rule using a depth �rst search
strategy� Each constraint c is determined to be consistent if the transformation
rule infers consistent domains� This might require some domain re�nements and
consequently a need to reconsider some constraints in C whose variables intersect
with those in c� Such constraints are moved from C to G� This process describes
the data driven mechanism of the solver� The constraint c is then added to the
constraint store C and another constraint is selected in G� The last state of the
resolution is reached once no goal remains in G� or when a failure is encountered
�i�e�� at least one set domain 	a� b� or integer interval 	m�n� is such that a �� b or
m �� n�� The program returns the set of constraints C which are locally consistent�
The general schema of the algorithm is depicted in �gure ����

begin
Initialize G to the list of all the constraints in the admissible system
Initialize C to the empty list
while G is not empty do

begin
select and remove the �rst constraint �c��s� from G

apply the adequate transformation rule on �c��s� which returns �c� �s��

if �s� is inconsistent then
exit with failure

else if �s �� �s� then
begin

�s� �s�

for each �p��v� in C do

if �s� � �v �� � then
remove �p��v� from C and add it to G

end
add �c��s� to the end of C�

end
end

Figure �� General algorithm

 Practical Framework

This generic algorithm generalizes the complete algorithm we have described
in 	Ger��� by moving from the handling of a system containing only primitive
set constraints to a system containing any constraint allowed in the language�
This algorithm resembles the relaxation algorithm used by CLP�Intervals� sys�
tems 	LvE��� also referred to as �xed point algorithm in 	BMH��� 	Ben���� All
of those can be seen as an adaptation of the AC�� algorithm 	Mac

� where do�
mains are speci�ed by intervals� The only di�erence between the algorithms lies
in the transformation rules applied� The generic algorithm satis�es the following
properties of �xed point algorithms�

Theorem �� The algorithm always terminates�

Proof �termination� This comes from the fact that the domains are �nite and
only get re�ned� in the di�erent transformation rules� the new lower bounds are
computed by extending the former ones �union operation� and the upper bounds
are derived by intersecting or removing elements from the former ones� If an
inconsistency is detected� the algorithm terminates with failure��

Theorem �� If a solution exists� it can be derived from the simpli�ed system of
constraints�

Proof This follows directly from the monotony of the convex closure operators�

and the inferences performed in the transformation rules� Monotony guarantees
that the actual value of a set or integer lies in the approximated domains� The
transformation rules aim at removing values which can never be part of any
feasible solution� So all possible solution values are kept��

Complexity issues Let l be the size of G and e the size of C� The cost of
one transformation rule is bounded by O�d� �d being the largest �lub�s� �
�glb�s��� For one constraint the algorithm can be iterated at worst d� times if
d� � �lub�s�� �glb�s�� If these iterations are necessary for all the constraints
the worst time complexity is then O�ldd����

This time complexity does not occur in practice� On the one hand� if it occurs
this means the algorithm leads to a complete solution which is quite rare� On
the other hand� the constraints are not systematically reconsidered if some of
their variable domains get modi�ed� Indeed� the constraints are stored in various
suspension lists so as to avoid reconsidering them when there is no need to do so�
These lists are described below�

�They have been described in the formal part 	���	

Implementation of Conjunto ��

��	���� Suspension lists

Three di�erent lists are attached to each set variable� They are meant to improve
the time complexity and thus the e�ciency of the solver by splitting the list C
so that only those constraints concerned with the speci�c domain re�nement are
woken� Corresponding to each set variable si with domain di� each of the three
lists could contain the following goals�

� Qglb contains the primitive constraints for which a modi�cation of the lower
bound of di might require reconsidering the constraints� It contains only
constraints of the form si �� sj�

� Qlub contains the primitive constraints for which a modi�cation of the upper
bound of di might require reconsidering the constraints� It contains the
constraints of the form� sj �� si� si ��� sj� �and its symmetrical sj ���

si��

� Qany contains the remaining constraints for which any set domain modi�
�cation might require reconsidering them� In other words it contains the
relational constraints �relational forms of the set union� intersection and
di�erence operations� and the graduated constraints in which the variable
si appears�

In addition� the graduated constraints are also stored in the list of delayed
goals attached to the integer variables appearing in it� While graduated con�
straints are delayed only once� they are attached to two lists and thus might be
reactivated with respect to two di�erent conditions� This process establishes the
dynamic cooperation between the Conjunto solver and the �nite domain solver�
It guarantees that the partial consistency of a graduated constraint is always
maintained within a constraint system�

����� Execution of a Conjunto program� architecture

The Conjunto solver can be embedded in any logic�based language provided a set
of constraint solving facilities is given or can be de�ned� These facilities comprise
��� attributed variables or a similar structure which links a set variable to its do�
main and the required lists of delayed goals� ��� suspension handling mechanisms
to deal with delayed goals� ��� possibly a �nite domain library to tackle set based
optimization problems� Figure ���� presents the execution of a Conjunto program
together with the di�erent modules and functionalities required�

� Practical Framework

Simplified program

Conjunto solver

Computed solution

(Prolog engine +

 suspension handling)
 attributed variables +

Conjunto Program

Finite domain solver

(+ optimization)

Constraint platform

Labelling

Figure ���� Execution of a Conjunto program

�

Applications

Tout ce que vous faites maintenant

est acte de r�eve� pens�ee de r�eve�

Que vos r�eves soient toujours de plus en plus beaux �

Car tout deviendra r�ealit�e�

This chapter shows the applicability of the Conjunto language to the modelling
and solving of set based search problems� We describe how combinatorial search
problems can be modelled as set domain constraint satisfaction problems using
the Conjunto language� The focus is on the expressiveness and the e�ciency of the
language when dealing with search problems and optimization problems arising
from operations research and combinatorial mathematics�

��� Set domain CSPs

The modelling and solving of a set domain CSP follows the usual procedure
for CSPs which consists of the problem statement� the labelling procedure and
possibly the search for an optimal solution�

	���� Problem statement

The statement of a set domain CSP amounts to�

� Initializing the set variables by assigning a set domain to them�

� Stating the constraints� The constraints can be set constraints or graduated
constraints� The set constraints establish links between set variables� The
graduated constraints restrict the possible set of values a set could take
by applying a kind of measure to the set� The set cardinality constraint
is used to bound the cardinality of a set to a speci�c integer domain �or

�� Applications

possibly to an integer�� The weight constraint restricts the sum of the integer
values appearing in a set domain� These constraints might generate integer
variables which are not relevant for the �nal solution� but which take part
in the problem de�nition and particularly in optimization functions�

	���� Labelling

The labelling phase aims at �nding values for the distinguished set variables
	MR���� that is those which are part of the �nal solution� This can be done either
by using the pre�de�ned labelling procedure refine described in the practical
framework �cf� ��������� or by de�ning a new labelling procedure based on speci�c
labelling strategies� An e�cient set labelling procedure should not try to directly
instantiate a set to one of its domain elements� The reason is that by doing so� the
satisfaction of those constraints for which only a partial consistency is guaranteed
is reached in a passive way� The best method in terms of active use of �graduated�
constraints is based on incremental set domain re�nements by adding one by one
elements to the lower bound of the set domain �or possibly by removing elements
from the upper bound�

	���� Optimization

The concept of optimality is related to the notion of minimizing or maximizing
a cost function� This function necessarily denotes a measure� takes as input an
arithmetic expression and returns an integer value� Possible cost functions asso�
ciated with a set domain CSP are the sum of the set cardinality values� the sum
of the weights� etc� Such a function constrains the sets via their associated mea�
sure and consequently no speci�c optimization predicate is required to deal with
sets� The user can make use of existing predicates developed for integer domain
CSPs with an optimization criterion� One of these predicates used in a subsequent
application �set partitioning�� performs the branch and bound search�

The predicate min�max�Goal� Cost� searches for a solution to the goal Goal
that minimizes the value of the linear term Cost using the branch and bound
method from operations research 	PS���� As soon as a partial solution to Goal is
found whose cost is worse than the previous solution the search is not explored
any further and a new solution is searched for�

Another predicate is often used to minimize the cost of a solution within
a �xed range� min�max�Goal� Cost� Min� Max� Percent�� This predicate also
makes use of the branch and bound method with some restrictions� It starts with
the assumption that the value Cost to be minimized is less than or equal to

Modelling facilities 	�

Max� As soon as a solution is found whose minimized value is less than Min� this
solution is returned� When one partial solution is found� the search for the next
better solution starts with a minimized value Percent # less than the previous
one�

The use of these predicates in a set domain CSP requires the de�nition of
Goal as a set labelling procedure call� plus a graduated constraint whose integer
value is Cost� The solving of min�max���� will execute the labelling procedure
and incrementally re�ne the integer domain involved in the graduated constraint�
Once all the sets are labelled the integer domain becomes one value �the cost�
which can be evaluated� The optimization process will then constrain the integer
variable appearing in the graduated constraint to have its value in a new domain
whose upper bound is lower than the cost previously computed�

��� Modelling facilities

The two problems presented in this section come from the areas of combinatorial
mathematics 	Lue��� and operations research� The �rst one �the ternary Steiner
problem� is to �nd a speci�c hypergraph whose nodes are integer variables� Our
approach illustrates how an hypergraph whose nodes are integer variables can be
modelled as a simple graph whose nodes are set variables� The second problem
is a set partitioning problem usually represented by mathematical models and
solved using integer linear programming techniques� Here it is modelled as a set
domain CSP�

	���� Ternary Steiner problem

The ternary Steiner problem has its origins in combinatorial mathematics� It be�
longs to the class of block theory problems which deal with the computation of
hypergraphs� A hypergraph is a graph with the property that some arcs connect
collections of nodes� This problem has only recently been addressed in computer
science� 	Bel��b� addresses this problem for the �rst time� The approach consists
in representing the problem as an integer domain CSP in a constraint logic pro�
gramming �CHIP 	DSea����� using the new concept of global constraints� The
integer domain CSP modelling corresponds to the hypergraph representation�
the integer variables represent the nodes and the global constraints represent the
hyperarcs�

�� Applications

Problem statement The statement is taken from �Bel��b�� A ternary Steiner
system of order n is a set of T � n	n�
��� triples of distinct elements in f
� ���� ng
such that any two triples have at most one element in common� The mathematical
properties of this problem prove that n modulo � has to be equal to
 or �LR����
One solution of Steiner � is for example�

f
� �� �g� f
� � �g� f�� � �g� f� �� �g� f�� �� �g� f
� �� �g� f�� �� �g

The integer domain CSP modelling or hypergraph representation uses three
nodes� or variables� ranging over f
� ���� ng to represent a triple fX�Y�Zg� The
constraints are 	
� ordering constraints between the three nodes 	X � Y � Z� so
as to remove equivalent triples under permutations of the elements� 	��� any triple
must have at most one element in common with the other triples of nodes� This
amounts to constraining each pair of a triple to be pairwise distinct from any other
pair appearing in another triple� This requires constraining all the n	n�
� possible
pairs 	� per triple �X� Y� Z�� �X�Y�� �Y�X�� �X�Z�� �Z�X�� �Y�Z�� �Z�Y�� to be pairwise
distinct� This approach is sound but far too costly in variables and constraints�
A global constraint all�pair�diff has been de�ned in �Bel��a��Bel��b� to free
the user from specifying all the pairwise distinct pairs�

If each set of three nodes� describing a triple� can be represented as one vari�
able� then the hypergraph corresponds to a graph� This allows the modelling to
be simpler and to require less variables� Such a modelling corresponds to a set
domain CSP approach�

Problem modelling Modelling the problem as a set domain CSP involves
representing each triple as one set variable� Let Si�
 � i � T denote the T
set variables which represent the triples� Their domains are initialized to the set
domain �����������n�	�

The constraint �any two triples have at most one element in common� is
simply represented by�
� Si � Sj� �� �� The constraint generation is summed
up in the short program�

constraints�Lsets� �� intersect�atmost���	��

card�all�Lsets� ��� intersect�atmost���S� �L	� ��

intersect�atmost��Lsets�� distinctsfrom�S�� L��

intersect�atmost��L��

card�all��	� N��

card�all��Set��LSets	� N� �� distinctsfrom��S� �	��

�Set�� N�� distinctsfrom�S� �S� � L	� ��

card�all�LSets� N��
�S � S�� C�� C �� ��

distinctsfrom�S� L��

Modelling facilities ��

card�all constrains the cardinality of each set variable in the list Lsets to
be equal to � The predicate intersect�atmost� generates the main constraint
to be satis�ed by each pair of triples�

Problem solving The resolution makes use of the labelling procedure
refine�S� for each triple S� If n � �� the �rst set is instantiated to f
� �� g�
Then the system tries to instantiate the second set by �rst adding the element

to its lower bound� This domain re�nement requires reconsidering the constraint

�S� � S�� C�� C �� �� This results in a re�nement of the domain of S� by a
removal of the values � and from the upper bound of its domain� At this stage
in the resolution� the re�ned domains are�

S� � �������� S� ��� ����������������	�

�S��S��S��S��S�	 ��� �������������	�

Computation results The problem was solved in ��� sec on a Sun���� for
n � �� Six choice points were created during the solution step� Beldiceanu �Bel��b�
says that �
 choice points were generated and ���� sec were su�cient to solve the
problem� This di�erence in choice points and time was surprising� Unfortunately
the global constraint and the program developed were not available and so� in
order to make a sound comparison� we developed the same program as described
in the paper using the ECLiPSe integer domain library� The choice points and
the time required were then similar to the Conjunto approach� but the program
was much less natural�

The complexity of this problem grows exponentially with n� In �Bel��b� the
problem has not been tackled for larger values than �� Indeed� it turned out that
using the same program to solve the problem when n � � leads to a combinatorial
explosion� We de�ned a labelling strategy which consists in constraining each
element to belong to at most 	n �
��� triples� Indeed� there are at most n �

distinct pairs containing one element i and a triple containing i must contain � of
these pairs� In practice this labelling strategy corresponds to a simple occur check
before adding one element to a set domain� This does not help when n � � but for
n � � it reduced the number of choice points from �
�� to

� and consequently
the computation time from ��
 sec� to
� sec�

Remark� For one value of n there exists more than one solution� The search
for all the possible solutions requires us to take into account the symmetries
inherent to the problem i�e�� those which do not depend on the modelling� A
permutation of two sets does not change the actual solution but corresponds�
from a computational point of view� to new instances of the set variables� In fact�

�� Applications

the modelling of a search problem as a set domain CSP removes the symmetries
that come from an integer domain CSP approach� In the Steiner application�
the solving of the set domain CSP program led to a pruning of the search space
which is equivalent to that achieved by the global constraints� aiming at removing
local symmetries� Consequently� set constraints resemble some global constraints
in terms of problem solving and pruning ability� but to cope with this actual
symmetries of the problem a global reasoning on sets is necessary�

����� The set partitioning problem

The set partitioning problem �GM��� is an optimization problem that comes from
operations research� Consider a mapping from a set of elements to a collection of
equivalence classes each of which contains a subset of these elements� and has a
speci�c cost� The objective is to �nd a subset of the classes such that they are
all pairwise disjoint� each element is mapped onto exactly one class and the total
cost of the selected classes is minimal� The set partitioning problem resembles the
set covering problem� but it is more complex because the disjointness constraints
do not guarantee that a feasible solution exists�

This problem is currently tackled as a ��
 integer linear programming problem
using the following mathematical model�

minimize 	c � x�� 	aij� x � em

where c is a cost vector
 � n� 	aij� is an m � n known matrix comprising � and

values� x is an n �
 vector of ��
 variables and em is a vector of m entries equal
to
� We have�

�i � Dom��j � f
� ���� ng� aij �

�

 if i � Sj �
� otherwise

Each equivalence class is denoted by a set Sj�

Example �� A ��� modelling corresponds to the following system of constraints�
min c�x� � c�x� � c�x� � c�x� � c�x� � c�x�

x�� x�� x� �

x�� x�� x�� �

x�� x�� x� �

x�� x�� x� �

x�� x� �

Modelling facilities ��

Each column represents an equivalence class� Each line refers to one element
in f
� ��� �g� The equality constraints specify that an element can belong to exactly
one equivalence class�

Problem statement The mathematical statement of the problem is depicted
here in terms of relations and set constraints� Consider a mapping R from Dom
to Ran which is constrained to be an application� Let the DS�domain be Dom �
f
� �� ����mg and the AS�range be a family Ran of n subsets of Dom such that
Ran � fS�� ���� Sng where each Sj is an equivalence class 	a ground set� and��

j�f��������ng

Sj � Dom

A subset P� of Ran is a partition of Dom if and only if�

�
j�f��������ng

Sj � Dom
�

�Sj� Sk � P�� Sj � Sk � �

A cost set Sc is associated to the elements Si of Ran by considering a weighted
set composed of elements 	Si� wi�� The �nal problem is to determine a partition
P � such that� X

i

wi is minimal

This statement corresponds to the approach used with the Conjunto language�

Problem modelling Let a relation R on the ground sets Dom and Ran be
constrained to be an applicative mapping� Each successor set is constrained to
be a subset of the proposed sets� These constraints are not su�cient to solve the
problem� Two other requirements are necessary�

� the �nal set P � of equivalence classes should contain only disjoint sets�

� an instantiated successor set should also represent the successor set of all
its predecessors�

This corresponds to adding two constraints which will be checked using the
forward checking inference rule 	i�e�� once a successor set becomes ground�� In�
formally� as soon as one successor set succ	R� i� fskg� becomes ground we must
have�

�j � Dom� succ	R� j� sj�

�
if j � sk� sj � fskg
if j �� sk� sj � fskg � �

	
�

These constraints correspond to the program�

�� Applications

disj�or�eq��R� �Dom� �	��

disj�or�eq�R� Dom� �S � LSuccs	� ��

�set�S�� S � �Eq�

��

iterate�Eq� E� �succ�R�E� �Eq�����

Diffset �� Dom Eq�

succ�R�F�Sf��

iterate�Diffset� F� �Eq notin Sf��

�

delay�disj�or�eq�R� �S	�� S� glb���

�� the constraint is delayed and woken when the lower bound of S

gets modified ��

disj�or�eq�R� Dom� LSuccs��

disj�or�eq generates the constraints 	
� which should be satis�ed by each
successor set� It takes as input the application R� its domain Dom and the list
of all the successor sets �S � LSuccs	� The constraint disj�or�eq�R� �S	� is
delayed if the successor set S is not ground� and activated as soon as it becomes
ground� The iterate�S� E� Goal� predicate is an abbreviation for purposes of
clarity only� Its role is to apply to each element E in the ground set S the goal
Goal� At the implementation level� it transforms the ground set S into a list and
iterates over this list�

Example �� The statement of the above example using Conjunto corresponds to
the following set of constraints�

R bin�r ����������� ��� ��������������������� ���������������������

appl�R��

succ�R� �� S��� S� �� ����������������

succ�R� �� S��� S� �� ��������������

succ�R� �� S��� S� �� ������������������

succ�R� �� S��� S� �� ����������������

succ�R� �� S��� S� �� ����������������

�� each element i is mapped to a set Si whose domain contains the

possible equivalence classes �ie� those which contain i� ��

�� Note that columns � and � in the ILP modelling correspond here

to one equivalence class ���������

disj�or�eq�R� ������������ �S��S��S��S��S�	��

The search space associated to these problems is usually very large and simpli�
�cation rules are applied in order to reduce the initial problem size� An overview

Modelling facilities ��

of these rules can be found in �HP��� �Pad���� They consist in removing rows and
columns in the adjacency matrix formulation� This corresponds to removing� in
a deterministic manner� redundant sets from the successor set domains� and to
bounding some successor sets to the same variable� The main operations amount
to checking disjointness and�or inclusion of sets and to computing cliques over
the successor set domains�

The set of rules corresponds to the following sequences of computations� 	
�
compute the clique Ki in the associated intersection graph of R attached to each
element i in Dom� This means� for each successor set Si attached to i� collect all
the sets in Ran which have at least one element in common with each set in the
domain of Si� 	�� compute for each i � Dom the di�erence set Kin lub	succ	R� i��
which contains the irrelevant values and compute the union of all the di�erence
sets� 	� remove from the domain of each successor set Sj such that j �� i� the
values which are in the union set�

Example �� For i �
� we have S� �� ��������������� and the correspond�
ing clique is K� � ��������������� ��������� The elements removed from the
domain of S� are those in K� lub�S�� that is the set ��������

Problem solving One important strength of partial constraint solvers is
their dynamic behavior thanks to the delay mechanism� For example the re�
moval of the set ������� from the successor set domains makes it necessary
to reconsider the set cardinality constraint over S� and S� 	cf� appl�� The
system infers the two instantiations S� � �������� S� � ���������� From
these instantiations� the system activates the disj�or�eq constraint and infers�
S� � S� � S� � ���������� and S� � S� � �������� In this simple example�
the optimal and unique solution is found without any labelling procedure� The
costs of the various sets does not need to be taken into account�

A larger application has been developed� in which it is necessary to look for an
optimal solution using the predicate min�max�� and to consider a speci�c labelling
strategy� Both require considering an additional set variable which ranges over a
weighted set domain� This domain contains all the sets belonging to Ran with
their associated cost� Let Sw be this set� The weight constraint weight�Sw�C�

forms the basis in the minimization process� Additionally� the domain of Sw is
used in the labelling strategy� The strategy aims at selecting a set among the
remaining ones whose costs is the lowest�

The labelling procedure considers each successor set Si in order� The set E

with the lowest cost which belongs to Sw and to the upper bound of the domain
of Si is selected� and added to Si� A choice point is created and in case of failure

�� Applications

the program backtracks� The previous state is restored and the set E is removed
from the domain of Si�

labelling��	� ���

labelling��S� � LSuccs	� S� �� set�S��� ��

labelling�LSuccs� S��

labelling��S� � LSuccs	� S� ��

lub�S� Lub��

select�cheapest�S�� E� Lub��

�E in S�

�

E notin S���

labelling��S� � LSuccs	� S��

The optimization predicate for the set partitioning problem is�

min max		labelling	LSuccs� S�� take min	C��� C� Min� Max� ���

take�min�C� is an integer domain predicate which binds an integer term C
to its minimal value� C is the weight of the set variable S�

To solve the goal labelling�LSuccs� S�� take�min�C�� we �rst label all
the sets� instantiate the weight of the set domain of S to its minimal value and
then search for a better solution according to the criteria given�

Computation results A set partitioning problem describing a ��
 matrix of
size
�x
�� was implemented using the approach presented here� The complete
program takes � pages� The problem was taken from the Ho�man and Padberg
library �HP���� The heuristics led to a simpli�ed problem within � seconds and the
optimal solution was found within
 seconds� The proof of optimality required

additional seconds� The heuristics removed
 equivalence classes which enables
us to divide the number of choice points by �

As far as we know this is the �rst time a set partitioning problem was modelled
concisely� and solved with reasonable e�ciency within a logic�based language
using constraint satisfaction techniques� A modelling using integer domains 	��
�
has be tried� but the programmer gave up due to the di�culties he encountered
in representing the heuristics�

On the one hand� the �exibility and conciseness of the Conjunto approach
is a strength compared with existing mathematical models� On the other hand�
constraint satisfaction techniques are not competitive when compared with global

E�ciency issues� A case study ��

methods like the simplex� For example� the system of Padberg et al� dedicated
to set partitioning problem solving solves this problem in less than one second�
While completing this work� it appeared to us that the set domain CSP approach
is promising when investigating feasibility issues that are problematic with the
simplex method� The simplex stops when the model is detected to be inconsistent
but it cannot detect the reasons for failure� The inherent incremental solving of
constraint satisfaction techniques can be of a great help� In addition� the parti�
tioning problem appears as a sub�problem in numerous real life applications 	eg�
timetables� bus line balancing�� which are currently solved using integer domain
solvers� While integer domain CSP are well suited to the scheduling constraints of
these problems� a set domain CSP can provide an easy way to tackle the partition�
ing constraints� The cooperation between the solvers is not a problem� provided
that the constraints which involve set and integer variables can be attached to
both� A real life application is worth considering�

��� E�ciency issues� A case study

The previous section illustrated the applicability of the system for dealing with a
large class of search problems involving sets� relations� graduations and optimiza�
tion criteria� The question is� �can a gain in expressiveness be combined with a
gain in e�ciency ��� From a pruning point of view� the one�to�one correspondence
between a set variable ranging over a set domain and a vector of ��
 variables
guarantees that if both sorts of variables are handled using the same labelling
procedure 	cf� refine�� the pruning will be exactly the same� If there is a gain�
it might therefore come from the saving in memory utilization and consequently
from the garbage collection time� This point is illustrated through an integer
linear programming optimization problem� the bin packing problem�

Problem description Bin packing problems belong to the class of set par�
titioning problems �GJ���� A multiset of n integers fw�� ���� wng is given that
speci�es the weight elements to partition� Another integer Wmax is given that
represents the weight capacity� The aim is to �nd a partition of the n integers
into a minimal number of m bins 	or sets� fs�� ��� skg such that in each bin the
sum of all weights does not exceed Wmax� This problem is usually stated in terms
of arithmetic constraints over binary variables and solved using various opera�
tions research or constraint satisfaction techniques over binary �nite domains� It
requires one matrix 	aij� to represent the elements of each set� one vector xj to
represent the selected subsets sk and one vector wi to represent the weights of
the elements aij� The cost function to be optimized is the total number of bins�

�� Applications

The mathematical formulation in ��
 CSP and set domain CSP is described
in the following �gure�

��
 CSP abstract formulation set domain CSP abstract formulation

Pm
j�� aij xj �
 for all i � f
� ��� ng s� � s� � fg� ��� � sn�� � sm � fg

s� 	 ���	 sm � f	
� w��� ��� 	n�wn�g
where�

xj � ���

�

 if sj � fs�� �� � skg
� otherwise

sj �� fg��f	
� w��� ��� 	n�wn�g

aij � ���

�

 if i � sj
� otherwise

Pn
i�� aij wi
 Wmax �j � f
� ����mg weight	i� wi� � wiP	glb
sj�

i�� weight	i� wi�
 Wmax �sj

Under these assumptions� the program to solve is to minimize the number of

bins�
minx� �

Pm
j�� xj minx� � �fsj j sj �� fgg

Problem statement Let P � f 	
� w�� � ���� 	i� wi�� ���� 	n�wn�g be a non empty
set of items i with a weight wi� The aim is to partition P into a minimal number
of N bins such that the sum of the wi in a computed subset of P does not
exceed a limited weight Wmax� A bin is represented by a set variable with initial
domain �fg� P �� The union of all bins should be equal to P � This is represented
using the all�union predicate� All the bins should be pairwise disjoint� which is
represented using the all�disjoint predicate�

pb�statement�N�Max�Sets� �� state�constraints�Sets� P� ��

pieces�P�� restrict�weight�Max�Sets��

make�sets�N�P�Sets�� all�disjoint�Sets��

state�constraints�Sets�Max�P�� all�union�Sets�P��

make�sets����Plub��	�� restrict�weight��M��	��

make�sets�N�Plub��Set� Sets	��� restrict�weight�Max��S� Sets	� ��

Set ��� ����Plub	� weight�S�W��

N� is N � �� W �� Max�

make�sets�N��Plub�Sets�� restrict�weight�Max�Sets��

E�ciency issues� A case study ��

Problem solving The labelling procedure makes use of the �rst �t descending
heuristic� This heuristic sorts the elements 	i�Wi� in decreasing order of their
weight� Bins are then �lled one after another� which is more e�cient than �lling
all the bins in parallel� The optimization predicate is the classical one for packing
problems which initializes the number of bins N to the value weight	P ��Wmax
and increases it at each call of goal predicate in case of failure� The solution is
the �rst successful partition� This program was used to solve a large instance of
�� items partitioned into � sets� The optimal solution was found in about ��
seconds on a SUN �����

Experimental results and comparisons A comparative study was made
with a integer domain 	��
� formulation implemented using the �nite domain
library of ECLiPSe� For the encoding of sets and set constraints� we used re�
spectively lists of binary variables and arithmetic constraints on the variables
described previously� The arithmetic constraint predicates were handled using
the ECLiPSe solver� of arithmetic constraints over �nite domains� The ��
 in�
teger domain program was encoded so as to use the same �rst �t descending
heuristics and the same labelling procedure as the set domain CSP program� The
following array gives the results regarding time consumption together with space
utilization�

Criterion Conjunto program FD program
global stack peak 	bytes� ��� ��� � � ���
trail stack peak 	bytes�
�� ��� ���
�
garb� collection number �� ��
cpu time 	sec�� �
��
��
garb� collection time 	sec��
��
 ����

The two programs di�er in the data structure used� and thus in the constraints
applied to these data� The �rst point to note is that this di�erence has an im�
pact both on the space usage 	stack peaks�� and on the cpu time� The space
utilization comprises� among other stacks� the global stack and the trail stack�
The data structure is largely responsible for the growth of the global stack peak�
The di�erence in space utilization 	stack sizes� between the two approaches comes
from the set�like representation as a list of zero�one domain variables versus two
sorted lists in Conjunto� The lists of zero�one variables are never reduced because

�based on consistency techniques which perform a reasoning about variation domain bounds

or about variation domains� depending on the constraint predicate�
�the peak value indicates what the maximum amount allocated was during the session�

�� Applications

retrieving an element from a set corresponds to setting a variable domain to zero�
This is not the case with the set domain representation�

The trail stack is used to record information 	set domains or lists of zero�one
variables� that is needed on backtracking� The number of times the two program
execution backtrack is the same� so the di�erence comes from the amount of
information recorded�

The garbage collection number is the times garbage collections are performed
which is closely linked to the global and trail stack because the garbage collection
on both at the same time� Thus� the di�erence in the garbage collection number
comes again from the space utilization�

The di�erence between the cpu times is due �rst to the time needed for garbage
collection which is a direct consequence of the size of the global and trail stack�
and secondly to the time needed for performing operations on the data�

Pro�ling the cpu time consumption indicates that half of time spent in the FD
program resolution is the time needed for performing arithmetic operations on the
zero�one variables� The weight constraint applied to each set is one of the most
expensive computations� The weight constraint ai��w��ai��w�� ��� ain�wn

wmax which is woken each time an aij is set to
� consists of a Cartesian product of
two lists� In the Conjunto program� it consists in constraining the sum of weights
wi directly available from the elements 	i� wi� of a domain upper bound� Another
costly computation in the FD formulation� is the computation of the largest
weight not already considered for one set� This requires checking the value of the
zero�one variable� and if this value is one� considering the weight associated to
this variable� A weight is not considered if the corresponding domain variable is
not instantiated� In the Conjunto program� this computation corresponds to the
di�erence of the two bounds of a set domain� and the resulting set contains the
elements 	i� wi� which have not yet been considered� Computing this di�erence
is in fact the most time consuming step in the Conjunto program resolution�
because it is also performed when computing disjoint sets� but it represents half
of the cpu time consumption of arithmetic operations�

This application shows that set constraints together with set domains are
expressive enough to embed the problem semantics� and to avoid encoding the
information as lists of binary variables or handling additional data 	the list of
weights�� It also shows that consistency techniques for set constraints are e�cient
enough to solve combinatorial problems on sets�

Conclusion ��

��� Conclusion

In this chapter� we have shown how set based combinatorial search problems
coming from combinatorial mathematics and operations research can be modelled
and solved using Conjunto� The modelling is based on a set domain CSP approach
and the solving on constraint satisfaction and search techniques� The solving of
set�based optimization problems is possible thanks to the graduated constraints
	set cardinality and weight constraints� which map set terms onto quanti�able
terms�

With regard to an integer domain CSP� a set domain CSP approach con�
tributes transparency with respect to the mathematical de�nition of set problems�
and allows the user to go from a hypergraph to a graph representation� thus re�
ducing the number of variables and simplifying the constraint statement phase�
As far as e�ciency is concerned� the �rst application 	ternary Steiner problem�
showed that the solving of set constraint achieves a pruning identical to that
of global constraints� The cpu were also similar� This can be generalized to the
class of global constraints whose behaviour resembles that of set constraints� The
second application 	bin packing� showed that an e�cient set labelling procedure
in a set domain CSP� provides a pruning equivalent to the one of the labelling
procedure currently used for ��
 CSP problems �e�� assigning one by one to ��

variables from a boolean vector the value
 	or � in case of failure�� Consequently�
any ��
 CSP can be modelled more concisely using Conjunto with a possible
gain in e�ciency� The gain comes essentially from the time needed for garbage
collection which is more important in the ��
 CSP approach which uses a larger
amount of variables�

The last application 	set partitioning� makes us of the one�to�one correspon�
dence between a set variable ranging over a set domain and a ��
 vector which
allows us to model ��
 Integer Linear Programming 	ILP� problems as set domain
CSPs� The modelling of ��
 ILP problems as set domain CSPs in a constraint
logic programming language shows the programming facilities of logic program�
ming and enhances the class of CSPs� In particular� a CSP view of ��
 ILPs brings
�exibility to the modelling and can be useful when 	
� unpure ��
 ILP problems
are to be tackled� 	�� when their feasibility is problematical with ILP tools� 	�
and when small ��
 ILP problems are involved in some real CSP applications 	eg�
timetables� bus line balancing� etc��

�� Applications

Conclusion

Que chaque critique t��el�eve�

car tes possibilit�es s��elargissent avec elle �

Du matin au soir�

ne cesse pas d�appeler le Nouveau�

In this document� we have described the formal and practical framework of a
new constraint logic programming language over sets� Its design and implemen�
tation allowed us to tackle e�ciently set�based combinatorial search problems
with a natural and concise modelling� The word �natural� is referring to the
transparency of the modelling with respect to the mathematical formulation of
the problem� The language models set�based problems as set domain Constraint
Satisfaction Problems 	CSP�� and solves them using constraint satisfaction tech�
niques� On the one hand� the set domain CSP paradigm extends the standard
CSP paradigm to deal with partially ordered domains� On the other hand� we do
not lose the pruning power of constraint satisfaction techniques when applying
them over set and graduated constraints� The applications developed with the
Conjunto language showed its practical viability�

Today� the Conjunto solver is available as a library in the ECLiPSe platform�
developed at ECRC� An industrial interest for this solver has appeared while we
were implementing the system� Set constraints over set domains are now embed�
ded in the ILOG solver�

While our work has essentially aimed at solving applications� it has provided
us with a matter for a formal de�nition of the language� The formal framework dis�
tinguishes between the computation domain of the constraint logic programming
language� and the constraint domain over which the computations are actually
performed� These two levels of discourse are linked together by approximations
and closure operations� On the one hand� the user reasons on elements from the
computation domain� On the other hand� the constraint solver performs computa�
tions over elements from the constraint domain� Up to now� CLP	FD� languages
are de�ned as constraint logic programming languages� but their formal de�nition

�� Conclusion

is still based on the formal framework de�ned by Van Hentenryck that is� embed�
ding consistency techniques in logic programming� The formal description of the
Conjunto language can be used to give a formal de�nition of CLP	FD� languages
in the CLP framework� since both systems handle constraints in a similar way�

The applications that we have considered are operations research and com�
binatorial mathematics problems� However� those lasts years the notions of set
constraints and set domains have been set for other purposes as well�

Related work

A related line of work is program analysis systems �HJ�
� �AW��� �BGW��
�Aik��� among others� They handle a class of sets 	possibly in�nite sets� larger
than that of CLP	Sets� languages or Conjunto� and deal with set constraints of
the form s � s� where s and s� denote speci�c set expressions 	depending on the
system at hand�� The di�erent resolution algorithms are based on transformation
algorithms which preserve the consistency of the system either by computing a
least model �HJ�
� which does not preserve all solutions� or by computing a �nite
set of systems in solved form �AW���� In �BGW��� the authors demonstrated
that the latter algorithm takes non�deterministic exponential time� The di�er�
ence between these systems and the class of CLP	Sets� languages is that they do
not interpret set operations� However� they show the expressiveness of set con�
straints for the analysis of programs developed in logic programming� functional
programming� etc�

Another line of research which has some similar points with set domains is the
rough set theory� Rough sets have been introduced in �Paw��� �Paw�
� as a tool
for dealing with incomplete knowledge in applications from arti�cial intelligence
	decision systems� pattern recognition� approximate reasoning� etc��� In order to
reason on imprecise data in an information system� rough sets approximate the
data by a pair of sets similar to the set domain concept� The idea consists in repre�
senting an information system as a data table which contains partial information
about some objects in terms of attribute values� The row indices of the data ta�
ble contain the set of objects and the column indices� the list of attributes� The
attribute values intersect rows and columns to describe the partial information
which characterizes the objects� In general� any pair of objects in an information
system may have identical values for some attributes� Such similarities among
objects are re�ected by a relation called the �indiscernability relation�� It is an
equivalence class over the sets of objects 	called the universe�� This relation is
used to de�ne approximations of sets of objects from the universe� Two types of
approximations are de�ned� the lower and upper approximations� Each of these

Conclusion ��

approximations tells us whether a set of object can be characterized by a given
set of attributes� The lower approximation contains the set of objects which can
be de�nitely characterized by the attributes and the upper bound contain the set
of objects which might be characterized by the attributes� If some objects being
in the upper bound do not appear in the lower one� this means that they are
described by the same attribute values� and consequently can not be character�
ized by this set of attributes� The concept of rough sets di�ers from that of set
domains essentially in two points� On the one hand� rough sets derive approxi�
mations from an external parameter which is the class of attributes considered�
On the other hand� the approximations are not used to search for variable values�
but to answer the following questions� If a set of objects can not be characterized
in an information system can it be approximately characterized � Is the whole
knowledge necessary to describe an information system � To which extent can we
reduce it while keeping the initial information �

Further developments

Some issues are still open with respect to �what we did not do and remains to
be done�� We believe that some further research on applications and algorithms
is needed�

Applications The concept of graduated constraints helped us with tackling set�
based optimization problems� and studying the cooperation between two solvers
	Conjunto and integer domain solvers�� but the search space was de�ned with set
domains essentially� The Conjunto language has not been used so far to tackle
real life applications de�ned over a search space containing also integer domains�
Applications involving scheduling constraints and set constraints are still to be
developed� In particular� they would allow us to �gure out whether it is possible
or not to work on a mixed�search space� Time tables� bus line balancing� are some
of the applications�

Another point that has not been considered yet� is the use of the language
to deal with other application domains like databases� In recent years� linear
constraints and constraint solving techniques over tuples of relations have been
respectively embedded in constraint databases and query languages� The main
motivations are respectively 	
� to use constraints to model an in�nite number of
relations� 	�� to use consistency techniques 	mainly forward checking� for query
optimization� The former approach 	see �KKR���� considers linear constraints
to model some classes of databases 	e�g� in graphics�� In the latter approach� a

�� Conclusion

constraint in a database query is a condition that must be satis�ed by answers
to the query 	see �WBP����� One can think of using set constraints in the former
approach to model other sorts of databases� In the second approach set constraints
could be used to state queries over collections of tuples�

Algorithms Regarding the class of consistency methods we have been using�
we have essentially considered node and arc consistency techniques applied to
set and graduated constraints� It sounds interesting to go beyond this� to use
path consistency algorithms� and to take into account the latest researchs on the
topology of constraint graphs� Some issues might be di�erent from those already
established with respect to integer domain CSPs� In this respect� the study of the
ratio complexity�pruning is very important�

Future work

More work has to be done on extending the class of graduated constraints�
Currently they map set domains to integer domains� that is a partially ordered
structure to an ordered one� It could be interesting to consider mappings on two
partially ordered structures� for example from sets to real intervals or vice versa�
This would extend the expressivity and the application domain of the language�
This requires studying the formal properties of such mappings and the nature of
their closure which deal with elements from a powerset of convex parts� It also
requires studying their handling when using constraint satisfaction techniques� in
particular the degree of pruning achieved during the resolution is an important
issue with respect to a practical use of these mappings�

It would also be interesting to extend the set domain concept to that of lattice
domains� When solving set partitioning and Steiner problems we realized that if
lattice domains and lattice inclusion constraints had been provided� the handling
of a set of equivalence classes in the partitioning problem would have been eas�
ier� For example� considering the lattice domains ff
� g� f
� �gg and ff
� �� gg�
we have ff
� g� f
� �gg v ff
� �� gg� In addition� the global reasoning on the
Steiner problem can be achieved in a straightforward way� A solution to the
ternary Steiner problem modelled with lattice domains and constraints would
have been the value of a single lattice variable� and consequently the symme�
tries generated by possible permutations of triples disappear� A set of constraints
applied to variables ranging over lattice domains would ease the modelling and
solving of set based problems dealing with the search for equivalence classes� They
would model a set domain CSP as a lattice domain CSP� and thus add a higher

Conclusion ��

level of expressiveness with respect to set domains� On the one hand� the formal
framework corresponding to embedding lattice intervals in CLP can be derived
from the one we have presented� On the other hand� the practical framework re�
quires further works describing the algorithms and studying the trade�o� between
expressiveness and e�ciency�

�� Conclusion

Annexe A

The set domain library� user manual

We present the user manual of the set domain library which is currently available
in ECLiPSe� It does not comprise the mapping terms and constraints�

Conjunto is a system to solve set constraints over �nite set domain terms� It
has been developed using the kernel of ECLiPSebased on metaterms 	attributed
variables�� It contains the �nite domain library of ECLiPSe� The library con�
junto�pl implements constraints over set domain terms that contain herbrand
terms as well as ground sets� Modules that use the library must start with the
directive

�� use�module�library�conjunto�� or �� lib�conjunto��

For those who are already familiar with the ECLiPSeextension manual this
manual follows the �nite domain library structure�

Note� for any question or information request� please send an email to car�
men!ecrc�de�

A�� Syntax

� A ground set is written using the characters f and g� e�g� S �
f
� � fa� gg� f	��g

� A domain D attached to a set variable is speci�ed by two ground sets �
�Glbs� Lubs�

� Set expressions� Unfortunately the characters representing the usual set
operators are not available on our monitors so we use a speci�c syntax
making the connection with arithmetic operators�

� 	 is represented by ��

� � is represented by ��

� n is represented by

�� The set domain library� user manual

A�� The solver

The Conjunto solver acts in a data driven way using a relation between states�
The transformation performs interval reduction over the set domain bounds� The
set expression domains are approximated in terms of the domains of the set
variables involved� From a constraint propagation viewpoint this means that con�
straints over set expressions can be approximated in terms of constraints over set
variables� A failure is detected in the constraint propagation phase as soon as one
domain lower bound glbs is not included in its associated upper bound lubs� Once
a solved form has been reached all the constraints which are not de�nitely solved
are delayed and attached to the concerned set variables�

A�� Constraint predicates

	Svar ���
��Glb���Lub

attaches a domain to the set variable or to a list of set variables Svar�
If Glb �� Lub it fails� If Svar is already a domain variable its domain
will be updated according to the new domain� if Svar is instantiated
it fails� Otherwise if Svar is free it becomes a set variable�

set�	Term�

succeeds if Term is a ground set�

	S �� 	S�

The value of the set term S is equal to the value of the set term S��

	E in 	S

The element E is an element of S� If E is ground it is added to the
lower bound of the domain of S� otherwise the constraint is delayed�
If E is ground and does not belong to the upper bound of S domain�
it fails�

	E notin 	S

The element E does not belong to S� If E is ground it is removed
from the upper bound of S� otherwise the constraint is delayed� If E

Constraint predicates ���

is ground and belongs to the upper bound of the domain of S� it is
removed from the upper bound and the constraint is solved� If E is
ground and belongs to the lower bound of S domain� it fails�

	S �� 	S�

The value of the set term S is a subset of the value of the set termS�� If
the two terms are ground sets it just checks the inclusion and succeeds
or fails� If the lower bound of the domain of S is not included in the
upper bound of S� domain� it fails� Otherwise it checks the inclusion
over the bounds� The constraint is then delayed�

	S ��� 	S�

The domains of S and S
 are disjoint 	intersection empty��

all�union�	Lsets� 	S�

Lsets is a list of set variables or ground sets� S is a set term which is the
union of all these sets� If S is a free variable� it becomes a set variable
and its attached domain is de�ned from the union of the domains or
ground sets in Lsets�

all�disjoint�	Lsets�

Lsets is a list of set variables of ground sets� All the sets are pairwise
disjoint�

�	S�	C�

S is a set term and C its cardinality� C can be a free variable� a �nite
domain variable or an integer� If C is free� this predicate is a mean to
access the set cardinality and attach it to C� If not� the cardinality of
S is constrained to be C�

weight�	S�	W�

�� The set domain library� user manual

S is a set variable whose domain is a weighted domain� W is the weight
of S� If W is a free variable� this predicate is a mean to access the set
weight and attach it to W� If not� the weight of S is constrained to be
W� e�g�

S" �� �f	�� �g� f	�� �� 	
� ��g�� weight	S�W �

returns W �� ���

refine�	Svar�

If Svar is a set variable� it labels Svar to its �rst possible domain
value� If there are several instances of Svar� it creates choice points�
If Svar is a ground set� nothing happens� Otherwise it fails�

A�� Examples

A���� Set domains and interval reasoning

First we give a very simple example to demonstrate the expressiveness of set
constraints and the propagation mechanism�

�� lib�conjunto��

�eclipse �	� Car ��� ��renault�� �renault�bmw�mercedes�peugeot��

Type�french � �renault�peugeot� �

Choice �� Car � Type�french�

Choice � Choice���renault�� �peugeot� renault�	�

Car � Car���renault�� �bmw� mercedes� peugeot� renault�	�

Type�french � �peugeot�renault�

Delayed goals�

inter�s��peugeot� renault�� Car���renault���bmw�mercedes�

peugeot� renault�	�

Choice���renault�� �peugeot� renault�	��

yes�

If now we add one cardinality constraint�

Examples ���

�eclipse �	� Car ��� ��renault�� �renault� bmw� mercedes�peugeot�	�

Type�french � �renault� peugeot� �

Choice �� Car � Type�french�

�Choice� ���

Car � Car���peugeot� renault�� �bmw� mercedes� peugeot� renault�	�

Type�french � �peugeot� renault�

Choice � �peugeot� renault�

yes�

The �rst example gives a set of cars from which we know renault belongs to�
The other labels �renault� bmw� mercedes� peugeot� are possible elements
of this set� The Type�french set is ground and Choice is the set term resulting
from the intersection of the �rst two sets� The �rst execution tells us that renault
is element of Choice and peugeot might be one� The intersection constraint is
partially satis�ed and might be reconsidered if one of the domain of the set terms
involved changes� The cosntraint is delayed�

In the second example an additional constraint restricts the cardinality
of Choice to �� Satisfying this constraint implies setting the Choice set to
�peugeot� renault�� The domain of this set has been modi�ed so is the in�
tersection constraint activated and solved again� The �nal result adds peugeot

to the Car set variable� The intersection constraint is now satis�ed and removed
from the constraint store�

A���� Subset�sum computation with convergent weight

A more elaborate example is a small decision problem� We are given a �nite
weighted set and a target t � N � We ask whether there is a subset s� of S whose
weight is t� This also corresponds to having a single weighted set domain and to
look for its value such that its weight is t�

This problem is NP�complete� It is approximated in Integer Programming us�
ing a procedure which �trims� a list according to a given parameter� For example�
the set variable S ��� �fg� f	a�
���� 	b�
���� 	c� ��
�� 	d�
�
�g� is approximated
by the set variable S� ��� �fg� f	c� ��
�� 	d�
�
�g� if the parameter delta is ����
	���� � ��� n where n � �S��

�� lib�conjunto��

�� The set domain library� user manual

 Find the optimal solution to the subset�sum problem

solve�S�� Sum� ��

getset�S��

S� ��� ���� S	�

trim�S� S���

constrain�weight�S�� Sum��

weight�S�� W��

Cost � Sum � W�

min�max�labelling�S��� Cost��

 The set weight has to be less than Sum

constrain�weight�S�� Sum� ��

weight�S�� W��

W
�� Sum�

 Get rid of a set of elements of the set according to a given delta

trim�S� S�� ��

set�list�S� LS��

trim��LS� S���

trim���E � LS	� S�� ��

getdelta�D��

testsubsumed�D� E� LS� S���

testsubsumed��� �� �	� ���

testsubsumed�D� E� �F � LS	� S�� ��

el�weight�E� We��

el�weight�F� Wf��

�We �� �� � D��Wf

��

testsubsumed�D� F� LS� S���

F notin S��

testsubsumed�D� E� LS� S����

 Instantiation procedure

labelling�Sub� ��

set�Sub����

labelling�Sub� ��

max�weight�Sub� X��

�X in Sub

Examples ���

�

X notin Sub��

labelling�Sub��

 Some sample data

getset�S� ��

S � ��a������ �b������ �c����� ��d������ �e������ �f�����

�g������h�������

getdelta�������

The approach is the following� �rst create the set domain variable	s�� here
there is only one which is the set we want to �nd� We state constraints which
limit the weight of the set� We apply the �trim� heuristics which removes possible
elements of the set domain� And �nally we de�ne the cost term as a �nite domain
used in the min�max�� predicate� The cost term is an integer� The conjunto�pl
library makes sure that any modi�cation of an fd term involved with a set term
is propagated on the set domain� The labelling procedure re�nes a set domain
by selecting the element of the set domain which has the biggest weight using
max�weight�Sub� X�� and by adding it to the lower bound of the set domain�
When running the example� we get the following result�

�eclipse �	� solve�S� �����

Found a solution with cost ��

Found a solution with cost ��

�� backtracks

��������

S � ��f� ���� �g� ���� �c� ����� �e� �����

yes�

An interesting point is that in set based problems� the optimization criteria
mainly concern the cardinality or the weight of a set term� So in practice we
just need to label the set term while applying the fd optimization predicates
upon the set cardinality or the set weight� There is no need to de�ne additional
optimization predicates�

�� The set domain library� user manual

A�	 When to use set variables and con

straints���

The subset�sum example shows that the general principle of solving problems
using set domain constraints works just like �nite domains�

� Stating the variables and assigning an initial set domain to them�

� Constraining the variables� In the above example the constraint is just a
built�in constraint but usually one needs to de�ne additional constraints�

� Labelling the variables� i�e�� assigning values to them� In the set case it
would not be very e�cient to select one value for a set variable for the
size of a set domain is exponential in the upper bound cardinality and
thus the number of backtracks could be exponential too� A second reason
is that no speci�c information can be deduced from a failure 	backtrack�
whereas if 	like in the re�ne predicate� we add one by one elements to
the set till it becomes ground or some failure is detected� we bene�t much
more from the constraint propagation mechanism� Every domain modi�ca�
tion activates some constraints associated to the variable 	depending on the
modi�ed bound� and modi�cations are propagated to the other variables
involved in the constraints� The search space is then reduced and either
the goal succeeds or it fails� In case of failure the labelling procedure back�
tracks and removes the last element added to the set variable and tries to
instanciate the variable by adding another element to its lower bound� In
the subset�sum example the labelling only concerns a single set� Although
the choice for the element to be added can be done without speci�c criterion
like in the steiner example� some user de�ned heuristics can be embedded
in the labelling procedure like in the subset�sum example� Then the user
needs to de�ne his own refine procedure�

Set constraints propose a new modelling of already solved problems or allows
	like for the subset�sum example� to solve new problems using CLP� Therefore�
one should take into account the problem semantics in order to de�ne the initial
search space as small as possible and to make a powerful use of set constraints�
The objective of this library is to bring CLP to bear on graph�theorical problems�
thus leading to a better speci�cation and solving of problems as� packing and
partitioning which �nd their application in many real life problems� A partial
list includes� railroad crew scheduling� truck deliveries� airline crew scheduling�
tanker�routing� information retrieval�time tabling problems� location problems�
assembly line balancing� political districting�etc�

User�de�ned constraints ���

Sets seem adequate for problems where one is not interested in each element
as a speci�c individual but in a collection of elements where no speci�c distinction
is made and thus where symmetries among the element values need to be avoided
	eg� steiner problem�� They are also useful when heterogeneous constraints are
involved in the problem like weight constraints combined with some disjointness
constraints�

A�� User
de�ned constraints

To de�ne constraints based on set domains one needs to access the properties of
a set term like its domain� its cardinality� its possible weight� As the set variable
is a metaterm i�e� an abstract data structure� some built�in predicates allow the
user to process the set variables and their domains� modify them and write new
constraint predicates�

A���� The abstract set data structure

A set domain variable is a metaterm� The conjunto�pl library de�nes a metaterm
attribute

set with
setdom �
Glb�Lub� card� C� weight� W� del�glb� Dglb�
del�lub� Dlub� del�any� Dany

This attribute stores information regarding the set domain� its cardinality� and
weight 	null if unde�ned� and together with three suspension lists� The attribute
arguments have the following meaning�

� setdom The representation of the domain itself� As set domains are treated
as abstract data types� the users should not access them directly� but only
using built�in access and modi�cation predicates presented hereafter�

� card The representation of the set cardinality� The cardinality is initialized
as soon as a set domain is attached to a set variable� It is either a �nite
domain or an integer� It can be accessed and modi�ed in the same way as
set domains 	using speci�c built�in predicates��

� weight The representation of the set weight� The weight is intialized to zero
if the domain is not a weighted set domain� otherwise it is computed as soon
as a weighted set domain is attached to a set variable� it can be accessed and
modi�ed in the same way as set domains 	using speci�c built�in predicates��

� The set domain library� user manual

� del�glb A suspension list that should be woken when the lower bound of
the set domain is updated�

� del�lub a suspension list that should be woken when the upper bound of
the set domain is updated�

� del�any a suspension list that should be woken when any reduction of the
domain is inferred�

The attributes of a set domain variable can be accessed with the predicate
svar�attribute�� or by uni�cation in a matching clause�

get�attribute���set� Attr�� A� ��

�!��

nonvar�Attr��

Attr � A�

The attribute arguments can be accessed by macros from the ECLiPSe struc�
tures�pl library� if e�g� Attr is the attribute of a set domain variable� the del�glb
list can be obtained by�

arg	del�glb of set� Attr� Dglb�

or by using a uni�cation�

Attr � set with del�glb� Dglb

A���� Set Domain access

The domains are represented as abstract data types� and the users are not sup�
posed to access them directly� So we provide a number of predicates to allow
operations on set domains�

set�range�	Svar�	Glb�	Lub�

If Svar is a set domain variable� it returns the lower and upper bounds
of its domain� Otherwise it fails�

glb�	Svar�	Glb�

If Svar is a set domain variable� it returns the lower bound of its
domain� Otherwise it fails�

User�de�ned constraints ���

lub�	Svar� 	Lub�

If Svar is a set domain variable� it returns the upper bound of its
domain� Otherwise it fails�

el�weight���E� 	We�

If E is element of a weighted domain� it returns the weight associated
to E� Otherwise it fails�

max�weight�	Svar�	E�

If Svar is a set variable� it returns the element of its domain which
belongs to the set resulting from the di�erence of the upper bound
and the lower bound and which has the greatest weight� If Svar is a
ground set� it returns the element with the biggest weight� Otherwise
it fails�

Two speci�c predicates make a link between a ground set and a list�

set�list���S� 	L�

If S is a ground set� it returns the corresponding list� If L is also ground
it checks if it is the corresponding list� If not� or if S is not ground� it
fails�

list�set���L� 	S�

If L is a ground list� it returns the corresponding set� If S is also ground
it checks if it is the corresponding set� If not� or if L is not ground� it
fails�

A���� Set variable modi�cation

A speci�c predicate operate on the set domain variables�

When a set domain is reduced� some suspension lists have to be scheduled
and woken depending on the bound modi�ed�

NOTE� There are suspension lists in the conjunto�pl library� which are
woken precisely when the event associated with each list occurs� For exam�
ple� if the lower bound of a set variable is modi�ed� two suspension lists will

� The set domain library� user manual

be woken� the one associated to a glb modi�cation and the one associated to
any modi�cation� This allows user�de�ned constraints to be handled e�ciently�
modify�bound�Ind� 	S� ��Newbound�

Ind is a �ag which should take the value lub or glb� otherwise it fails
If S is a ground set� it succeeds if we have Newbound equal to S� If
S is a set variable� its new lower or upper bound will be updated� For
monotonicity reasons� domains can only get reduced� So a new upper
bound has to be contained in the old one and a new lower bound has
to contain the old one� Otherwise it fails�

A�� Example of de�ning a new constraint

The following example demonstrates how to create a new set constraint� To show
that set inclusion is not restricted to ground herbrand terms we can take the
following contraint which de�nes lattice inclusion over lattice domains�

S�incl S

Assuming that S and S� are speci�c set variables of the form S" ��
�fg� ffa� b� cg� fd� e� fgg�� S�" �� �fg� ffcg� fd� fg� fg� fgg�� we would like to de�ne
such a predicate that will be woken as soon as one or both set variables$ domains
are updated in such a way that would require updating the other variable$s do�
main by propagating the constraint� This constraint de�nition also shows that if
one wants to iterate over a ground set 	set of known elements� the transformation
to a list is convenient� In fact iterations do not suit sets and bene�t much more
from a list structure� We de�ne the predicate incl�S�S�� which corresponds to
the following program� The program is quite long� Extending the solver to bear
on lattice domains and constraints over lattices would add a lot of expressivity�

�� use�module�library�conjunto���

incl�S�S�� ��

set�S��set�S���

��

check�incl�S� S���

incl�S� S�� ��

set�S��

set�range�S�� Glb�� Lub���

��

Example of de�ning a new constraint ���

check�incl�S� Lub���

S � Glb� �� S�NewGlb�

modify�bound�glb� S�� S�NewGlb��

incl�S� S�� ��

set�S���

set�range�S� Glb� Lub��

��

check�incl�Glb� S���

large�inter�S�� Lub� SNewLub��

modify�bound�lub� S� SNewLub��

incl�S�S�� ��

set�range�S� Glb� Lub��

set�range�S�� Glb�� Lub���

check�incl�Glb� Lub���

Glb � Glb� �� S�NewGlb�

large�inter�Lub� Lub�� SNewLub��

modify�bound�glb� S�� S�NewGlb��

modify�bound�lub� S� SNewLub��

��set�S�� set�S���

�� true

�

make�suspension�incl�S� S����� Susp��

insert�suspension��S�S�	� Susp� del�any of set� set�

��

wake�

large�inter�Lub� Lub�� NewLub� ��

set�list�Lub� Llub��

set�list�Lub�� Llub���

largeinter�Llub� Llub�� LNewLub��

list�set�LNewLub� NewLub��

largeinter��	� �� �	��

largeinter��S � List�set	� Lub�� Snew� ��

largeinter�List�set� Lub�� Snew���

�contained�S� Lub��

�� Snew � �S � Snew�	

�

Snew � Snew�

��

check�incl���� �S� ����

� The set domain library� user manual

check�incl�Glb� Lub�� ��

set�list�Glb� Lsets��

set�list�Lub�� Lsets���

all�union�Lsets� Union��

all�union�Lsets�� Union���

Union � Union����

checkincl�Lsets�Lsets���

checkincl��	� �Lsets���

checkincl��S � Lsets	�Lsets����

contained�S� Lsets���

checkincl�Lsets�Lsets���

contained��S� �	� �� fail���

contained�S� �Ss � Lsets�	� ��

�S � Ss �� true

�

contained�S� Lsets��

��

The execution of this constraint is dynamic� i�e�� the predicate incl�� is called
and woken following the following steps�

� We check if the two set variables are ground set� If so we just check deter�
ministically if the �rst one is included 	lattice inclusion� in the second one
check�incl� This predicate checks that any element of a ground set 	which
is a set itself in this case� is a subset of at least one element of the second
set� If not it fails�

� We check if the �rst set is ground and the second is a set domain variable�
If so� check�incl is called over the �rst ground set and the upper bound of
the second set� If it succeeds� then the lower bound of the set variable might
not be consistent any more� we compute the new lower bound 	i�e�� adding
elements from the ground set in it 	by using the union predicate� and we
modify the bound modify�bound� This predicate also wakes all concerned
suspension lists and instantiates the set variable if its domain is reduced to
a single set 	upper bound � lower bound��

� We check if the second set is ground and the �rst one is a set variable�
If so� check�incl is called over the lower bound of the �rst set and the
second ground set� If it succeeds then the upper bound of the set variable
might not be consistent any more� The new upper bound is computed by

Set Domain output ���

intersecting the �rst set with the upper bound of the set variable in the
lattice acceptation large�inter and is updated modify�bound�

� we check if both set variables are domain variables� If so the lower bound
of the �rst set should be included in the lattice sense in the upper bound
of the second one check�incl� If it succeeds� then if the lower bound the
second set is no more consistent we compute the new one by making the
union with �rst sec lower bound� In the same way� the upper bound of the
�rst set might not be consistent any more� If so� we compute the new one by
intersecting 	in the lattice acceptation� the both upper bounds to compute
the new upper bound of the �rst set large�inter� The upper bound of the
�rst set variable is updated as well as the lower bound of the second set
modify�bound�

� After checking all these updates� we test if the constraint implies an instan�
ciation of one of the two sets� If this is not the case� we have to suspend
the predicate so that it is woken as soon as any bound of either set do�
main is changed� The predicate make�suspension�� can be used for any
ECLiPSemodule based on a meta�term structure� It creates a suspension�
and then the predicate insert�suspension��� puts this suspension into the
appropriate lists 	woken when any bound is updated� of both set variables�

� the last action wake triggers the execution of all goals that are waiting for
the updates we have made� These goals should be woken after inserting the
new suspension� otherwise the new updates coming from these woken goals
won$t be propagated on this constraint #

A� Set Domain output

The library conjunto�pl contains output macros which print a set variable as
well as a ground set respectively as an interval of sets or a set� The setdom
attribute of a set domain variable 	metaterm� is printed in the simpli�ed form of
just the �glb� lub� interval� e�g�

�eclipse �	� S ��� �����a�v�c�	� svar�attribute�S�A��

A � set with setdom � D�

S � S����� �a�c�v�	�

A � ���� �a�c�v�	

D � ���� �a� c� v�	

yes�

� The set domain library� user manual

A�� Debugger

The ECLiPSe debugger which supports debugging and tracing of �nite domain
programs in various ways� can just be used the same way for set domain programs�
No speci�c set domain debugger has been implemented for this release�

Index

DS � �
CD� ��
ECLiPSe� ��
refine	s�� ��

admissible system� ��
ALICE�
� ��
arc�consistency

algorithms� ��
de�nition� ��

attributed variable� ��

backtracking algorithm� ��
bin packing� ��

CLP�

constraint solving�

scheme�
�

CLP	FD�� �
CHIP�

CLP	Intervals�� �
CLP	Sets��
�

flogg� ��
CLP	%���
�
CLPS�
�

Conjunto� ��
applications� ��
implementation� ��
library� ��
program� �

program execution� ��
solver� �
� ��
syntax� ��

consistency notions� ��
arc� ��
node� ��

� Index

path� ��
constructs�
�
convex closure� ��� ��
convex set� ��
CSP� �

set domain� ��

execution model� ��

graduated constraint� ��� ��
consistency� ��
inference rules� �

graduation� ��� ��

Horn clause�

inference rules� ��
for graduated constraints� �
for set constraints� �

labelling� �� ��
lattices� �

mappings� ��

operational semantics� ��
optimization� ��

powerset� �
primitive constraints� ��� ��
programming facilities� ��
projection function� ��� �

relations� ��

satis�ability� ��
search techniques� ��

forward checking� ��
full lookahead� ��
partial lookahead� �

set� ��
cardinality� ��
data structure� ��
domain� ��� ��

Index ���

expression� ��� ��
interval� ��
term� ��� ��
variable� ��� ��

set constraint� ��
consistency notions� �

primitive� ��

set interval calculus� ��
set partitioning� ��
set uni�cation� ��
suspension list� ��
syntax� ��

ternary Steiner� �

transformation rule� ��

for set disjointness� �

for set inclusion� ��

weighted set domain� ��

�� Index

Bibliography

�Aik��� A� Aiken� Set Constraints� Results� Applications and Future Direc�
tions� In PPCP�	
� Principle and Practice of Constraint Program�
ming�
����

�AW��� Alexander Aiken and Edward L� Wimmers� Solving Systems of Set
Constraints� In IEEE Symposium on Logic in Computer Science�
June
����

�BC��� N� Beldiceanu and E� Contejean� Introducing Global Constraints in
CHIP� In Elsevier Science� editor� Mathematical Computation Mod�
elling� volume ��	
��� pages ��&
�� Pergamon�
����

�BDPR��� P� Bruscoli� A� Dovier� E� Pontelli� and G� Rossi� Compiling Inten�
sional Sets in CLP� In P� Van Hentenryck� editor� ICLP�	
� pages
���&����
����

�Bel��a� N� Beldiceanu� De�nition of Global Constraints� Internal Report
IR�LP������ ECRC� Munich Germany� Dec
����

�Bel��b� N� Beldiceanu� An example of introduction of global constraints in
CHIP� Application to block theory problems� Technical Report TR�
LP���� ECRC� Munich Germany� May
����

�Ben��� F� Benhamou� Interval Constraint Logic Programming� In A� Podel�
ski� editor� Constraint Programming� Basics and Trends� LNCS�
Springer Verlag�
���� to appear�

�BGW�� L� Bachmair� H� Ganzinger� and U� Waldmann� Set Constraints are
the Monadic Class� In Proceedings of the LICS�	��
���

�Bir��� G� Birkho�� Lattice Theory� volume �� of Colloquium Publications�
American Mathematical Society� Providence� RI�
���� Chapter I�

�BM��� M� Barbut and B� Montjardet� Ordre et Classi�cation� algebre et
combinatoire �� volume
� Hachette�
���� French�

�BMH��� F� Benhamou� D� MacAllester� and P� Van Hentenryck� CLP 	Inter�
vals� revisited� In ILPS�	
� pages
��&
�� Ithaca� NY� USA�
����

�� Bibliography

�BNST�
� C� Beeri� S� Naqvi� O� Shmueli� and S� Tsur� Set constructors in
a logic database language� In Journal of Logic Programming� pages

�
&��� Elsevier� New�York�
��
�

�BT��� F� Benhamou and Touraivane� Prolog IV� langage et algorithmes�
In Journ�ees francophones de la programmation logique� pages ��&���
JFPL$���
���� in French�

�Bun��� A� Bundy� A generalized Interval Package and its use for Semantical
Checking� In ACM Transaction on Mathematical Systems� chapter

� 	��� pages ��&����
����

�CKC�� A� Colmerauer� H� Kanoui� and M� Van Caneghem� Prolog� bases
th'eoriques et d'eveloppements actuels� T�S�I� �Techniques et Sciences
Informatiques�� �	�����
&

�
���

�CKPR�� A� Colmerauer� H� Kanoui� R� Pasero� and P� Roussel� Un syst(eme de
communication homme�machine en Fran)cais� tech� rep�� AI Group�
Universit'e d$Aix�Marseille II�
���

�Cle��� J�G� Cleary� Logical arithmetic� In Future Generation Computing
Systems� chapter �	��� pages
��&
���
����

�Coh��� J� Cohen� Constraint Logic Programming Languages� Communica�
tions of the ACM� 	�����&�
� July
����

�Col��� A� Colmerauer� Opening the prolog III Universe� In BYTE magazine�

����

�Col��� A� Colmerauer� An introduction to Prolog III� Communications of
ACM� 	�����&��� July
����

�CP��� Y� Caseau and Jean�F� Puget� Constraints on Order�Sorted Domains�
In ECAI�	
�
����

�DHS���� M� Dincbas� P� Van Hentenryck� H� Simonis� A� Aggoun� and F� Graf�
Applications of CHIP to industrial and engineering problems� Arti��
cial Intelligence and Expert Systems� June
����

�DOPR�
� A� Dovier� E� G� Omodeo� E� Pontelli� and G� Rossi� flogg� A Logic
Programming Language with Finite Sets� In ICLP�	�� pages

&
���
Paris� June
��
�

�DR�� A� Dovier and G� Rossi� Embedding Extensional Finite Sets in CLP�
In ILPS�	��
���

Bibliography ���

�DSea��� M� Dincbas� H� Simonis� and P� Van Hentenryck et al� The Constraint
Logic Programming Language CHIP� In FGCS� Japan� Aug�
����

�DSH��a� M� Dincbas� H� Simonis� and P� Van Hentenryck� Solving Large Com�
binatorial Problems in Logic Programming� Journal of Logic Pro�
gramming�
����

�DSH��b� M� Dincbas� H� Simonis� and P� Van Hentenryck� Solving the Car�
Sequencing Problem in Constraint Logic Programming� In ECAI�
Munich� Aug�
����

�ECR��� ECRC� ECLiPSe 	a� user manual� 	b� extensions of the user manual�
Technical report� ECRC� Jan
����

�Fik��� R� E� Fikes� Ref�arf� A system for solving problems stated as proce�
dures� Arti�cial Intelligence�
���&
���
����

�Flo��� R� W� Floyd� Nondeterministic algorithms� Journal of the Associa�
tion for Computing Machinery�
�	�����&���� Oct
����

�Fra��� R� Fraiss'e� Theory of Relations� volume

� of Studies in logic and
the foundations of mathematics� Elsevier Science�
����

�Fre��� E� Freuder� Synthesizing Constraint Expressions� In CACM� chap�
ter �
� pages ���&����
����

�Fre��� E�C� Freuder� A Su�cient Condition for Backtrack�Free Search� In
CACM� chapter
�� pages ��&��
����

�GB��� S� W� Golomb and L� D� Baumert� Backtrack programming� Journal
of the ACM�
�	����
�&����
����

�Gea��� G� Gierz and K�H� Hofman et al� A Compendium of Continuous
Lattices� Springer Verlag� Berlin Heidelberg New York�
���� Chapter
��

�Ger�a� C� Gervet� New structures of symbolic constraint objects� sets and
graphs� In WCLP�	�� Marseille� France� March
���

�Ger�b� C� Gervet� Sets and binary relation variables viewed as constrained
objects� In Workshop on Logic Programming with Sets� pages �&��
Budapest� Hungary� June
��� In conjunction with ICLP$��

�Ger��� C� Gervet� Conjunto � Constraint Logic Programming with Finite Set
Domains� In M� Bruynooghe� editor� ILPS�	
� pages �&���
����

�� Bibliography

�GJ��� M�R� Garey and D� S� Johnson� Computers and intractability� A guide
to the theory of NP�completeness� Victor Klee�
����
���
��

�GM��� M� Gondran and M� Minoux� Graphs and algorithms� Series in Dis�
crete Mathematics� Wiley�interscience� Great Britain�
����

�HD��� P� Van Hentenryck and M� Dincbas� Domains in Logic Programming�
In AAAI���� Philadelphia�PA�
����

�HD��� P� Van Hentenryck and M� Dincbas� Forward checking in Logic Pro�
gramming� In J� L� Lassez� editor� Proc� of the Fourth International
Conference on LP� May
����

�HD�
� P� Van Hentenryck and Y� Deville� Operational Semantics of Con�
straint Logic Programming over Finite Domains� In Proceedings of
PLILP�	�� pages ��&���� Passau� Germany� Aug�
��
�

�HDT��� P� Van Hentenryck� Y� Deville� and C��M� Teng� A generic arc�
consistency algorithm and its specializations� Arti�cial Intelligence�
�����
&�
�
����

�HE��� R� M� Haralick and L�G� Elliot� Increasing tree search e�ciency for
constraint satisfaction problems� In Arti�cial Intelligence� volume
��
pages ��&
�
����

�Hen�
� P� Van Hentenryck� Constraint logic programming� The Knowledge
Engineering Review� �	��
�
&
���
��
�

�Hib��� M� Hibti� D�ecidabilit�e et complexit�e de systemes de constraintes
ensemblistes� PhD thesis� Universit'e de Franche�Comt'e� Besan)con�

���� In French�

�HJ�
� N� Heintze and J� Ja�ar� A Decision Procedure for a Class of Set
Constraints� In Proceedings of the Sixth Annual IEEE Symposium on
Logic in CS� pages ��&��� July
��
�

�HLL�� M� Hibti� H� Lombardi� and B� Legeard� Deciding in HFS�Theory via
Linear Integer Programming with Application to Set Uni�cation� In
LPAR�	�� pages
��&
�
� St Petersbourg�Russia� July
���

�HLL��� M� Hibti� B� Legeard� and H� Lombardi� Decision Procedure for Con�
straints over Sets� Multi�sets and Sequences� Rapport de recherche
LAB�TRIAP����� L�I�B�� Besan)con�
����

�Hol��� C� Holzbaur� Metastructures vs� Attributed Variables in the Context
of Extensible Uni�cation� In PLILP�	�� pages ���&����
����

Bibliography ���

�HP��� K� L� Ho�man and M� Padberg� Solving Airline Crew�Scheduling
Problems by Branch�and�Cut� Technical Report ��� George Mason
and New York University� April
����

�HSD�� P� Van Hentenryck� V� Saraswat� and Y� Deville� Design� Implemen�
tation� and Evaluation of the Constraint Language cc	fd�� Technical
Report CS������ Brown university�
���

�Hui��� S� Le Huitouze� A New Datastructure for Implementing Extensions to
Prolog� In �nd Int� Work� Programming Languages Implementation
and Logic Programming� LNCS
��� pages
�&
���
����

�JL��� J� Ja�ar and J��L� Lassez� Constraint Logic Programming� In Pro�
ceedings of the �
th ACM Symposium on Principles of Programming
Languages� pages

&

�� Munich� Germany�
����

�JM��� J� Ja�ar and S� Michaylov� Methodology and Implementation of a
CLP system� In Fourth ICLP conference� pages
��&�
�� Melbourne�

���� ICLP�

�JM��� J� Ja�ar and M� J� Maher� Constraint Logic Programming� a Sur�
vey� In Journal of Logic Programming� chapter
�	���� pages ��&��
�

����

�JP��� B� Jayaraman and D�A� Plaisted� Programming with Equations� Sub�
sets� and Relations� In Lusk and Overbeek� editors� Proceedings of the
North American Conference� pages
��
&
���� Logic Programming�

����

�KKR��� P� C� Kanellakis� G� M� Kuper� and P� Z� Revesz� Constraint query
languages� In Proc� 	th ACM PODS� pages ���&
�
����

�KN��� D� Kapur and P� Narendran� Np�completeness of the set uni�cation
and matching problems� In CADE� pages ���&����
����

�Kow��� R�A� Kowalski� Predicate Logic as a Programming Language� IFIP�
pages ���&����
����

�Kup��� G� Kuper� Logic Programming with Sets� volume �
 of �� pages ��&���
Academic Press� New York and London�
����

�Lau��� J� L� Lauri(ere� A Language and a Program for Stating and Solving
Combinatorial Problems� Arti�cial Intelligence�
����&
���
����

�Lho�� O� Lhomme� Consistency Techniques for Numeric CSPs� In Proceed�
ings of the ��th IJCAI conference� IJCAI�
���

�� Bibliography

�LL�
� B� Legeard and E� Legros� Short overview of the CLPS System� In
Proceedings of PLILP�	�� Passau� Germany� Aug�
��
� rd Interna�
tional Symposium on Programming Language Implementation and
Logic Programming�

�LL��� B� Legeard and E� Legros� Test de satisfaisabilit'e dans le langage de
programmation en logique avec contraintes ensemblistes� CLPS� In
Actes des JFPL� pages
�&�� May
����

�LLLH�� B� Legeard� H� Lombardi� E� Legros� and M� Hibti� A Constraint Sat�
isfaction Approach to Set Uni�cation� In ��th International Confer�
ence on Arti�cial Intelligence� Expert Systems and Natural Language�
EC�� Avignon� France� May �����
���

�Llo��� J�W� Lloyd� Foundations of logic programming� Springer�Verlag�

����

�LR��� C�C� Lindner and A� Rosa� Topics on Steiner Systems� volume � of
Annals of Discrete Mathematics� North Holland�
����

�LS��� M� Livesey and J� Siekmann� Uni�cation of Sets and Multisets� Memo
seki����ii� University of St� Andrews 	Scotland� and Universit*at Karl�
sruhe 	Germany� Department of Computer Science�
����

�LS��� M� Livesey and J� Siekmann� Uni�cation of Sets and Multisets� In�
ternal report� Universitat Karlsruhe�
����

�Lue��� H� Lueneburg� Tools and fundamental Constructions of Combinato�
rial Mathematics� chapter II VIII X� pages &��
��&��� ���&���
Wissenschaftverlag�
����

�LvE�� J�H�M� Lee and H� van Emden� Interval Computation as Deduction
in CHIP� In Journal of Logic Programming� chapter vol
�� numb�
��� pages ���&���� Elsevier�
���

�Mac��� A� K� Mackworth� Consistency in networks of relations� Arti�cial
Intelligence�
����

�McG��� J� McGregor� Relational consistency algorithms and their applica�
tion in �nding subgraph and graph isomorphisms� In Information
Sciences� chapter vol�
�� pages ���&����
����

�MF��� A� K� Mackworth and E� C� Freuder� The complexity of some polyno�
mial network consistency algorithms for constraint satisfaction prob�
lems� Arti�cial Intelligence� ���
����

Bibliography ���

�MH��� R� Mohr and T� C� Henderson� Arc and path consistency revisited�
Arti�cial Intelligence�
����

�Mon��� U� Montanari� Networks of Constraints� Fundamental Properties and
Applications to Picture Processing� In Information Science� chapter
�	��� pages ��&
��
����

�MR�
� U� Montanari and F� Rossi� Constraint relaxation may be perfect�
In Journal of Arti�cial Intelligence� chapter vol ���� pages
�&
���
Elsevier�
��
�

�MR�� U� Montanari and F� Rossi� Constraint Logic Programming Selected
Research� chapter Finite Domain Constraint Solving and Constraint
Logic Programming� pages ��
&��
� MIT Press�
���

�Nad��� B� Nadel� Tree search and arc consistency in constraint satisfaction al�
gorithms� In Springer�verlag� editor� Search in Arti�cial Intelligence�
pages ���&���
����

�OB�� W� J� Older and F� Benhamou� Programming in CLP	BNR�+� In
PPCP�	��
���

�OPL��� A� OPLOBEDU� Charme� Un Langage Industriel de Programmation
par Contraintes� Avignon �	�
����

�OV��� W� Older and A� Vellino� Extending Prolog with Constraint Arith�
metic on Real Intervals� In IEEE Canadian Conference on Electrical
and Computer Engineering�
����

�Pad��� M� W� Padberg� Covering� Packing and Knapsack Problems� In
Annals of Discrete Mathematics� chapter volume �� pages ���&����
North�Holland Publishing company�
����

�Paw��� Z� Pawlak� Rough Classi�cation� In International Journal of Man�
Machine Studies� chapter Num � May� pages ���&��� Academic Press
London�
����

�Paw�
� Z� Pawlak� Rough Sets� Theoretical Aspects of Reasoning about
Data� D� System theory� Knowledge engineering and Problem solving�
Kluwer Academic Publishers�
��
�

�PPMK��� K� J� Perry� K� V� Palem� K� MacAloon� and G� M� Kuper� The Com�
plexity of Logic Programming with Sets� Computer Science�
����

�PS��� C� H� Papadimitriou and K� Steiglitz� COMBINATORIAL OPTI�
MIZATION� Algorithms and Complexity� Prentice�Hall�
����

�� Bibliography

�Pug��� J�F� Puget� Programmation par contraintes orient'ee objet� In Pro�
ceedings of Avignon� pages
��&
�� Avignon�
���� Avignon$���

�RM��� F� Rossi and U� Montanari� Exact Solution in Linear Time of Net�
works of Constraints Using Perfect Relaxation� In International Conf�
on Principles of Knowledge Representation� pages ��&���
����

�RM��� F� Rossi and U� Montanari� Constraint Relaxation as Higher Or�
der Logic Programming� In M� Bruynooghe� editor� META�	�� pages
��&
�
� Leuven�
���� Proceedings of the �nd workshop on meta�
programming in logic�

�Sch��� A� Schrijver� Theory of Linear and Integer Programming� Discrete
Mathematics� Wiley�interscience�
����

�SRP�
� V� Saraswat� M� Rinard� and P� Panangaden� Semantic Foundation
of Concurrent Constraint Programming� In ��th Symposium on Prin�
ciples of Programming Languages� pages &��� ACM�
��
�

�STZ��� O� Shmueli� S� Tsur� and C� Zaniolo� Compilation of set terms in
the logic data language 	LDL�� The Journal of Logic Programming�

�	
�����&

��
����

�Ull��� R� Ullman� Associating Parts of Patterns� In Information Control�
chapter �	��� pages ��&��
�
����

�Wal��� R� L� Walker� An Enumerative Technique for a Class of Combinato�
rial Problems� Amer� Math� Soc� Proc� Symp� Appl� Math��
���
&���

����

�Wal��� D� L� Waltz� The Psychology of Computer Vision� chapter Under�
standing line drawings of scenes of shadows� McGraw�Hill Book Com�
pany�
����

�Wal��� C� Walinsky� CLP	%��� Constraint Logic Programming with Regular
Sets� In ICLP��	� pages
�
&
���
����

�WBP��� M� Wallace� S� Bressan� and T� Le Provost� Magic Checking� Con�
straint Checking for Database Query Optimisation� Proceedings of the
�rst workshop on Constraints and Databases and their applications�
CDB�	��
���� To appear�

