Yves Cras

Mark Wallace Jean

Mark Wallace

P Ascal Brisset

Micha Meier

Joachim Schimpf

Qui M'

A Y V Es Deville

Ugo Gallaire

Montanari

Pierre Baptiste

Jean-Jacques Chabrier

Alexander Herold

Bruno Legeard

Yves Deville

Pascal Van Hentenryck

Fr Marc Andreoli

Ed Eric Benhamou

St Ephane Bres- San

Pascal Brisset

Gabriel Kuper

Fran Cois

Bob, Thom Axel-Frank Andr

par contraintes ont su pour me convaincre du devenir de ce projet. Qu'il en soit grandement remerci e.

Introduction

Ne corrige pas le mauvais, mais augmente le bon. 1Motivation Once u p on a time there was a big universe called a \universal set", formed b y the union of subparts or subsets. The least element of the universe was a black hole which was so dense that it could contain hardly anything. Subsets of the universe could contain arbitrary elements. A system built from this universe was based on various relations applied to the subsets. The satis ability of the system was a crucial issue, but it could be p artially ensured by the local consistency of the de ned r elations, and this could be done independently of the nature of the subset elements. This allowed u s t o r eason about the subsets of the universe at a reasonable cost. The powerset lattice is the mathematical term for the structure of this system.

This thesis proposes a new means to tackle set based combinatorial search problems in a constraint logic programming framework. The main contribution of the work is a new constraint logic programming language allowing set based constraint satisfaction problems to be modelled and solved in an elegant w ay. W e introduce the notion of set domain following the concept of nite integer domain Fik70]. The elements of a set domain are known sets containing arbitrary values, and the set domain itself represents a powerset. It is de ned as a set interval speci ed by i t s l o wer and upper bounds. The constraints of the language are built-in relations applied to variables ranging over set domains. The solver is based on an extension of constraint satisfaction techniques | originating in arti cial intelligence| to deal with set constraints.

Domains in CLP

Logic programming Kow74] CKC83] Llo87] is a powerful programming framework which enables the user to state nondeterministic programs in relational form. In the recent y ears, the concept of nite domain HD86] i.e., set of natural numbers, has been embedded in logic programming to allow for e cient tackling of combinatorial search problems modelled as Constraint Satisfaction Problems (CSP) Mac77]. A CSP is commonly described by a s e t o f v ariables ranging over a set of possible values (the domains) and a set of constraints applied to the variables. It is well know that combinatorial search problems are N P -complete PS82]. The solving of a CSP is based on constraint satisfaction techniques Mac77] MF85]. They are preprocessing techniques aiming at pruning the search space, associated to a CSP, before the search procedure (eg. backtracking) starts. There are two di erent uses of these techniques in logic programming coming from two distinct motivations. One consists in programming CSPs and constraint satisfaction techniques at a meta level, with respect to a logic programming language RM90] MR93]. This approach s h o ws how to use logic programming for solving CSPs and how to transform logic programs using constraint satisfaction techniques. The second aims at extending a logic-based language with constraint satisfaction techniques at the language level HD86]. This has led to the rst development of a Constraint Logic Programming (CLP) language on nite domains, CHIP DSea88] (Constraint Handling In Prolog). CHIP extends the application domain of logic programming to the e cient solving of combinatorial search problems. Typical examples are scheduling applications, warehouse location problems, disjunctive s c heduling, cutting stock, etc DSH88a] which come from arti cial intelligence or operations research. The success of CHIP prompted the development of new nite domain CLP languages, classi ed as CLP(FD) languages, but also raised the question of its limitations. Some of the limitations are concerned with the di culties CLP(FD) languages have to model and solve a class of combinatorial problems based on the search for sets or mapping objects. Set partitioning, set covering, matching problems are such c o m binatorial search problems. The main motivation of our work is to provide an elegant solution to this problem. So far, a nite domain CSP approach models a set either as a list of variables taking their value from a nite set of integers (x 1 ::: x n] x i 2 f 1 2 3 4g), or as a list of 0-1 variables (y 1 ::: y m] y i 2 f 0 1g). The rst approach requires the removal of order and multiplicities among the elements of the list, which i s a c hieved by adding ordering constraints (x 1 < x 2 < ::: < x n). Constraints over sets are modelled using arithmetic constraints. This is not natural, costly in variables, and this often makes the program non-generic. The second approach, based on the use of 0-1 variables, originates from 0-1 Integer Linear Programming (ILP) Sch 8 6] . I t m a k es use of the one-to-one correspondence which exists between a subset s o f a k n o wn set S and a boolean algebra. This correspondence is de ned by t h e c haracteristic function: f : y i ;! f 0 1g f (y i) = 1 i i 2 s 0 otherwise In other words, to each element i n S a 0 -1 v ariable is associated, which t a k es the value 1 if and only if the element belongs to the set s. This approach requires a l o t o f v ariables. In addition it does not ease the statement of set constraints such as the set inclusion, because the inclusion of one list into another requires considering a large amount of linear constraints over the 0-1 variables. This is not very natural, nor concise. To cope with this problem, two solutions have been proposed. One consists in de ning a class of built-in predicates, referred to as global constraints Bel90a] BC94], which allow for concise statement and global solving of a collection of constraints. One way t o a c hieve s u c h a global reasoning is to use operations research t e c hniques in a CLP setting. This approach aims both at providing a better pruning of the variable domains by taking into account several constraints at a time. It also extends the programming facilities of CLP(FD) languages to handle e ciently speci c problems such as the disjunctive s c heduling, the computation of circuits in a graph, etc. The second solution, presented i n this thesis, aims at extending the expressiveness of the language to embedding sets as objects searched for, and to provide set and mapping constraints for general purposes. This requires investigating how CLP languages based on sets tackle the set satis ability problem and how w ell expressiveness can be combined with e ciency.

Sets in LP and CLP

Most of the recent proposals to embed sets as a high level programming abstraction assume a logic-based language as the underlying framework. This is a result of the declarative nature of logic programming which c o m bines well with set constructs, and from its nondeterminism which is suitable for stating setbased programs. For instance, a pure logic programming language is adopted in BNST91] Kup90] DOPR91] STZ92], an equational logic language in JP89], and a CLP language in Wal89] LL91] DR93] BDPR94]. Constraint Logic Programming (CLP) languages dealing with sets, CLP(Sets), are de ned as instances of the CLP scheme JL87] over a speci c computation domain describing the class of allowed sets and set constructs. CLP combines the positive features of logic programming with constraint solving techniques. The concept of constraint solving replaces the uni cation procedure in logic programming and provides, among others, a uniform framework for handling set constraints (eg. x 2 s s s 1 s= s 2).

The various CLP(Sets) languages aim at modelling and prototyping set based problems in a natural and concise manner. They deal with extensional sets dened by a set constructor (eg. fxg S, fx 1 ::: x n g) s u c h that the set equality is either Associative, Commutative and Idempotent (A CI) LL91] or commutative and right-associative DR93]. These properties are de ned by axiomatizing a set theory. Regarding the set satis ability problem, it is N P -complete or even N Phard LS76] PPMK86] KN86] Hib95], depending on the class of axioms and predicates considered. In addition, the satisfaction of the ACI axioms introduces non determinism in the uni cation procedure itself. Each of these languages provides a sound and complete solver. This infers that the complexity of solving set problems in exponential and that the resolution procedure is equivalent t o a pplying an exhaustive search procedure when solving an N P -complete problem.

In LLLH93], variables in a set fx 1 ::: x n g can range over nite domains, and the solver makes use of consistency techniques to prune the domains. This prun-ing is rather weak since the satisfaction of the ACI axioms introduces another source of non determinism. This prevents us from pruning the search space before the search procedure starts. This lack of e ciency is not a limitation when we take i n to account the objective of these languages, namely dealing with theorem proving DR93] or combinatorial problem prototyping LL91], but it is a problem when from prototyping we m o ve to problem solving.

To a c hieve a better e ciency, the nondeterministic set uni cation procedure of constructed sets should be replaced by a deterministic procedure over sets represented as variables. In addition, sets should range over domains so as to make use of preprocessing techniques such as constraint satisfaction techniques. To a c hieve this, we propose a language which enables us to model a set-based problem as a set domain CSP |where set variables range over set domains|, and which tackles set constraints by using constraint satisfaction techniques. A set domain can be a collection of known sets like ffa bg fc dg fegg. It might h a p p e n that the elements of the domain are not ordered at all, and thus if large domains are considered, it is not possible to approximate the domain reasoning by a n interval reasoning as in some CLP(FD) systems. To cope with this, we propose to approximate a set domain by a set interval speci ed by its upper and lower bounds, thus guaranteeing that a partial ordering exists. This allows us to make use of constraint satisfaction techniques by reasoning in terms of interval variations, when dealing with a system of set constraints. The set interval fg fa b c d eg] represents the convex closure of the set domain above.

The strengths of handling intervals in CLP have recently been proved when dealing, in particular, with integers and reals. On the one hand, interval reasoning does not guarantee that all the values from a domain are consistent, versus domain reasoning. On the other hand, it removes at a minimal cost some values that can never be part of any feasible solution. This is achieved by pruning the domain bounds instead of considering each domain element o n e b y o n e . I n terval reasoning is particularly suitable to handle monotonic binary constraints (e.g. x y s s 1), where it guarantees the correctness properties of domain reasoning while being more e cient in terms of time complexity. in logic programming based on the interpretation of arithmetic expressions as relations. Such relations are handled by making use of projection functions and closure operations, which correspond to the de nition of transformation rules expressing each real interval in terms of the other intervals involved in the relation. These transformation rules approximate the usual consistency notions Mac77]. The handling of these rules is done by a relaxation algorithm which r e s e m bles the arc-consistency algorithm AC- 3 Mac77]. This approach prompted the development of the class of CLP(Intervals). A formalization of this approach i s g i v en in Ben95].

While CLP(Intervals) languages make use of constraint satisfaction techniques, they do not model CSPs because the solving of a problem modelled in a CLP(Intervals) language searches for the smallest real intervals such that the computations are correct. It guarantees that the values which h a ve been removed are irrelevant, but does not bound the real variables to a value. On the one hand, set intervals in constraint logic programming resemble the real interval arithmetic approach in terms of interpreting set expressions as relations and using interval reasoning to perform set interval calculus when handling the constraints. We make use of similar projection functions which are the only way to handle set expressions (e.g. s s 1 s\ s 1) as relations. We also approximate the set domain of a set expression by a convex interval. On the other hand, set intervals in constraint logic programming contribute to the de nition of a language which allows one to model and solve discrete CSPs in the CLP framework. In practice, this corresponds to providing a labelling procedure in order to reach a complete solution. Regarding optimization problems, it is necessary to allow the de nition of cost functions which necessarily deal with quanti able, i.e., arithmetic, terms. This requires the de nition of a class of functions, interpreted as constraints, which map sets to integers (e.g. the set cardinality), and a cooperation between two solvers (set solver and nite domain solver). These requirements di er from that of CLP(Intervals) languages where the completeness issue is still an open problem because of the in nite size of real intervals.

Short outline

Part I-Sets and Intervals in CLP languages. This part has three sections. Section 1 presents the constraint logic programming scheme and its operational model. Section 2 presents the class of CLP(Sets) languages, with a particular attention given to the relationship between their application domains and their constraint solvers. Section 3 surveys consistency notions and algorithms and describes their embedding into the class of CLP (FD) and CLP(Intervals) languages.

Part II-The Language. This is the central part of the dissertation. This part contains three main sections. Section 4 describes the formal framework of a constraint logic programming language over set domains. It comprises the description of the system, that is the constraint d o m a i n | o ver which set interval calculus is performed| and the operational semantics. Section 5 describes the CLP language over set domains, called Conjunto, which w e h a ve designed and implemented using the constraint logic programming platform ECL i PS e ECR94]. This section shows how constraint satisfaction techniques can be adapted to deal with constraints over set intervals using interval narrowing techniques. Section 6 presents applications developed in Conjunto. The applications illustrate the modelling facilities of the language and its ability to solve in an e cient w ay large problems. Comparative studies are made with nite domain CSP approaches.

Conclusion.

In this part, we give a n e v aluation of the results achieved, present the related lines of work, and discuss further possible research in terms of improving the current kernel and designing further extensions.

Part I Sets and Intervals in CLP Languages

Constraint Logic Programming

Constraint logic programming is a relatively new programming framework (1987) which aims at extending the applicability of logic programming to mathematical calculus (arithmetic calculus, set calculus, etc). Constraint logic programming de nes a class of languages CLP(X) parameterized by their computation domain X (eg. nite domains, reals, sets). This chapter describes the constraint logic programming scheme, the constraint solving paradigm, and gives a short overview of the computation domains which currently exist.

A logic-based language

A Constraint Logic Programming (CLP) language is a logic-based language Kow74] CKPR73] (cf. Prolog CKC83]) that is a nondeterministic programming language where procedures are de ned in a relational form. The syntax of a CLP program is that of a logic-based program based on a collection of Horn clauses Llo87].

De nition 1 A Horn clause is a disjunction of atoms with at most one nonnegated atom:

(Q 1 _ : P 1 _ ::: _ : P n) or (Q 1 P 1 ^::: ^Pn) where Q 1 and the P i are atoms and the variables appearing in the atoms are assumed t o b e universally quanti ed.

The declarative i n terpretation of a Horn clause corresponds to: Q 1 is true if P 1 :::P n are true A program goal is a clause of the form: G 1 G 2 : : : G n where the G i are atoms.

To distinguish atoms from constraint relations, a CLP program is formally de ned by a collection of rules of the form Q 1 C 1 ^::: ^Cn 3P 1 ^::: ^Pm where Q 1 is an atom, the P i are atoms and the C i are constraints. A goal is a collection of constraints and atoms, and corresponds to a rule without head, here without Q 1 .

The CLP scheme

The CLP scheme de ned by Ja ar and Lassez JL87] describes a formal semantics which subsumes logic programming. CLP de nes a class of languages parameterized by their computation domain. A CLP language is characterized by i t s computation domain, its set of allowed constraints, and its constraint s o l v er. The CLP scheme de nes the following properties to be satis ed by a constraint l o g i c programming language CLP(X) which is an instance of the scheme.

Let us consider the computation domain D and the set L of constraints. The structure (D, L) describes the constraint domain over which constraint solving is performed. This structure must have a compactness property which guarantees that every element from the underlying computation domain is nitely de nable using the constraints of the constraint domain. Consider a theory T which a xiomatizes some of the properties of constraints in L applied to elements from D. The formal semantics de ned in the CLP scheme describes the algebraic semantics of the language and its correspondence with the logical semantics. Ja ar and Lassez introduced new concepts to deal with the constraint domain structure and the theory which are the ones of solution-compact structure and a satisfaction complete theory.

De nition 2 A structure (D, L) i s solution-compact if every element in D is the unique solution of a nite or in nite set of contraints in L, and every element in the complement of the solution space o f a c onstraint c belongs to the disjoint solution space of some nite or in nite family c i of constraints.

The correspondence between the theory T and the computation domain D aims at ensuring that T and D correspond on the satis ability o f e l e m e n ts from L and that every unsatis able constraints in D is also detected by T . This is de ned by the three following conditions: D is a model of T .

for every constraint c 2 L D j = 9c i T j = 9c T is satisfaction-complete with respect to L if for every constraint c 2 L , c is either provably true or false T j = 9c or T j = :9c.

If we consider a CLP program P and a goal G, the logic programming inference mechanism searches for a substitution such t h a t G (possibly in nite set of instances) is a logical consequence of P. A CLP goal can also be seen as a logical consequence of a program, provided it is also a logical consequence of the theory T . Considering the C i as a conjunction of constraints, we h a ve:

P T j = 8(C 1 C 2 : : : C n) G)
The satisfaction-complete property of the theory plays a role in the completeness of the constraint solver. In practice it turns out that e cient constraint solving methods over certain structures cannot be combined with completeness of the solver. Indeed, as soon as the satis ability problem over a computation domain (eg. nite domains, sets) is an N P -complete problem, the special purpose constraint s o l v er will necessarily take exponential time to guarantee completeness of the satisfaction procedure. For e ciency reasons, some solvers achieve a partial constraint solving based on consistency techniques. These solvers will be subsequently described.

Recently, Saraswat et al. SRP91] proposed a generalization of the CLP scheme which de nes the framework of concurrent constraint programming. It is based on two operators ask & tell which correspond respectively to constraint e n tailment and contraint statement actions. This framework has been adapted by V an Hentenryck and Deville to formalize the incompleteness of some constraint solvers dealing with linear constraints over nite domains HD91] HSD93].

Constraint solving

CLP is a generalization of LP where uni cation |the basic operation of LP languages| is replaced by constraint s o l v i n g t e c hniques. With regard to the constraint solving mechanism of a CLP program, Colmerauer Col87] de ned a general operational semantics which establishes an analogy with the SLD-resolution procedure embedded in LP. The SLD-resolution takes as input a set of clauses. It uni es the expressions, stores a sequence of substitutions and returns as output the successful substitution. The resolution of CLP goals replaces uni cation by constraint solving and returns as output a set of satis able constraints. It can be de ned as a transition system on states comprising goals and constraints. Each transition rule can be interpreted as a rewriting process which d e r i v es a new state from the previous one. A solution is found when the nal state does not contain goals to be solved. In case the set of constraints is not satis able, the resolution fails.

One computation step of the constraint resolution procedure can be represented by analogy with one SLD-derivation step as follows. C C 1 are sets of constraints, G B sets of predicates (or terms) and a one predicate. It is depicted in the gure 1.1.

from C 3 G and a C 1 3 B infer C 2 3 (# G B) if merge (f" G = ag C 1 C) i n to C 2 " G represents the rst left atom in G, # G represents the remainder (cf. Coh90]) Figure 1.1 Constraint Solving: one resolution step
The merge function is the essential one in the solver. It checks that the new constraints related to the goal are satis able in conjunction with the current ones. If this new set of constraints is not satis able the procedure fails, otherwise it returns the simpli ed set of constraints. This approach w as originally de ned for the CLP language Prolog III Col87] Col90].

However this function, which e m beds two actions (satis ability c hecking and simpli cation process), can not be applied for constraint s o l v e r s t h a t o n l y e n s u r e partial constraint solving and make use of delay m e c hanisms (where a constraint is neither considered satis able nor simpli ed). Consequently, it can not be generalized to any special-purpose constraint s o l v er. Several operational models have been de ned for speci c constraint domains. Ja ar and Maher JM94] proposed a fairly general framework also based on the transition system on states, but which splits the merge function into several functions each o f w h i c h derives distinct transitions corresponding to a resolution (simpli cation), an addition of new constraints, a consistency checking, etc. It also distinguishes between active and passive constraints. The active constraints are those which can lead to simplications, and the passive ones are those which can only be checked, but might become active once they are completely solved.

Constraint domains

Various computation and more exactly constraint domains have b e e n i n vestigated in recent y ears, but only some of them will been mentioned here. A more detailed description can be found in JM94]. The most widely known are: Linear rational arithmetic (CHIP DSea88], Prolog III Col87], Prolog IV BT95]) and real arithmetic (CLP(R) JM87]). Their solvers are based on the simplex algorithm, generalized to take i n to account handling of disequations and incrementality of the solving. Boolean algebra (CHIP, Prolog III), whose solvers are based, respectively, on Boolean uni cation and on a combination of the SL resolution and saturation. Linear arithmetic over nite domains (CHIP and others), whose solver is based on consistency techniques. Real intervals (eg. BNR-Prolog OV90], CLP(BNR) OB93], Interlog Lho93], Prolog IV, ICHIP LvE93] Newton BMH94]) whose solvers adapt consistency techniques to perform interval reasoning. Set calculus (flogg DOPR91] DR93], CLPS LL91]) and regular sets (CLP() W al89]). These languages aim at guaranteeing the soundness and completeness of their respective s o l v ers. They deal with set constructs, and provide a collection of allowed set operations and constraints.

The last three constraint domains, which h a ve some common points with our work are presented in the next two sections.

2

Sets in CLP

Most of the recent proposals to embed sets as a high level programming abstraction assume a logic-based language as the underlying framework. It follows from to the declarative nature of logic programming, which w ell combine with set constructs, and its nondeterminism which is suited to stating set-based programs. This chapter describes the class of CLP(Sets) languages which e m bed sets in constraint logic programming. Particular attention is put into the description of the computation domains and the constraint s o l v ers of CLP() which deals with regular sets, flogg (reviewed from a LP to a CLP point of view) which axiomatizes a set theory and CLPS which aims at prototyping combinatorial problems using sets, multisets and sequences.

CLP() CLP() W al89

] represents an instance of the CLP scheme over the computation domain of regular sets. A regular set is a nite set composed of strings which are generated from a nite alphabet . CLP() has been designed and implemented to provide a logic-based formalism for incorporating strings into logic programming in a more expressive manner than the standard string-handling features (eg. concat, substring). A CLP() program is a Prolog program enriched with regular set terms and built-in constraints.

Operations on regular sets comprise concatenation R 1 :R 2 , disjunction or union R 1 + R 2 (i.e., R 1 R 2) and the closure operator R 1 which describes the least set R 0 such that R 0 = + (R 0 R 1). These operations allow us to build any regular expression when combined with the identity elements under concatenation (1) and union (). This language provides an atomic constraint o ver set expressions which i s t h e m e m bership constraint of the form x in e where x is either a variable or a string and e is a regular expression. For example A in (X: 00 ab 00 :Y) states that any string assigned to variable A must contain the substring ab.

Overview of the solver The constraint paradigm allows to replace the uni cation procedure by constraint solving in the computation domain. The satis ability of membership constraints over regular sets clearly poses the problem of termination. In the above example, if Y is a free variable there is an in nite number of instances for A. The solver guarantees termination by: (i) applying a scheduling strategy which selects the constraints capable of generating a nite number of instances, (ii) applying a satis ability procedure based on deduction rules which check and transform the selected atomic constraints. The non selected ones are simply oundered.

The selected constraints x in e are such that either e is a string or e is a variable and x a string. The conditional deduction rules over each of these constraints infer a new constraint or a simpli ed one if a given condition is satis ed. Each condition represents a possible form of selected set constraints. 0 B @ w = w 1 :w 2 1 `00 w 00

1 in e 1 2 `00 w 00 2 in e 2 1 C A and 1 `X1 in e 1 2 `X2 in e 2 ! 1 2 `00 w 00 in e 1 :e 2 X = (X 1 1):(X 2 2)] `X in e 1 :e 2

The i are idempotent substitutions, which means that given two substitutions 1 and 2 , 1 2 produces the most general idempotent substitution if one exists that is more speci c than the two previous ones.

Soundness and completeness of the deduction rules are guaranteed only if there are no variables within the scope of any closure expression e in addition to the criteria of constraint selection. This approach constitutes a rst attempt to compute regular sets by m e a n s of constraints like the membership relation. The complexity of the satis ability procedure is not given, but in nite computations are avoided thanks to the use of oundering.

CLPS

The CLPS LL91] LL92] language is a CLP language based on a three sorted logic. The three sorts correspond to sets, multi-sets and sequences of nite depth (eg. s = fffe agg c g is a set of depth three). The concept of depth is equivalent for each sort. Atomic elements can be any Herbrand term, arithmetic expression or integer domain variable. Set expressions are built from the usual set operator symbols (\ n #). Set variables are constructed either iteratively by means of the set constructor fxg s or by extension by grouping elements within braces (eg. fx 1 ::: x n g). The language also embeds nite integer domains and allows set elements to range over a nite domain. Sequences and multi-sets are built using, respectively, the constructors sqf:::g and mf:::g. Basic constraints (implemented in the language) are relations from f2 = = 2 6 = g interpreted in the usual mathematical way together with a depth (::) and a type checking operator. Note that set equality relation sould be associative, commutative and idempotent. These properties are speci ed by the ACI notation LS78].

The satis ability problem for sets, sequences and multisets is N P -complete LS76]. To cope with this, CLPS provides several methods whose use depends on the characteristics of the CLPS program at hand.

Overview of the solver The CLPS solver makes use of various techniques comprising: (i) a set of semantical-consistency rules, (ii) an arc-consistency algorithm of type AC-3 Mac77] combined with a local search procedure (forward checking) and (iii) a transformation procedure. The rules in (i) check the consistency of each set constraint with respect to homogeneity o f t ypes, depth and cardinality. F or example the system fxg = fy zg is semantically-consistent i f y = z.

A semantically-consistent system of set constraints is then solved in two stages. The solver rst divides the system in two independent subsets. One, written SC fd contains set constraints whose constrained sets are sets of integer domains variables. The other one, written SC v contains sets and set constraints where set elements are free variables or known values. The solver applies (ii) and (iii) respectively to check satis ability o ver SC fd and SC v :

A system SC fd is consistent if each of the set constraints it contains is arc consistent. This is achieved by removing all values from the domains of the set elements which cannot be part of any feasible solution. For example, the above system is consistent i f x 2 f 2 3g and y z] 2 f 2 3g. Completeness of the resolution is guaranteed by the labelling procedure which performs forward checking combined with the rst fail principle. It amounts to assigning a value to a set element from its domain and to inferring possible new domain modi cations. However, it might happen that due to the ACI properties of set equality, distinct selected values for the elements will generate identical values for the sets. This nondeterminism in the uni cation of constructed sets requires in the worst case an exponential number of choices to be made. The system x 1 ::: x n] 2 f 1 ::: mg fx 1 : : : x n g = f1 : : : m g corresponds to 2 n;m computable solutions.

A system SC v is satis able if its equivalent i n teger linear programming form is satis able. To c heck satis ability, the system provides a correct and complete procedure which transforms the set constraint system into an equivalent mathematical model based on integer linear programming HLL93]. This procedure consists in attening each set constraint and reducing the system of attened formulas to an equivalent system of linear equations and disequations over nite domain variables. The derived system is then solved using consistency techniques. The attening algorithm works by a d d i n g a dditional variables to reach forms from (x = y x2 y x= fx 1 : : : x n g x= y z x= y \ z x= y n z, etc.). The reduction to linear form is performed by associating to each set variable x i a new variable C xi which represents its cardinality and to each pair of variables (x i x j) a new binary variable Q ij denoting possible set equality constraints. If there are n constraints the complexity of the reduction procedure is in O(n 3) HLL94] Hib95].

The proposed solving methods are among the most appropriate for handling set constraints over constructed sets. They t the application domain of the language which aims at prototyping combinatorial search problem dealing with sets, multi-sets, or sequences. Unfortunately the nondeterminism in the uni cation of set constructs prevents an e cient pruning of the domains attached to set elements (in case they represent domain variables). The focus is put on the expressive power of the language rather than on the e cient solving.

flogg flogg DR93

] is an instance of the CLP scheme designed and implemented mainly for theorem proving. It embeds an axiomatized set theory whose properties guarantee soundness and completeness of the language. Set terms are constructed using the interpreted functors with and fg, e . g . with x with (with y with z) = ffz,yg,xg. The language includes a limited collection of predicates (2 = 6 = =

2) as set constraints. The axiomatized set theory consists of a set of axioms which describe the behaviour of the constructor with. F or example the extensionality axiom shows how to decide if two sets can be considered equal: v with x = w with y ! (x = y ^v = w) _ (x = y ^v with x = w) _ (x = y ^v = w with y) _9z (v = z with y ^w = z with x)

Using the axioms, a set of properties are derived describing the permutativity (right associativity) and absorption of the with constructor.

For example, the permutativity property is depicted by: (x with y) with z = (x with z) with y (permutativity)

Overview of the solver The complete solver consists of a constraint simplication algorithm de ned by a set of derivation rules with respect to each primitive constraint. A derivation rule for the equality constraint is, for example: h with ft n : : : t 0 g = k with fs m ::: s o g If h and k are not the same variables then select non-deterministically one action among: t 0 = s 0 and h with ft n ::: t 1 g = k with fs m : : : s 1 g t 0 = s 0 and h with ft n ::: t 0 g = k with fs m : : : s 1 g t 0 = s 0 and h with ft n ::: t 1 g = k with fs m : : : s 0 g h with ft n ::: t 1 g = N with s 0 N with s 0 = k with fs m ::: s 1 g otherwise select i in f0 : : : m g and apply one action from another set of rules. This non deterministic satisfaction procedure reduces a given constraint t o a collection of constraints in a suitable form by i n troducing choice points in the constraint graph itself. This leads to a hidden exponential growth in the search tree, since in the worst case all computable solutions have t o b e i n vestigated (if s 1 = s 2 and #s 1 = n, there are 2 n computable solutions). But completeness is required if one aims at performing theorem proving. Thus, there is no possible compromise here between completeness and e ciency.

A recent extension to the language introduces intensional sets in constraint logic programming BDPR94]. Allowing for set grouping capabilities, the intensional de nition is handled by reducing the set grouping problem to the problem of dealing with normal logic programs, i.e., programs containing negation in the body of the clauses.

Interval and domain reasoning in CLP

Two classes of CLP languages deal with variables ranging over intervals and/ornite domains. The class of CLP(FD) languages dealing with nite integer domains considers linear arithmetic over natural numbers as well as some symbolic constraints, provided that the variables take their value from a nite set of integers. They aim at modelling and solving constraint satisfaction problems in a constraint logic programming framework. The second class is that of CLP(Intervals) languages which d e a l w i t h r e a l i n terval arithmetic. The use of intervals is meant t o approximate real numbers so as to avoid rounding errors. This chapter describes these two classes of languages, whose solvers are based on consistency techniques.

Constraint satisfaction problems

Formally, a Constraint Satisfaction Problem (CSP) is a tuple <V,D,C> where:

V is a set of variables fV 1 : : : V n g, D is a set of domains fD 1 ::: D n g where D i is the domain associated to the variable V i , C is a set of constraints fC 1 : : : C m g where a constraint C j involves a subset of the variables.

The constraint set in a CSP is such that each v ariable appearing in a constraint should take i t s v alue from a given domain. The constraint set is often represented by a constraint n e t work whose nodes are the variables with their associated domains and whose arcs are the constraints. A CSP models N P -complete problems as search problems where the corresponding search space is represented by a Cartesian product space D 1 D 2 ::: D n of the domains (cf. Golomb GB65]).

Constraint satisfaction

The solution of a CSP is a set (or subset as noted in MR93]) of variables assigned to one value. The solving of a CSP amounts rst to applying a set of preprocessing methods referred to as consistency techniques and then applying some search t e c hniques or labelling procedure. Consistency techniques aim at pruning the search space before a standard search procedure like b a c ktracking is applied and thus at improving the average complexity of standard backtracking Wal60] GB65]. Consider a search tree as the abstract representation of an N P -complete problem where one branch i s a c o m bination of values. Backtrack programming Flo67] aims at computing a feasible solution (or all solutions) of such problems using an exhaustive searching process. This process explores all the branches and stops searching one branch a s s o o n a s i t e n c o u n ters a failure.

Formally, the backtracking algorithm aims at nding a solution speci ed by a v ector (x 1 x 2 ::: x n) with x i 2 D i such that it satis es a set of constraints represented by a \criterion function" (x 1 x 2 ::: x n). The solution vector might not be unique, and it may su ce to nd one such v ector or be necessary to nd all of them depending on the problem. The criterion function is usually two v alued (true or false). If a partial vector (x 1 x 2 ; ; ::: ;) is unacceptable, all possible solutions containing x 1 and x 2 can be ruled out without having to be considered individually. The search is stopped in this branch.

Non deterministic algorithms are convenient representations of systematic search procedures, but they turn out to be ine cient for large problems. Exhaustive s e a r c h combined with the thrashing1 phenomenon leads in the general case to computations that are exponential in the size of the Cartesian product of the domains. A solution to this problem consists in removing inconsistent v alues before any attempt is made to include them in the sample vector. This preprocessing step is achieved by consistency techniques.

The current consistency algorithms perform di erent degrees of preprocessing. Their behaviour amounts to going through the constraint n e t work in a nodedriven way and checking among other methods, the consistency of each n o d e (node consistency), of each arc (arc-consistency) Ull66] F i k 7 0] W al75] Mac77], of each p a t h o f l e n g t h t wo Mon74] Mac77] MH86], of each path of length k Fre78].

The de nitions of node, arc and path consistency are usually given for unary and binary constraints denoted, respectively, P k (x k) P ij (x i x j). This restriction does not prevent consistency techniques from being applied to n-ary constraints, since any n-ary constraint can be expressed in terms of binary ones. Let us recall the de nitions of node, arc and path consistency Mac77].

De nition 3 A n o de i is node consistent if and only if for any value x 2 D i , P i (x) is true.

De nition 4 An a r c (i j) is arc consistent if and only if for any value x 2 D i such that P i (x), there i s a v a l u e y 2 D j such that P j (y) and P ij (x y).

De nition 5 A path of length m through the nodes (i 0 i 1 : : : i m) is path consistent if and only if for any values x 2 D i 0 and y 2 D im such that P i 0 (x) P im (y) and P i 0 im (x y) hold, there i s a s e quence of values z 1 2 D i 1 :::z m;1 2 D i m;1 such that:

(i) P i 1 (z 1) and ... and P i m;1 (z m;1) hold, (ii) P i 0 i 1 (x z 1) and P i 1 i 2 (z 1 z 2) and... and P i m;1 im (z m;1 y) These de nitions can be generalized to the notions of node, arc or path consistency of a constraint network, which correspond to having every node, arc or path |in the corresponding directed graph| consistent.

Algorithms

The node consistency algorithm checks that, for each v ariable V i appearing in an unary constraint P i (V i), all the elements x in its domain D i satisfy the constraint P i (x). If some elements do not satisfy this constraint, they are removed from the domain D i . This algorithm is quite simple and requires a single pass through all the unary constraints (cf. Mac77]).

The various arc-consistency algorithms require more complex processing. They are based on the following observation (cf. Fik70]): if for some x 2 D i there i s n o y 2 D j such that P ij (x y) holds then x should be r emoved f r om the domain D i . This test should be done for each x 2 D i to conclude if one arc i s c onsistent or not. This test resembles the criterion function used in backtrack programming, but it di ers in that it does not ch o o s e a v alue x f o r a v ariable but it tests if this value is an acceptable one. Thus the assignment process is replaced by a test. The result of this action should be an answer to whether the domain D i has been modi ed. This action, depicted in the REV ISE((i j)) procedure in gure 3.1, is the kernel of current arc consistency algorithms.

procedure REVISE((i,j)): begin DELETE false for each x 2 D i do if there is no y 2 D j such that P ij (x y) then begin delete x from D i DELETE true end return DELETE end Figure 3.1 REVISE procedure REV ISE((i j)) returns the answer to whether a domain modi cation was required to infer arc consistency of a binary constraint. When the arc consistency of the constraint network is concerned, the process is more complicated. Indeed, checking an arc (j k) might require revisions of the domain of j and consequently, the as yet consistent arc (i j) m i g h t not be consistent a n ymore. Therefore, as opposed to the node consistency algorithm, arc consistency over a network can seldom be achieved in a single pass through all the arcs. At this point t h e v arious arc consistency algorithms proposed so far di er. The problem is to reconsider as few arcs as possible for complexity, a n d t h us for e ciency reasons. The various generic arc consistency algorithms developed so far are (the rst three have b e e n called AC-1 AC-2 AC-3 by Mackworth in MF85]):

AC-1 (embedded in the rst constraint system REF-ARF Fik70]). This is the simplest algorithm. It repeatedly passes through all the arcs each time one domain is revised until there is no ch a n g e o n a n e n tire pass. At this point the network must be consistent. This approach i s i n tuitive b u t obviously ine cient, because a single modi cation of the domain causes all the arcs to be revised, whereas only a subset of them might be a ected. AC-2 (based in spirit on Waltz's ltering Wal75]). Noting the weaknesses of AC-1, Waltz's idea was that arc consistency can be achieved in one pass over all the nodes by taking into account the order of the nodes covered and by ensuring that when a node i is considered in an arc (i j), all the arcs (g h) where g h i must have previously been made consistent. The crucial improvement i s t h a t w h e n a n o d e j is considered, all the arcs leading from it and to it may h a ve become inconsistent and must be revised again. Mackworth Mac77]). This approach m o ves from the node-driven reasoning of AC-2 to an arc-driven reasoning. All the arcs are stored in one queue and REVISE is applied to each of them sequentially. The basic idea consists in selecting and removing one arc (i j) from the queue, applying REVISE to it and if the answer is yes (D i modi ed) adding to the queue all those arcs f(k i)g that might need to be reconsidered. This algorithm is so far the principal one embedded in most constraint satisfaction solvers. Its description is given below.

AC-3 (proposed by

AC-4 (proposed by Mohr and Henderson MH86] and based on the techniques developed in the constraint satisfaction system ALICE Lau78]). While AC-3 is driven by arcs (i j), AC-4 reasons over arcs (i c) where i is a node and c an inconsistent v alue in the domain of i. I t m o ves from handling domains of variables (eg. D i D j) to dealing with inconsistent v alues associated to one domain. This comes together with the storing of a counter which represents the number of possible values of j such that for each v alue b 2 D i , (b j) holds. This counter, associated to each string (i j),b], is decremented each time an arc (e.g. (b c)) becomes inconsistent. The basic idea consists in handling the set of arcs f(i c)g for each c 2 D j as well as the number of values which are consistent with one speci c value. This approach leads to the optimal arc consistency algorithm with respect to time complexity. H o wever it might be costly in memory utilization due to the amount of information it has to maintain. AC-5 (proposed by V an Hentenryck and Deville HDT92]). In contrast to the previous algorithm, this one aims at reducing the time complexity b y considering the semantics of the constraints at hand. It distinguishes predicates according to their underlying properties (functional, anti-functional, monotonic, etc...). While AC-4 deals with arcs (i:c), AC-5 manipulates elements < (i j) v>where (i j) is an arc and v is a value removed from D j which requires reconsideration of (i j). Optimal procedures for the class of functional, anti-functional and monotonic constraints have been proposed. The speci c case of the monotonic constraints permits performing reasoning over the domain bounds only (assuming the domains are totally ordered). Like A C-4, AC-5 propagates unconsistent v alues, but instead of decrementi n g a c o u n ter attached to each p o s s i b l e v alue of one node it adds to the list of the elements all those which correspond to newly inconsistent arcs with respect to one value. The interesting point i n b o t h A C-4 and AC-5 is that only necessary information is propagated.

Complexity issues. Mackworth This time complexity can be reduced to O(ea) for the class of functional, anti-functional and monotonic constraints, and their generalization to piecewise functional, anti-functional and monotonic constraints (see HDT92] for the denition of piecewise decomposition of constraints).

The following AC-3 algorithm is the one upon which most improvements and variations of arc consistency algorithms have been performed. The set of arcs in the constraint graph G is marked by arcs(G) in gure 3.3.

begin

for i 1 until n do node consistency Q f (i j) j (i j) 2 arcs (G) i6 = jg while Q not empty do begin select and delete any a r c (k m

) from Q if REVISE ((k m)) then Q Q f (i k) j (i k) 2 arcs(G) i6 = k i6 = mg end end Figure 3.3 AC-3 algorithm
Other approaches toward e cient algorithms are based on the study of the topology of the constraint graph itself (see Fre82] Nad88] RM89]). But these methods have not been embedded so far in CLP solvers, possibly because of the particular properties of the constraint graph they require |which are seldom those of a CSP program.

Search T echniques

While consistency techniques aim at ltering the domains before starting the search, the search techniques embed various degrees of arc-consistency within a standard backtracking procedure. They correspond to the notions of forward checking, partial lookahead and full lookahead McG79] HE80]. The pruning achieved by these search techniques ranges between that of backtracking and that of arc consistency.

Consider the initial description of the backtracking process, based on a Cartesian product space D 1 D 2 ::: D n , a solution or sample vector (x 1 : : : x n) where x i 2 D i , and a criterion function to be satis ed (x 1 : : : x n). A step k in the computation is denoted (x 1 : : : x k ; : : : ;) which corresponds to having the partial state (x 1 : : : x k) locally consistent.

Forward checking. Whenever a value x k+1 is successfully added to the current state of the sample vector (x 1 : : : x k ; : : : ;) (i.e. we h a ve (x 1 ::: x k x k+1 ; ::: ;) = 1), the domains D k+1 : : : D n of all as yet uninstantiated variables are ltered to contain only those values that are relevant with this new instantiation. This can be represented by the rule: 8l 2 f k + 2 : : : n g8x l 2 X l such that (x 1 : : : x k x k+1 ; : : : ; x l ; ::: ;) = 1 If the domain of any of these uninstantiated variables becomes empty, the constraint fails and backtracking occurs. This method adds to standard backtracking a preprocessing step in which some irrelevant v alues are removed before they may be taken into account. These values will come only from the domain of each v ariable directly connected with x k+1 .

Full lookahead. Whenever a value x k+1 is successfully added to the current state of the sample vector (x 1 ::: x k ; ::: ;) the forward checking conditions must be satis ed and the domain of each v ariable |as yet uninstantiated| must be ltered, so that it should only contain those values which are relevant with respect to at least one value in all the domains of the variables they are connected with. This is described by the rule: 8 l 2 f k + 1 ::: ng 8 x l 2 X l such that: 8 m 2 f k + 1 ::: ng m 6 = l 9x m 2 X m which satis es (x 1 ::: x k x k+1 ; : : : ; x l ; : : : ; x m ; ::: ;) = 1 The full lookahead method performs less pruning than arc consistency algorithms because it performs one single pass through all the binary constraints. A consistent arc will never be reconsidered whatever new re nements of the domains of the variables involved may h a ve been performed.

Partial lookahead. This method has been introduced by Haralick HE80] to augment the ltering process achieved by the forward checking method. It acts some where in between forward checking and full lookahead. The basic idea is not to lter one X l by considering all the other variables as yet uninstantiated, but to consider only those that are ahead of X l , w h i c h falls as:

Constraint satisfaction in LP

The solving of CSPs using Logic Programming (LP) has been investigated from two di erent perspectives. One, proposed by M o n tanari and Rossi, aims at de ning a CSP as a logic program and de ning the constraint satisfaction or relaxation algorithm RM90] MR91] at a meta level. This approach s h o ws that modelling CSPs and consistency algorithms in LP is adequate. It also shows how logic programs can be transformed and simpli ed using relaxation algorithms. The second approach aims at providing a language enriched with programming facilities so as to solve search problems in a way transparent to the user. This approach w h i c h led to the class of CLP(FD) languages is presented here.

For a di erent purpose, constraint satisfaction techniques have been embedded in LP to deal with real intervals. This corresponds to the class of CLP(Intervals) languages based on approximations of reals using real intervals.

CLP(FD)

Van Hentenryck and Dincbas HD86] embedded constraint satisfaction techniques into logic programming by extending the concept of logical variable to the one of domain-variables which t a k e their value in a nite discrete set of integers.

The key idea is to introduce the domain concept inside logic programming. This requires extending the uni cation procedure to the case of domain variables, thus making it possible to handle constraints using consistency techniques as inference rules. In particular the search techniques (forward checking, lookahead and partial lookahead) have been embedded into logic programming as inference rules HD87]. The idea is that the way these techniques handle constraints can be applied locally to speci c constraints, thus allowing for the most appropriate solving method. For example, the partial look-ahead inference rule deals e ciently with arithmetic expressions involving a large amount o f v ariables. In practice this amounts to reasoning over domain bound variations. This has given birth to the rst nite domain constraint logic programming language CHIP (Constraint Handling In Prolog DSea88]). Constraints are arithmetic equations, inequalities and disequations over natural numbers as well as some symbolic constraints. This \clever" manipulation of constraints which leads to e cient pruning with respect to one constraint follows the basic idea of earlier solvers for CSPs like REF-ARF Fik70] and ALICE Lau78]. REF is a nondeterministic programming language accepted by the problem solver ARF. The solver is based on the notions of node and arc consistency. In ALICE, the constraints are expressed in a mathematical language based on relation theory and some notions of graph theory. The searched objects are functions which should satisfy a set of constraints. The solver combines a depth-rst search method with sophisticated constraint manipulation techniques and a set of powerful heuristics. The lack of exibility of these seminal systems both in the language representation and the solving strategy motivated the design and implementation of CHIP.

The success of CHIP in the solving of a large class of combinatorial search problems like car-sequencing, warehouse location, investment planning, etc. DSH88a] DSH88b] DHS + 88] Hen91] started the development of new nite domain CLP languages based on new features and implementations. The basic difference is that the user is not able any longer to specify how to use constraints unless they are user-de ned constraints. Most of the systems solve the constraints using some local transformation rules based on consistency notions which are handled by a relaxation algorithm resembling AC-3. It uses a delay m e c hanism and suspension handling coroutines to wake the constraints which h a ve to be reconsidered.

Later systems include ECL i PS e based on the notion of attributed variables Hui90] Hol92] and a suspension mechanism which handles the delay a n d w akening of goals and constraints. It provides the features necessary to allow a user to develop his own constraint s o l v er over a speci c computation domain. cc(FD) HSD93] is another successor of CHIP based on the AC-5 arc consistency algo-rithm. This language is de ned as an instance of the cc framework2 over nite domains. It adds to the nite domain library of CHIP a set of additional generalpurpose combinators (such as cardinality, implication, constructive disjunction).

The early designers of CHIP also developed a new version CHIP V4 which includes a set of new global constraints Bel90b] BC94]. These constraints aim at reasoning globally over a set of constraints, versus local reasoning over one constraint. Recently some powerful techniques from operations research h a ve b e e n considered to increase the e ciency of the solving. From a practical point o f v i e w , they extend the application domain of the CHIP language to tackle e ciently graph and scheduling problems.

The nite domain library of CHIP has also given birth to a class of industrial languages like CHARME OPL89], SNI-Prolog, Decision Power, ILOG solver Pug92] CP94] among others.

CLP(Intervals)

This class of languages embeds the notion of domain with a di erent meaning. A domain speci ed by a n i n terval does not represent a set of possible values a variable could take, but an approximation of a value. This research has been motivated by the errors resulting from nite precision arithmetic in computers. Each i n terval is marked by its lower and upper bounds which m a y o r m a y n o t b e included in the interval (open and closed intervals). This approach has been rst implemented in Prolog from a functional viewpoint Bun84]. It provides correct information about the range of the functions, but it prevents us from representing a logical real variable and from solving equations (eg. 3:14 3:142] = X + Y can not be solved).

Cleary Cle87] introduced a relational arithmetic of real intervals into logic programming to avoid the weaknesses of the functional approach. The relational form of interval arithmetic is based rst on the internal representation of reals as approximated intervals and second on the interpretation of arithmetic expressions as relations. This relational form can be nicely embedded into logic programming. Such a relation is speci ed as a subset of a Cartesian product of the real intervals involved in it. To make sure that the approximated intervals are the unique smallest ones which contain acceptable real values, Cleary makes use of projection functions and convex closure operations which allow the representation of each real interval appearing in a relation in terms of the other intervals which appear in the Cartesian product. The closure operations aim at guaranteeing that the computed intervals are convex that is they do not contain \holes". They constitute a second level of approximation. Indeed, some projection functions associated to the multiplication relation, for example, do not necessarily derive c o n vex intervals. Thus the derived disjunctions of intervals are approximated by a c l o s e d o n e . This approach w h i c h d o e s n o t a l l o w \holes" in the intervals, might infer that some values in the intervals are inconsistent b u t a r e k ept to avoid manipulating unions of intervals. Cleary proposed a solution to this problem, consisting in splitting the consistent i n tervals into sub_intervals and then checking whether some further restrictions can be deduced by performing nondeterministic computations over the disjunctive i n tervals.

A relaxation algorithm based on Waltz' ltering algorithm Wal75] (or AC-3) processes a system of constraints by handling the various projection functions. It makes use of delay m e c hanisms to reconsider the relations whose Cartesian product has changed. The practical framework described by Clearly has been embedded in various languages referred to as CLP(Intervals). All of them are based on the relational form of interval arithmetic and the use of a relaxation algorithm to process a system of constraints. They do not handle the splitting of real intervals since it has been shown that handling disjunctions of intervals leads to a combinatorial explosion because of the large number of choice points which are generated once a disjunction is maintained and propagated.

A theoretical framework for the class of CLP(Intervals) languages has been described in BMH94] Ben95]. It describes the key notion of approximation and the one of \narrowing operators" (cf. the projection functions) which derive the closest intervals from the previous ones so that the non relevant v alues are removed. The relaxation algorithm is referred to as the xed point algorithm but provides the same constraint propagation and handling of the narrowing operators.

This class of CLP(Intervals) languages di ers from that of CLP(FD) languages in the sense that an interval which is not reduced to one value might be a possible solution. This does not t with CSP solving where a domain is a set of possible values and a solution should contain only variables instantiated to one domain value. The notion of approximated reals is very much related to the correctness issues and does not aim at solving a CSP.

Part II

The Language Formal Framework C'est au sommet de tes questions, que tu trouveras la r eponse.

This chapter describes the formal framework of a constraint logic programming language dealing with sets which r a n g e o ver a nite domain |i.e., s e t s which belong to a powerset. The rst step is the de nition of the computation domain and syntax of the language that consists of the usual set operations and relational symbols (\ n). The second step is the constraint solving part. The set satis ability problem is N P -complete and thus partial constraint solving is required (to the detriment of completeness but improving e ciency). The focus is on the de nition of the constraint logic programming system which performs local consistency techniques over constraints of the language. The main idea is to specify each set domain by a set interva l a n d t o c heck the consistency of the constraints using set interval reasoning. In particular, it is described how the constraint domain of the system should be structured so as to deal with set intervals. This requires, among other things, to approximate the domain of a set expression (which might c o n tain "holes") by a set interval and to de ne a set interval calculus. It is then shown how computations are performed over the constraint domain using a top-down execution model.

A constraint logic programming language with sets, set operations and relations is not expressive enough to tackle set based search problems. In particular optimization problems require the statement of an optimization function which necessarily deals with quanti able, i.e. arithmetic, terms. To cope with this, an extension of the language is presented and consists in adding to the language syntax and to the constraint domain of the system a class of functions which map s e t s t o i n tegers (e.g. the set cardinality #, the set weight, etc.). These functions are called graduations when they map elements from a lattice (e.g. a powerset equipped with the operations \ and the partial ordering) to the set of integers.

Basics of powerset lattices

Some de nitions, properties and results on lattices are necessary to understand the main features of the formal language description. These can be found in Bir67] BM70] Gea80]. The particular lattice we deal with is the powerset lattice. To give a n i n tuitive idea of the subsequent use of these de nitions, some examples relating to powerset lattices are given. Readers familiar with these notions can skip this section.

Lattices

De nition 6 A poset (also known as partially ordered set) is a set S equipped with a binary relation (formally a subset of S S) that satis es the following laws:

P1. Re exivity 8x x x P2. Antisymmetry (x y and y x)) (x = y) P3. Transitivity (x y and y z)) x z Example 7 Let S be a nite set and P(S) the set of all subsets of S or powerset of S. Then the set inclusion is easily seen to be a partial order on P(S). P(S) is a poset.

De nition 8 Let S be a p oset, X a subset of S and y an element of S. Then y is a meet or greatest lower bound or glb for X i : y is a lower bound for X, i.e., if x 2 X then y x and, if z is any other lower bound for X then z y

The notation we use is y = V (X).

De nition 9 Let S be a p oset, X S and y 2 S. Then y is a join or least upper bound or lub for X i : y is an upper bound for X, i.e., if x 2 X then y x and, if z is any other upper bound for X then z y

The notation we use is y = W (X).

Proposition 10 Let S be a p oset and X a subset. Then X can have at most one meet and at most one join.

Proof By P2, meet and join are clearly unique whenever they exist. If a and b are two meets then we h a ve on the one hand a b and on the other hand b a. This infers a = b.2

The following property establishes a link between and the pair (V , W) a s actual meet and join.

Property 11 (Consistency property) Let S be a p oset. Then for all x y 2 S, x y , x = V (fx yg) x y , y = W (fx yg) De nition 12 A p oset is a lattice i every nite subset has a meet and a join.

Corollary 13 A p oset S is a lattice i every two elements have a meet and join.

Example 14 The powerset P(X), is a lattice where the meet operator is the intersection \ and the join operator is the union . E v ery two elements x y of P(X) h a ve a meet x \ y and a join x y.

The partial order as set inclusion satis es the consistency property:

x y = y , x y , x \ y = x This equivalence de nes the correspondence between the relational de nition of the structure in terms of properties of the partial order (existence of a glb and a lub) with the algebraic one (properties of the operations).

De nition 15 A lattice L is distributive i for every x y and z 2 L we have:

x ^(y _ z) = (x ^y) _ (x ^z)

Example 16 The powerset lattice is a distributive lattice.

Intervals as lattice subsets

Reasoning with and about intervals within a powerset lattice constitutes the core of our language. The following de nitions and properties give the basic properties of intervals in lattices. An interval delimited b y t wo elements x and y is speci ed by x y]. Example 21 Let S be a subset of the powerset P (X). For every two elements

De nition 17

x y 2 S we h a ve x \ y x y] S. T h i s i n terval is convex. Furthermore it is unique since the meet and join of x and y are unique.

Property 2 2 The meet and join operators in a lattice a r e isotone (preserve the order):

Graduations

A graduation is a speci c function which maps elements from a partially ordered set to the set of integers. For example, the powerset P(X) is graduated by the cardinality function. The following de nitions give necessary conditions to consider graduations for a given set. De nition 24 A set S provided w i t h a n o r der relation is graduated if there exists a function f from S to Z (positive and negative integers) which satis es:

x y) f(x) < f (y) (is a strict ordering, < the arithmetic inequality)

x precedes y) f(x) = f(y) + 1 An element x i precedes an element x i+1 if in the chain of elements x = x 0 x 1 ::: x n = y in S there is no other element between them. f is the graduation of S.

The existence of a graduation of a set which does not correspond to a chain (e.g. a set of set intervals) is guaranteed if the set is a lower semi-modular lattice.

De nition 25 A lattice L is lower semi-modular if:

x y z 2 L x z and y z) (9t : t x and t y) Property 2 6 The lattice o f c l o s e d set intervals is a lower semi-modular lattice.

Proof The semi-modularity of a lattice of set intervals derives directly from the existence of a lower and upper bound for any t wo i n tervals. Consider the strict orderings a 1 b 1] z and a 2 b 2] z, z exists since the interval a 1 a 2 b 1 \ b 2] is one possible value for z. T h e n t = a 1 \ a 2 b 1 b 2] satis es the condition: t a 1 b 1] and t a 2 b 2].2

Consequently there exists a graduation for the lattice of closed intervals.

Property 2 7 If there exists one graduation of a set, then there exists an in nite number of graduations of this set.

Set intervals in CLP

Consider a set as an element o f a p o werset. Take the convex superset of this collection of sets (powerset). This convex part denotes a set interval. This concept of set interval is the means we will use to reason with and about sets in a Constraint Logic Programming (CLP) language1 . On the one hand, the user manipulates sets in a logic-based language and on the other hand set interval calculus is performed to search for set values. The logic-based language is characterized by a set of prede ned function and predicate symbols needed to deal with sets. This section describes the abstract syntax of the language and the algebraic structure of the system called the constraint domain. This is the structure over which set interval calculus is performed.

Abstract syntax and terminology

The syntax of the language comprises the set of prede ned function and predicate symbols relative to sets, the set of constants, the variables, etc.

The alphabet The set of prede ned function and predicate symbols necessary to reason with and about sets is the alphabet S : S = f \ n 2 a b] g The predicate symbol 2 a b] applied to a variable s will be interpreted as the double ordering a s b.

Constants and terms

The set of constants de nes the domain of discourse of the language. It extends the Herbrand universe to provide the concept of set constant.

De nition 28 The domain of discourse is the powerset D S = P(H u) where H u refers to the Herbrand universe A set constant i s a n y element from P(H u) represented by the abstract syntax fe 1 ::: e n g where the e i belong to H u .

De nition 29 A set variable is any variable taking its value in P(H u).

De nition 30 A set term is de ned by:

(1) any set constant a is a set term (2) any set variable s is a set term De nition 31 A set expression S of D S where S 1 S 2 are set expressions is inductively de ned b y : a j s j S 1 S 2 j S 1 \ S 2 j S 1 n S 2 Formulas and programs An atomic formula is a rst-order atom (or atom) or a prede ned constraint built from set terms, function and predicate symbols in S .

De nition 32 An atomic formula is de ned as follows:

If p is an n-ary predicate and t 1 ::: t n are terms, then p(t 1 : : : t n) is an atom.

A program built from the logic-based language is based on de nite clauses of the form:

(1) A : ;B 1 ::: B n and (2) : ;G 1 ::: G n where A is an atom and the B i G i are atoms or constraints. (1) is called a program clause and (2) a program goal. While atoms are not subject to a speci c interpretation in the language, the prede ned constraints characterize the language.

Notations Set variables will be represented by the letters x y z s. Set constants will be represented by the letters a b c d. Natural numbers will be represented by the letters m n and integer variables by v w. All these symbols can be subscripted.

Computation domain

The computation domain of the language is the powerset algebra D S which i n terprets (over the domain of discourse D S) the function symbols \ n belonging to S in their usual set theoretical sense (i.e., is the empty s e t , n the set di erence, etc.).

The interpreted set union and intersection symbols have the following algebraic properties:

C. x \ y = y \ x x y = y x commutativity

As. (x \ y) \ z = x \ (y \ z) (x y) z = x (y z) associativity I. x \ x = x x x = x idempotence Ab. x \ (x y) = x x (x \ y) = x absorption 4.2.

Constraint domain

The constraint domain represents the structure of the system over which set interval calculus is performed. This structure is built from the computation domain equipped with the predicate symbols 2 a b] belonging to S and interpreted as constraint relations. The predicate symbol is interpreted as the set inclusion and the predicate 2 a b] is interpreted as the set domain constraint. This relation constrains a set variable to take i t s v alue in a speci c domain. Since the main idea of the system is to perform set interval calculus, we m ust guarantee that the domain of any set is an interval.

The structure D S] describes a powerset lattice with the partial order . Any t wo of its elements a b have a unique least upper bound a b and a unique greatest lower bound a \ b (cf. section 3.1.1.). The existence of limit elements for any set fa bg belonging to D S allows us to de ne a notion of set domain as a convex subset of D S , t h a t i s a s e t i n terval a The greatest lower bound a of the set domain contains the de nite elements of s and the least upper bound b contains possible elements of s (comprising the de nite ones).

Example 35 The constraint s 2 f3 1g f3 1 5 6g] means that the elements 3 1 belong to s and that 5 and 6 are p ossible elements of s.

Set intervals have been used so far to specify the domain of a set variable. Regarding set expressions, the domain of a union or intersection of sets is not a set interval because it is not a convex subset of D S (e.g. I = f1g f1 3g] fg f2 6g], f1 3g f6g 2 I but fg f1 3 6g] 6 I). It is possible to maintain such disjunctions of domains during the computation, but this leads to a combinatorial explosion. This handling of \holes" can be avoided by considering the convex closure of a set expression domain. Consequently, the constraint domain of the system is de ned as the powerset lattice over the convex parts of P(D S) (c o n vex subsets of D S), equipped with a convex closure operation. The set equality can be derived from the double inclusion x = y , x y and y x.

De nition 36

Convex closure operation. To ensure that any set domain is a set interval, we de ne a convex closure operation which associates to any e l e m e n t o f P(D S) its convex closure as being a set interval, element o f D S .

De nition 38 The convex closure operation conv : P(D S) ! D S is such that conv : x ! x satis es:

x = fa 1 ::: a n g ! x = \ a i 2x a i a i 2x a i]
Example 39 The convex closure of the setff3 2g f3 4 1g f3gg belonging to P(D S) is the set interval f3g f1 2 3 4g].

Property 4 0 An element x of P(D S) is convex under the above convex closure operation when x is equal to its \closure" x.

Corollary 41 All singleton sets are c onvex.

In the following, the operations T a i 2x a i and S a i 2x a i will be respectively written glb(x) and lub(x) which stand for greatest lower bound and least upper bound of x, respectively. If we consider the relation as a logical implication, the extension property C1 can be interpreted by \any e l e m e n t o f x belongs to x (thus to glb(x)) and any element de nitely not in x (not in lub(x)) does not belong to x". This allows the set calculus to be performed in D S while ensuring that the computed solutions are valid in D S . Property C3 guarantees that the partial order is preserved in D S . D S equipped with the operation conv allows us to de ne the constraint domain from an algebraic point o f v i e w , i.e., from the properties of the union and intersection operations in D S .

De nition 43

The constraint domain CDis a powerset lattice D S 2 a b]] with the family D S of set intervals that satis es: P1. Each union of elements of D S is also an element of D S P2. Each nite intersection of elements of D S is also an element of D S P3. P(D S) and the empty set fg are elements of D S .

Properties P1 and P2 de ne the distributivity o f and \ in D S . The conditions in P3 de ne D S as a topology on P(D S). It follows from P2 and the rst statement o f P3 (P(D S) 2 D S) that a convex closure operation satisfying C1- C3 is de ned in CD. This operation is conv. Because of P1 and P2 this operation satis es

x y = x y and x \ y = x \ y Finally P3 implies that = .

Set interval calculus

In order to satisfy the properties P1, P2 and P3, w e de ne a set interval calculus within D S . This consists in deriving equality relations from the following ordering relations: The consistency property x y , y = x y and x y , x = x\y (cf. 3.1.1 property 11) establishes a link between and the set operations of a powerset lattice. This embeds the notions of right inclusion (y = x y), which de nes the consistency of y with respect to x, and the left inclusion (x = x \ y). Intuitively the right inclusion aims at possibly adding elements t o y and the left inclusion at possibly removing elements from x. Consequently, if a set interval a b] speci es the set domain of a set variable x, t h e r i g h t inclusion is applied to a and the left inclusion to b. This is due to the fact that a contains elements which are already in x and b contains possible elements of x.

De nition 44

Graduations

The expressivity of the language can be increased if some \graded" functions are applied to set terms. A graded function maps a non quanti able term to an integer value denoting a measure of the term. The set cardinality is one example of such a function. They allow the user to deal with optimization functions in a setbased language (e.g. minimizing the cardinality of a set). The constraint domain presented so far does not contain any such graded functions. In this subsection, we extend the alphabet of the language and the constraint domain of the system to deal with such functions. In lattice theory, a function which maps elements from a lattice structure (e.g. the constraint domain) to the set of integers, is called a graduation. Not all lattices can be equipped with graduations. One su cient condition for this is that the lattice is lower semi-modular (cf. subsection 3.1.3). This is the case for D S] and for D S].

In order not to limit the extension of the language to the set cardinality function, the general case of an arbitrary graduation f is studied.

De nition 45 A g r aduation f is a function from D S] to Z (set of positive and negative integers) which maps each element x 2 D S to a unique m such that f(x) = m.

The convex closure of a graduation f is required to deal with elements from D S . The closure function, written f, maps elements from D S to a subset of the powerset P(Z) c o n taining intervals of positive and negative i n tegers. This subset is designated by Z.

Example 46 Let s be a set and #s its cardinality (a positive integer). Consider De nition 47 Let f : D S ! Z . The function f : D S ! Z is derived f r om f as follows:

f(a b]) = f(a) f (b)] Property 4 8 If x 2 a b] then f(x) 2 f(a b]).
Proof. By de nition f is a graduation. So if a x b then we h a ve f(a) <

f(x) < f (b). Consequently f(x) 2 f(a) f (b)] which means f(x) 2 f(a b]).2
This property guarantees that the output of the function f applied to a set domain contains the actual graduation value of the concerned set variable.

Extended constraint domain

Graduations add expressive p o wer to the language. They can be embedded as prede ned symbols in the language, if the constraint domain is extended to deal with integer intervals and integer variables. The constraint domain associated with integer intervals is that of integer interval domains (subset of the standard constraint domain over nite integer domains). It is de ned by the structure: FD= Z (Z +) = 6 = 2 m n]] where the relation 2 m n] is interpreted in Z as the integer domain constraint such that: x 2 m n] m n] is equivalent t o m x n. The other symbols are interpreted in their usual arithmetic sense. The extended constraint domain of our system should contain FD.

De nition 49

The extended c onstraint domain CD e with graduations, is the structure:

D S D S f 2 a b]] F D
CD e interprets graduation symbols as unary set operations with respect to their intended meaning. For example the symbol # is interpreted as the set cardinality operation.

Execution model

The execution model is based on constraint solving in CD e . It is a top-down execution model which de nes the operational semantics of the system. The model describes how the constraints are processed over CD e and what they lead to. Since the set satis ability problem is N P -complete, it is a fortiori N P -complete in CD e . For e ciency reasons, partial constraint solving is therefore required. The idea consists in transforming a system of constraints in CD e as follows. Let each set variable range over a set domain. The transformation of a system of constraints in CD e aims at removing some values of the set domains that can never be part of any feasible solution. This is achieved by making use of constraint satisfaction techniques.

A transformed system is commonly called a consistent system. One necessary condition for dealing with constraint satisfaction techniques is that each s e t v ariable ranges over a set domain. This section de nes the various consistency notions for each prede ned constraint in the system, gives the transformation rules used to infer consistency, and describes the operational semantics of the system as a transition system on states.

De nition of an admissible system of constraints

The set of prede ned constraints in CD e can contain any of the following: set domain constraints s 2 a b] w h e r e s is a set variable. set constraints S S 1 where S S 1 are set expressions (comprising constants, variables and possibly set operation symbols in f \ ng). graduated constraints f(S) = m n] where f is any prede ned graduation and m n] a n y element i n Z (i.e., a n i n teger if m = n or an integer domain).

De nition 50 An admissible system of constraints in CD e is a system of constraints such that every set variable s ranges over a set domain.

From n-ary constraints to primitive ones

The prede ned constraints might denote n-ary constraints like s 1 s 2 s 3 \ s 4 . The partial solving of constraints requires us to express each set variable in terms of the others. Since there is no inverse operation for \ n there is no way t o move all the operation symbols on one side of the constraint predicate. So it is necessary to decompose n-ary constraints into primitive o n e s .

Consider the following set of basic set expressions fs \ s 1 s s 1 s n s 1 g. T h e proposed method consists in approximating each basic set expression by a n e w set variable with its appropriate domain. The resulting constraints are binary or unary ones called primitive constraints.

De nition 51 A primitive constraint is (1) a prede ned set constraint containing at most two set variables or, (2) a graduated c onstraint containing at most one set variable.

In the former example the n-ary constraint i s a p p r o ximated by the system of constraints:

s 1 s 2 = s 12 s 3 \ s 4 = s 34 s 12 s 34

This approach is similar to the relational form of arithmetic constraints over real intervals introduced by Cleary Cle87].

A relation denoting a basic set expression represent a subset of the Cartesian product of the set domains attached to each set variable. In order to deal with the consistency of these relations, we de ne projection functions which allow each set domain to be expressed in terms of the others. Consider a relation r a 1 b 1] a 2 b 2] a 3 b 3]. The set it denotes must belong to the domain D S over which the computations are performed. Since D S contains convex sets, each v alue of a projection function must be a convex set, that is a set interval. Consequently, to each projection function designated by i we associate its closure i . The closure is derived from i by making use of the closure operator de ned above which satis es: i = conv(i) i represents the approximation of this projection of the relational form r on the s i -axis.

De nition 52 The i-th projection function i o f a r elation r denoting a set expression is the mapping : i = convfs i 2 a i b i] j 9 (s j s k) 2 a j b j] a k b k] such that j k 6 = i : (s i s j s k) 2 rg These relational forms of set expressions are not visible to the user but they are necessary to de ne the consistency of an n-ary constraint.

Consistency notions

The consistency notions provide necessary conditions to ensure the partial satisfaction of primitive constraints. The standard notions of consistency applied to integer domains state conditions that must be satis ed by each element belonging to a variable domain. This approach is not useful to us since set domains speci ed by s e t i n tervals can contain an exponential number of elements (in the size of the powerset described by the domain bounds). Instead, we derive conditions that must be satis ed only by the domain bounds. These conditions guarantee that any relation which does not hold for the bounds of the variable domains will not hold for any element b e t ween these bounds. Consider a set variable s. T h e l o wer and upper bounds of the domain of s will be respectively de ned by the functions glb(s) a n d lub(s). The upper letters S S 1 denote set expressions.

Preliminary de nitions With regard to the consistency properties of the set inclusion constraint, the concepts of lower and upper orderings have been informally introduced. Their formal de nitions are given here since they will be of much use in the subsequent de nitions. Assume the following notations: L for the lower ordering and U for the upper ordering. These preliminary de nitions allow us to de ne the consistency notions for primitive constraints.

De nition 55 Let s s 1 be a primitive set constraint. We say that this constraint is consistent if and only if: SC1. glb(s) L glb(s 1) and SC2. lub(s) U lub(s 1).

The consistency of a primitive set constraint is equivalent to the standard notion of arc-consistency (i.e., i n terval consistency is equivalent to domain consistency). Correspondingly, if a set constraint is an unary constraint, its consistency is equivalent to node consistency. De nition 57 A primitive graduated c onstraint f(s) = m n] is consistent i :

SC3. f(s) = f(s) \ m n]
The consistency of the relational forms of basic set expressions is de ned through the consistency of the projection functions. Since the set domain of a basic set expression is approximated it is clear that we can not get the equivalent of arc-consistency. Some elements in the resulting set interval are meant to ful ll \holes" and are not expected to be part of any feasible solution.

Theorem 58 A relation r denoting the relational form of a basic set expression is consistent i f a n d o n l y i f e ach of the projection functions i describing r is consistent.

De nition 59 A p r ojection function i associated to the relation r j2f1 ::: 3g a j b j] is consistent i : SC4. glb(i) L a i and b i U lub(i)

Inference rules

The consistency notions de ne conditions to be satis ed by set domain bounds so that a set constraint is consistent. If such conditions are not satis ed this means that elements in the domain are irrelevant. Consistency can be inferred by m o ving such elements \out of the boundaries of the domain" which means pruning the bounds of the domain. The essential point is that a re nement of both bounds allows us to prune a domain. Reducing the set of possible values a set could take can be achieved either by extending the collection of de nitive elements of a s e t i.e., satisfying the lower ordering, or by reducing the collection of possible elements i.e., satisfying the upper ordering. Both computations are deterministic and are derived from the consistency notions. The constraint f(s) = m n] such t h a t s 2 a b] describes a mapping from an element belonging to a partially ordered set to an element belonging to a totally ordered set. Consequently, i t m i g h t occur that two distinct elements in a b] h a ve the same valuation in m n]. This implies that inferring the consistency of this constraint might require re ning a b] only if a single element i n a b] satis es the constraint. If this element exists, it corresponds necessarily to one of the domain bounds since they are uniquely de ned and are strict subset (or superset), of any element in the domain. Thus, the value of the graduation mapped onto them can not be shared. The inference mechanism is depicted by the following rules:

I4. m 0 n 0] = m n] \ f (s) f s 2 a b] f (s) = m n]g 7 ;! f s 2 a b] f (s) = m 0 n 0] g I5. n = f (a) f s 2 a b] f (s) = m n]g 7 ;! f s = a g I6. m = f (b) f s 2 a b] f (s) = m n]g 7 ;! f s = b g 4.3.

Operational semantics

The inference rules described so far can be applied to individual constraints. The operational semantics shows how t o c heck and infer the consistency of a system of constraints. This system should correspond to an admissible system of constraints. The consistency of such a system results from the consistency of each constraint appearing in it. The operational semantics is based on one non deterministic transition rule which t a k es as input a goal comprising a collection of (1) set domain constraints A, (2) other constraints C, (3) t wo sets of atoms G and B and (4) one clause among the possible ones in the program whose head can be uni ed with the leftmost atom in G. The leftmost atom in G is marked out by " G, and the remainder of G by # G. This rule returns a new goal to be solved such that the set of constraints is consistent and possibly simpli ed. It is depicted in the following gure. The notation 3 is used to distinguish the sets of atoms from the sets of constraints. The crucial point lies in the inference rule de ned in the if statement. The inference rules de ned so far deal with one constraint. From inferring of the consistency of one constraint, we m o ve to inferring the consistency of a collection of constraints. At the same time, this inference rule possibly transforms the set of domain constraints and the set of the other constraints. The reason is that the consistency of some constraints might result from the requirements for domain re nements and thus a replacement of the previous set domain constraints (cf. I1, I2) and additionally some constraints might be simpli ed which leads to a transformation of the set of other constraints (cf. I3, I5, I6). This inference rule corresponds to a set of simple rules which describe the process in more detail.

from A C 3 G and a C 1 3 B infer A 1 C 2 3 (# G B) if f A f" G = ag C C 1 g 7 ;! f A 1 C 2 g
The process amounts to considering a transition system on states where each state contains the new constraints as yet unconsidered, the (set, integer) domain constraints and the constraints which h a ve already been checked out. One state is speci ed by a tuple hC A s A i S i containing the following collections of constraints:

A set of as yet not considered constraints designated by C, A set of set domain constraints designated by A s , A set of integer domain constraints A i , A set of consistent constraints S. A s , A i and S are usually referred to as the constraint store. When A s and A i do not need to be distinguished their union is denoted A. The initial state of the transition system is hC i where all the constraints need to be checked.

The inference rule in the if statement contains di erent con gurations of state transition. For example, one transition might be that the consistency of one constraint is inferred without any requirement for domain modi cation, or that it requires domain re nements which leads to the inconsistency of some already stored constraints. The following set of transition rules corresponds to the various possible transformations which are derived when checking or inferring consistency of one constraint in conjunction with the constraint store. The rst two transition rules deal with consistency checking and the last two with the consistency inference.

T1. hC c A s S i ; ! c hC A s S ci if c is consistent in conjunction with the set A s and consequently with the constraint store. c is then added to the set of consistent constraints S. T2. hC A Si ; ! c fail if at least one set domain or integer domain constraint i n A is inconsistent. This transition is derived if the inference rule I3' succeeds over at least one set domain constraint. A similar inference rule for the case of integer domains is quite straightforward and corresponds to the case where x 2 m n] a n d n > m . T3. hC c A s S i ; ! i hC A 0 s S ci if the consistency of c is inferred by requiring a pruning of some set domains thus requiring to modify the set of set domain constraints A s . This transition is derived if any of the inference rules I1, I2 and I3 is successfully applied. T4. hC c A s A i S i ; ! i hC A 0 s A 0 i S ci if the consistency of c is inferred by requiring a pruning of some integer domain (I4) and possibly some set domain (I5, I6). Consequently the sets A s A i might get modi ed.

Each derivation rule takes an element from C and moves it to S. So the nal state of the transition system is either fail or h A 0 S 0 i. Theorem 60 A s y s t e m o f c onstraints S is consistent if and only if all the domain constraints that it contains are c onsistent.

Proof This follows simply from the various inference rules. Inferring the consistency of a system amounts to considering the consistency of each constraint i n conjunction with the already consistent ones. The system is detected inconsistent if and only if the inference rule I3' is successfully applied.2

Satis ability i s s u e

Ensuring the satis ability of a consistent system requires guaranteeing that a solution exists. This is in not possible when an n-ary set constraint h a p p e n s t o belong to the system since we w ork on domain approximations. But whenever dealing with unary and binary set constraints, property 56 (cf. equivalence between set constraint consistency and the usual consistency notions) guarantees a solution. The lower or upper bounds of the set domains will always be possible values for the sets. With respect to graduated constraints, consistency does not guarantee satis ability since a consistent graduated constraint f (s) = m does not guarantee that some elements of the domain of s might satisfy the constraint. Theorem 61 A system of set constraints containing only unary and binary set constraints is satis able if and only if it is consistent.

Proof. This follows simply from the property 56 which holds thanks to the monotony of the operations \.2

Practical Framework

Le mot est cr eateur, car il concentre tout, il centre.

Le mot construit. Ce n'est pas sans raison que telle pierre s'imbrique dans telle autre. Autrement, ce que tu construis s' ecroulerait.

This section describes the Conjunto1 language, a constraint logic programming language designed and implemented to reason with and about sets ranging over a set domain. Its design is based on the notion of set de ned as an individual element from a subset of a powerset universe. The functionalities of Conjunto (apart from those of a logic-based language) are set operations and relations from set theory together with some graduations which p r o vide set measures like cardinality, w eight, etc. We describe how these graduations can be reconsidered so as to map set domains to subsets of the natural numbers (nite domains).

The implementation of Conjunto is concerned with the way set calculus is achieved in algorithmic terms. Searching for a complete solution is an intractable problem since set satis ability i s a n N P -complete problem. The basic principle of the Conjunto solver is to check and infer a coherent system of set constraints which guarantees that set values which h a ve been removed from the set domains can never be part of any feasible solution. This is achieved by adapting local consistency techniques to a domain bound reasoning. Particular attention is given to the description of the local transformation rules which perform domain renements to infer local consistency of individual constraints. We then describe how the solver which infers/checks the consistency of a system of constraints, handles the calls to these rules by making use of delay m e c hanisms. Their adequacy to establish a dynamic cooperation between two solvers (Conjunto solver and nite domain solver) is illustrated by the handling of graduated constraints in conjunction with other constraints.

Design of Conjunto

This section describes the functionalities of the Conjunto language. We o m i t a detailed description of the traditional predicates and functions on Prolog terms CKC83].

Syntax

The Conjunto language is a logic-based programming language with the alphabet of a Prolog language (constants, predicates, functions, connectives, etc). It is characterized by a signature which contains the following set of prede ned function and predicate symbols in their concrete syntax: the constant {}. the binary set predicate symbols f`<, `<>, `::, #, weightg and arithmetic predicate symbols f= 6 =g. the binary set function symbols f\/, /\, \g and the arithmetic sum symbol +.

A Conjunto atomic formula is a rst-order atom (referred to as atom) or any atomic formula referred to as primitive constraint built from variables, function and predicate symbols in .

The language is based on de nite clauses of the form:

(1) a : ;b 1 ::: b n and (2) : ;g 1 : : : g n where a is an atom and the b i g i are atoms or constraints. While atoms are not subject to a speci c interpretation in the language, the constraints constitute the core functionalities of the language and are characterized by a speci c terminology and semantics.

Terminology and semantics

The main objective of Conjunto is to perform set calculus over sets de ned as elements from a powerset domain. Some constraints like set cardinality o r s e t weight require us to deal also with nite domains, that is integers and arithmetic constraints.

De nition 62 The computation domain is the set D = P(H U) H U where P(H U) is the powerset of the Herbrand universe.

Terminology

The terminology gives names to the predicate and function symbols in and de nes the notions of set domains and set terms necessary to reason with and about sets in D.

The symbols in f`<, `<>, `::, #, weightg refer respectively to the set inclusion constraint predicate, the set disjointness constraint predicate, the set domain constraint, the set cardinality constraint predicate and the weight constraint predicate. The symbols in f\/, /\, \g represent the concrete syntax of the set operations \ n. The other symbols in refer simply to the arithmetic operations they denote. Example 68 S= S{ {(a,1)},{(a,1),(c,2),(d,2)}]} is a set variable whose weighted set domain is the set interval {(a,1)},{(a,1),(c,2),(d,2)}].

De nition 63 A ground set is an element of P(H

De nition 69 A set term is a (1) a ground set, or (2) a set variable. De nition 70 A set expression s is inductively de ned b y : s ::= t s j s 1 /\ s 2 j s 1 \/ s 2 j s 1 \ s 2 where s 1 s 2 are set expressions, and t s a set term.

Similarly, v ariables denoting integers will take t h e i r v alue in a nite set of integers (nite domain). In Conjunto these domains are approximated by i n teger interval domains. An integer interval domain is the convex closure of a nite set of integers and will be simply referred to as an integer interval.

De nition 71 An integer variable is a logical variable whose value lies in an integer interval.

Semantics

The interpretation of the elements of in D is given by distinguishing set constraints from graduated constraints.

Notation. Conjunto's predicate and function symbols are written in a bold font. Set variables are denoted s v w, set expressions t, i n teger variables are denoted x y z, ground sets a b c d, i n tegers m n. These symbols may b e s u bscripted.

A primitive set constraint is one of the following constraints:

s `:: a b] i s s e m a n tically equivalent t o a s b2 s `< s 1 is equivalent to the set inclusion relation s s 1 . s `<> s 1 is equivalent to the empty i n tersection of the two sets s s 1 .

Remark The set disjointness constraint `<> which w as not included in the formal part has been embedded as a primitive constraint i n C o n j u n to mainly for practical reasons. Since the disjointness of two sets appears in almost all set based problems, it is simpler to use a speci c syntax and more e cient t o h a n d l e i t a s a primitive constraint. A primitive graduated c onstraints is one of the following:

#(s x) is equivalent to the arithmetic equality # s = x where #s is the standard cardinality function of set theory.

weight(s x) i s s e m a n tically equivalent to the arithmetic operation P i m i = x such t h a t (e i m i) 2 s.

The function symbols \/, /\, \ are interpreted as the set operations \ n, respectively, in their usual set theoretical sense. The set di erence is a complementary di erence (e.g. s n s 1 = fx 2 s j x = 2 s 1 g).

De nition 72 The constraint system of a Conjunto program is an admissible system3 of set constraints and graduated c onstraints where every set variable is constrained by a set domain constraint.

In this admissible system of constraints the searched objects are the sets. The integer variables are not part of the initialization of the search space which i s attached to the system. They constitute essentially a means to get to the nal solution. This is described in the following corollary.

Corollary 73 An admissible system of set and graduated c onstraints is a set domain constraint satisfaction problem i.e., a c onstraint satisfaction problem where the initial search space i s d e n e d by the set domains attached to the set variables.

Constraint solving

The constraint solving in Conjunto focuses on e ciency rather than on completeness. Since the set satis ability problem is N P -complete, partial constraint solving is required. The Conjunto solver aims at checking and inferring the consistency of an admissible system of constraints. This is achieved by: applying some local transformation rules, which a l l o w the consistency of one constraint t o b e c hecked/inferred, using a top-down search strategy, delaying consistent constraints which are not completely solved.

The Conjunto solver considers one constraint at a time and checks/infers its consistency in conjunction with the set of delayed constraints. This process might require the consistency of some delayed constraints to be reconsidered. These constraints are woken using a data driven mechanism based on suspension handling mechanisms.

The solver acts like a transition system on states. One state is denoted by a tuple of as yet unconsidered constraints together with a constraint store containing the delayed constraints. Each newly consistent constraint is added to the constraint store. The nal state of the program is achieved when all atoms appearing in a goal clause have b e e n c hecked and when no further domain re nement i s required. This state is either denoted by \fail" when some constraints have b e e n marked inconsistent o r i t c o n tains a set of delayed constraints together with the set variables and their associated domains.

Example 74 The goal: :-S `:: {1},{1,2,3,4}], S1 `:: {3},{1, 2, 3}], S `< S1. produces the instantiation S = { 1 } and no delayed g o al since the initial goal is completely solved.

Programming facilities

One of the application domains we h a ve i n vestigated using Conjunto is the modelling and solving of set based combinatorial problems. To allow the user to state short and concise programs, some programming facilities have been added to the initial set of primitive constraints. They consist of a collection of constraints dened from the primitive ones, some predicates necessary to access information related to the variable domains, and a built-in set labelling procedure. The most important ones are presented below, others are given in the annexe A.

Set constraints

The set equality t `= t 1 requires two set expressions to be equal. This constraint is simply derived from a double set inclusion: t `< t 1 , t 1 `< t and is handled as such.

The membership and nonmembership e in s , e notin s are handled in a passive w ay in the sense that they are considered once e is ground. They are respectively de ned in terms of set inclusion and set disjointness constraints if e is ground, and delayed otherwise: feg `< s and feg `<> s.

The global union all_union(s 1 ::: s n] s) requires the union of all the set terms in s 1 ::: s n] to be equal to s. I n c a s e s is a free variable, it becomes a set variable and its domain is the union of the set domains or set values attached to the set terms. It is de ned by means of pairwise unions. The handling of this constraint does not perform a global reasoning over the s i but amounts to dealing with a collection of set equality constraints over a set variable and the union of two set variables. Even though this process is not visible to the user, the set equality constraints which are not completely solved appear in the set of delayed goals.

Example 76 The goal: The global disjointness all_disjoint(s 1 ::: s n]) requires all the set terms in s 1 ::: s n] to be pairwise disjoint. It is de ned by means of disjointness constraints over every couple of s i . It is handled in a way similar to the global union constraint.

Set domain access

Set domains are represented as abstract data types, and the users are not supposed to access them directly. S o t wo predicates are provided to allow operations on set domains : glb(s s glb) and lub(s s lub). If s denotes a set variable, each term is respectively assigned the value of the domain's lower and upper bound. Otherwise it fails.

Set labelling

Assigning a value to a set variable is a nondeterministic problem which c a n b e tackled by di erent labelling strategies. Since the Conjunto solver uses partial constraint solving, an adequate strategy should aim at making an active u s e o f the constraints in the constraint store. On the one hand, a procedure which w ould consist in instantiating a set by directly selecting an element from the set domain makes a passive use of the constraints whose consistency is only partial. In the worst case this process might require considering all the elements belonging to a set domain even if some of them are irrelevant. On the other hand re ning a set domain by adding one by one elements to the lower bound of the domain is more likely to minimize the possible choices to be made. The refine predicate embedded in Conjunto behaves as follows: refine(s) labels s, i f s is a set variable. If there are several instances of s, i t creates choice points. If s is a ground set, nothing happens. If not, the following actions are performed recursively until the set gets instantiated: (1) select an element e from the ground set lub(s) n glb(s), (2) add the membership constraint e in s to the program. This added constraint is handled by the solver which checks its consistency in conjunction with the actual constraint store. In case of failure the program backtracks and (3) the nonmembership constraint is added (successfully) to the program so as to remove the irrelevant v alue e from the domain. The points (2) and (3) correspond to the disjunctive set of constraints:

(e in S e notin S)

Example 77 Consider the goal:

:-S `:: {},{1,2,3}], refine(S).

The search tree generated during the labelling procedure a n d c overed using a depth rst search strategy is described in gure 5.1. The strategy, which consists in adding membership constraints to the program, aims in particular at making an active use of those graduated constraints whose consistency is only partial.

S{[{},{2,3}

Example 78 Consider the goal:

:-S `:: {},{1,2,3}], #(S,1), refine(S).

The irrelevant branches of the search tree a r e cut in an a priori way i.e., no useless choice p oint is created. The search tree generated during the solving of this goal is depicted i n g u r e 5.2.

S{[{},{2,3}

Optimization predicates

The notion of optimization is common in problem solving. It aims at minimizing or maximizing a cost function which denotes a speci c arithmetic expression. The notion of cost de nes a kind of measure or quanti cation applied to some terms. A set can not denote a quantity and is not measurable. Only its possible graduations are. Thus there are no speci c optimization predicates for sets. Existing predicates embedded in a nite domains solver (e.g. for a branch and bound search) can be directly applied to expressions over integer intervals occurring in graduated constraints. For example, minimizing a set cardinality acts over a set through the link existing between a set variable and its cardinality.

Relations and constraints

When dealing with sets, it sounds quite natural to deal with relations and functions as well. Functions are more restrictive than relations since they constrain each element from its DS-domain 4 to have exactly one image. Providing relations at the language level extends the expressive p o wer of the language when dealing for example with circuit problems and matching problems originating from Operations research. In relation theory Fra86], a relation R is represented as a set of ordered pairs (x i y j) s u c h t h a t x i belongs to the DS-domain d of R and y j to its AS-range5 a. In other words, a relation R on two ground sets d and a is a subset of the Cartesian product d a. Keeping this representation to deal with relations as speci c set terms containing pairs of elements can be very costly in memory. Indeed, the statement of the Cartesian product referring to a relation requires us to consider explicitly a huge set of pairs. This is very inconvenient. Instead, a relation in Conjunto is represented as a speci c data structure which i s characterized by t wo ground sets (DS-domain and AS-range) and a list containing the successor sets attached to each e l e m e n t of DS-domain Ger93a] Ger93b]. Considering one successor set per element splits the domain of a relation into a collection of set domains. The resulting value of a relation is clearly the union of the successor sets. This approach is close to the one introduced in the seminal work ALICE Lau78] which dealt essentially with functions. However in ALICE there is no explicit notion of set domain.

De nition 79 Let a relation be r d a. The successor set s of an element x 2 d is the set s = fy 2 a j (x y) 2 rg.

De nition 80 A r elation variable r is a logical variable whose value is a compound term birel(l d a) such that birel is a functor of arity three, l i s a l i s t o f #d set variables s i such that s i `:: fg, a] and d a are two ground sets. This compound term is associated to a free variable by means of the predicate r bin_r d --> a.

Example 81 The goal: The de nition of constraints applied to relation variables abstracts from stating directly constraints over the set DS-domain and AS-range or over the successor sets. The following constraints have been embedded in Conjunto: (i j) in_r r, (i j) notin_r r which adds or retrieves pairs to the relation funct(r) which constrains a relation to be a function, inj(r) which constrains a relation to be an injective function, surj(r) which constrains a relation to be an surjective function, bij(r) which constrains a relation to be an bijective function. The schema of these constraints is directly derived from their usual interpretation issued from relation theory Fra86]. They are represented below using the the mathematical cardinality operation #, the usual set operation symbols (\) and the arithmetic inequality ().

Constraints

Interpretation r bin_r d --> a r = birel(l d a) where l = fs i j 8 i 2 d s i 2 f g ::ag (i j) in_r r if i 2 d j 2 a then j 2 s i (i j) notin_r r if i 2 d j 2 a then j = Since the created compound term is not visible to the user, a collection of predicate relations allow him to access to the properties of the relation: succs(r l) instantiates l to the list of successor sets of r. dom(r s) instantiates s to the DS-domain of r. ran(r s) instantiates s to the AS-range of r. succ(r e s) i n s t a n tiates s to the successor set of the element e belonging to DS-domain, such t h a t s = fx j (e x) 2 rg.

Implementation of Conjunto

The implementation of Conjunto was done in the ECL i PS e ECR94] system which extends the plain Prolog language with features dedicated to the implementation of speci c constraint s o l v ers. The main features provided at the language level comprise the attributed variable data structure and the suspension handling predicates. An attributed variable is a special data type Hui90] Hol92] w h i c h consists o f a v ariable with a set of attributes attached and whose behaviour on uni cation can be explicitly de ned by the user in a way that di ers from Prolog uni cation.

Attributed variables aim at dealing with speci c computation domains distinct from the Herbrand universe. The suspension handling predicates provide means to (1) delay a goal or constraint, (2) store it in a speci c list with respect to one or several variables, (3) awake a list of delayed goals when some given conditions are satis ed. The suspension handling predicates allowed us to implement the data driven constraint handling in Conjunto. In addition, the Conjunto solver makes use of the nite domain library of ECL i PS e to deal with integer interval terms (as well implemented as attributed variables).

Set data structure

A set variable is not represented as a standard Prolog variable, but as an attributed variable which is subject to a dedicated uni cation algorithm. The internal representation of ground sets is also given since it in uences the time complexity of the transformation rules. Both the data structure and the internal representation of ground sets are not visible to the user and will be ignored in the description of the transformation rules.

Set variable representation

A set variable is an attributed variable comprising the following list of attributes. This structure stores for each s e t v ariable all the necessary information regarding its domain, cardinality, and weight (n ull if unde ned) together with three suspension lists. The attribute arguments have the following meaning: setdom: Glb,Lub] represents the set domain. The user can access it using the built-in predicates glb, lub.

card: C represents the set cardinality. This attribute C is initialized as soon as a set domain is attached to a variable. It is either an integer interval or an integer. It can be accessed and modi ed using speci c built-in predicates from a nite domain library.

weight: W represents the set weight. W is intialized to zero if the domain is not a weighted set domain, otherwise it is computed as soon as a weighted set domain is attached to a set variable. It can be accessed and modi ed using speci c built-in predicates from a nite domain library.

del_glb: Dglb is a suspension list that should be woken when the lower bound of the set domain is updated.

del_lub: Dlub is a suspension list that should be woken when the upper bound of the set domain is updated.

del_any: Dany is a suspension list that should be woken when any set domain re nement is performed.

Ground set representation

The choice for the internal representation of sets is independent of the algorithms, and not visible to the user. However, it plays a role in the time complexity of the di erent set operations. In contrast to integer intervals, the time complexity for operations on ground sets (+ ; versus \ n) can not be considered as constant for it closely depends on the internal representation of a set. In Conjunto each ground set is represented by a sorted list where the time complexity for any set operation (\ n) is bounded from above b y O(2d) w h e r e d is #lub(s)+#glb(s) and s the set with the largest domain.

Since we w ork essentially on set domains, another approach has been tried out which consists in representing a set domain as a boolean vector mapped onto a list containing the actual value of the elements. The upper bound is speci ed by t h e s e t o f e l e m e n ts whose corresponding 0-1 variable has the value 1 or 0-1 (undetermined). The lower bound is speci ed by the set of elements whose corresponding 0-1 variable has the value 1. This approach reduces the time complexity of the and \ operations to O(#lub(s)) where lub(s) is the largest domain upper bound. But this leads to much larger memory usage due to the size of the domains used in practice and to the handling of two lists (the list of 0-1 variables and the list of actual values).

From now on, the value of d in the complexity results will always stand for #lub(s) + # glb(s).

Set uni cation procedure

A Conjunto program attaches a speci c semantics to set terms. This semantics requires to extend the Prolog uni cation to the one of set terms. The behaviour of the set uni cation procedure comprises the following tests and inferences: the uni cation of a logical variable and a set variable. The logical variable is bound to the set variable. the uni cation of a ground set and a set variable. The set variable is instantiated to the ground set if it belongs to its domain. the uni cation of two set variables. The two v ariables are bound to a new variable whose domain is the convex intersection of the two domains (cf. set interval calculus). If this domain is empty the uni cation fails. the uni cation of a set variable with any other term fails.

The uni cation procedure is used in the generic algorithm for a system of Conjunto constraints. It will be implicitly referred to by the connective .

Local transformation rules

Consistency notions for primitive set constraints and graduated constraints have been de ned in the formal part (cf. 3.3.3). By making use of these de nitions, the following transformation rules check and infer the consistency of primitive Conjunto constraints. They are based on interval reasoning techniques which are approximations of the constraint satisfaction techniques. The basic idea consists in pruning the set domains attached to the set variables by removing set values which can never be part of any feasible solution. Set values are removed by a d d i n g elements to the lower bound of the domain and/or by removing elements from the upper bound.

Transformation rules for primitive set constraints

Primitive set constraints are s `< s 1 and s `<> s 1 where s and s 1 denote set variables ranging over a set domain. The transformation rules are depicted in gure 5. Thanks to the monotony of the set operations (\), the interval reasoning applied is equivalent to domain reasoning i.e., it guarantees that each element i n the domains is a possible value for the set.

Complexity issues. The time complexity f o r e a c h transformation is bounded

by O(d) since only one set operation is applied each time.

Projection functions for n-ary constraints

Constraints over set expressions have not been dealt with so far. These n-ary constraints require a special handling mechanism due to the properties of the set operations. If there i s m o r e than one set operation in the constraint, it is practically impossible to express each set variable in terms of the others, since set operations have no direct inverse. T h i s p o i n t requires us to tackle n-ary constraints as \mini-programs". The approach implemented in Conjunto consists in approximating an n-ary constraint b y (1) associating each basic set expression (s 1 \/ s 2 , s 1 /\ s 2 , s 1 \s 2) with its relational form, (2) applying inductively this process until the n-ary constraint can be expressed as a binary one. The relational forms of set expressions are derived by creating a new set variable whose domain is approximated by using the set interval calculus. The relational forms correspond to the following constraints:

union (s 1 s 2 s) $ s 1 \/ s 2 `= s inter (s 1 s 2 s) $ s 1 /\ s 2 `= s diff (s 1 s 2 s) $ s 1 \ s 2 `= s

The local consistency of these 3-ary constraints ensures that no triples satisfying the constraint are excluded. The inference is performed using transformation rules that make use of the projection functions each of whose describing each set domain in terms of the others (cf. formal part 3.3.3). Each such projection uniquely de nes a smallest set domain which c o n tains the possible solution values. Three projection functions are required per relational constraint. They are depicted in gures 5.4, 5.5, 5.6. Projection functions associated to the constraint union(s 1 s 2 s) such that s 1 2 d 1 s 2 2 d 2 s2 d. T5 holds also for s 2 . Figure 5.

Projection functions associated to the set union relation

The union of two sets represents a logical disjunction. So it is very unlikely that the addition of new elements t o glb(d) requires modifying the lower bound of the domains of s 1 or s 2 . The one case which requires such a re nement occurs if some elements belong to the lower bound of d and can never belong to one of the two sets (cf. T5). Consequently they should be added to the other one.

Projection functions associated to the constraint inter(s 1 s 2 s) such that s 1 2 d 1 s 2 2 d 2 s2 d. T7. holds also for s 2 . Figure 5.

Projection functions associated to the set intersection relation

The intersection of two sets represents a logical conjunction. So any addition of elements to one of the three domains requires modifying at least one of the lower bounds of the domains. A pruning of the upper bound of these domains is rarer. However, it might occur in the case depicted in T7 which corresponds to the following con guration: some elements are de nite ones of s 2 (or s 1) and possible ones of s 1 (or s 2). If they cannot belong to s then they should be removed from the upper bound of the domain of s 1 (respectively s 2).

Projection functions associated to the constraint diff(s 1 s 2 s) s u c h t h a t s 1 2 d 1 s 2 2 d 2 s2 d: Figure 5.6 Projection functions associated to the set di erence relation

The second part of the rule T9 considers a particular case where the upper bound of d 1 should be pruned. If lub(d 1) contains elements which do not belong both to the upper bound of d and to the upper bound of d 2 , then these elements cannot belong to s 1 . Both conditions must be satis ed to prune lub(d 1).

Complexity issues. Time complexity for each transformation rule is bounded by O(d) times the number of basic set operations, which is bounded by 4 for the rules T7 and T9.

Remark. The relational constraints are transparent to the user at the programming level. However, any temporary state of a program is given in terms of these newly created constraints.

Example 83 A p artially solved c onstraint of the form: S1 \/ S2 `< S2 /\ S3 is stored using the set of delayed g o als:

union(S1, S2, S12), inter(S2, S3, S23), S12 `< S23.

Graduated constraints: cardinality and weight constraints

Graduated constraints deal with set variables and integer variables. Inferring the partial consistency of these constraints might require re ning the integer domains or assigning a value to a set. Since graduations are not bijective functions, a modi cation of the integer domains is not a su cient condition to require a set domain re nement. The pruning achieved by the following transformation rules guarantees that (1) the values removed from the domains cannot be part of any feasible solution, (2) if a solution exists, its value lies in the remaining set and integer domains. Consider the set cardinality constraint #(s x) where s 2 d and x 2 m n]. x is an integer variable. We have:

T12. m 0 n 0] m n] \ #glb(d), #lub(d)] T13. d 0 glb(d) if #glb(d) = n T14. d 0 lub(d) if #lub(d) = m

Constraint solver

The transformation rules described so far deal with individual constraints. The constraint solver applies these rules to check/infer the consistency of an admissible system of constraints in an incremental way. Incrementality refers to the nature of the Conjunto solver which stores each newly consistent constraint and handles the consistency of each constraint in conjunction with the constraint store.

The algorithm. Let a tuple (c s) denote a constraint c over a set of variables designated by s. The initial set of constraints to be considered is designated by G.

A list C which represents the constraint store contains all the constraints whose consistency has been checked. The solver selects one constraint c at a time in G and applies to it the adequate local transformation rule using a depth rst search strategy. Each constraint c is determined to be consistent if the transformation rule infers consistent domains. This might require some domain re nements and consequently a need to reconsider some constraints in C whose variables intersect with those in c. S u c h constraints are moved from C to G. This process describes the data driven mechanism of the solver. The constraint c is then added to the constraint store C and another constraint is selected in G. for each (p ṽ) i n C do if s0 \ ṽ 6 = then remove (p ṽ) from C and add it to G end add (c s) to the end of C. end end Figure 5.9 General algorithm This generic algorithm generalizes the complete algorithm we h a ve described in Ger94] by m o ving from the handling of a system containing only primitive set constraints to a system containing any constraint a l l o wed in the language. This algorithm resembles the relaxation algorithm used by CLP(Intervals) systems LvE93] also referred to as xed point algorithm in BMH94] B e n 9 5] . A l l of those can be seen as an adaptation of the AC-3 algorithm Mac77] where domains are speci ed by i n tervals. The only di erence between the algorithms lies in the transformation rules applied. The generic algorithm satis es the following properties of xed point algorithms.

Theorem 84 The algorithm always terminates.

Proof (termination) This comes from the fact that the domains are nite and only get re ned: in the di erent transformation rules, the new lower bounds are computed by extending the former ones (union operation) and the upper bounds are derived by i n tersecting or removing elements from the former ones. If an inconsistency is detected, the algorithm terminates with failure.2 Theorem 85 If a solution exists, it can be derived f r om the simpli ed s y s t e m o f constraints.

Proof This follows directly from the monotony of the convex closure operators 6and the inferences performed in the transformation rules. Monotony guarantees that the actual value of a set or integer lies in the approximated domains. The transformation rules aim at removing values which can never be part of any feasible solution. So all possible solution values are kept.2

Complexity issues Let l be the size of G and e the size of C. The cost of one transformation rule is bounded by O(6d) (d being the largest #lub(s) + #glb(s)). For one constraint the algorithm can be iterated at worst d 0 times if d 0 = # lub(s) ; #glb(s). If these iterations are necessary for all the constraints the worst time complexity is then O(ldd 0).2 This time complexity does not occur in practice. On the one hand, if it occurs this means the algorithm leads to a complete solution which is quite rare. On the other hand, the constraints are not systematically reconsidered if some of their variable domains get modi ed. Indeed, the constraints are stored in various suspension lists so as to avoid reconsidering them when there is no need to do so. These lists are described below.

Suspension lists

Three di erent lists are attach e d t o e a c h set variable. They are meant to improve the time complexity a n d t h us the e ciency of the solver by splitting the list C so that only those constraints concerned with the speci c domain re nement are woken. Corresponding to each set variable s i with domain d i , e a c h of the three lists could contain the following goals: Q glb contains the primitive constraints for which a modi cation of the lower bound of d i might require reconsidering the constraints. It contains only constraints of the form s i `< s j . Q lub contains the primitive constraints for which a modi cation of the upper bound of d i might require reconsidering the constraints. It contains the constraints of the form: s j `< s i s i `<> s j , (and its symmetrical s j `<> s i). Q any contains the remaining constraints for which a n y set domain modi- cation might require reconsidering them. In other words it contains the relational constraints (relational forms of the set union, intersection and di erence operations) and the graduated constraints in which t h e v ariable s i appears.

In addition, the graduated constraints are also stored in the list of delayed goals attached to the integer variables appearing in it. While graduated constraints are delayed only once, they are attached to two lists and thus might b e reactivated with respect to two di erent conditions. This process establishes the dynamic cooperation between the Conjunto solver and the nite domain solver. It guarantees that the partial consistency of a graduated constraint i s a l w ays maintained within a constraint system.

Execution of a Conjunto program: architecture

The Conjunto solver can be embedded in any logic-based language provided a set of constraint solving facilities is given or can be de ned. These facilities comprise (1) attributed variables or a similar structure which links a set variable to its domain and the required lists of delayed goals, (2) suspension handling mechanisms to deal with delayed goals, (3) possibly a nite domain library to tackle set based optimization problems. Figure 5.10 presents the execution of a Conjunto program together with the di erent modules and functionalities required. This chapter shows the applicability of the Conjunto language to the modelling and solving of set based search problems. We describe how c o m binatorial search problems can be modelled as set domain constraint satisfaction problems using the Conjunto language. The focus is on the expressiveness and the e ciency of the language when dealing with search problems and optimization problems arising from operations research and combinatorial mathematics.

Set domain CSPs

The modelling and solving of a set domain CSP follows the usual procedure for CSPs which consists of the problem statement, the labelling procedure and possibly the search for an optimal solution.

Problem statement

The statement of a set domain CSP amounts to:

Initializing the set variables by assigning a set domain to them. Stating the constraints. The constraints can be set constraints or graduated constraints. The set constraints establish links between set variables. The graduated constraints restrict the possible set of values a set could take by applying a kind of measure to the set. The set cardinality constraint is used to bound the cardinality of a set to a speci c integer domain (or possibly to an integer). The weight constraint restricts the sum of the integer values appearing in a set domain. These constraints might generate integer variables which are not relevant for the nal solution, but which take p a r t in the problem de nition and particularly in optimization functions.

Labelling

The labelling phase aims at nding values for the distinguished set variables MR93], that is those which are part of the nal solution. This can be done either by using the pre-de ned labelling procedure refine described in the practical framework (cf. 4.1.4.3), or by de ning a new labelling procedure based on speci c labelling strategies. An e cient set labelling procedure should not try to directly instantiate a set to one of its domain elements. The reason is that by doing so, the satisfaction of those constraints for which only a partial consistency is guaranteed is reached in a passive w ay. The best method in terms of active use of (graduated) constraints is based on incremental set domain re nements by adding one by o n e elements to the lower bound of the set domain (or possibly by r e m o ving elements from the upper bound)

Optimization

The concept of optimality is related to the notion of minimizing or maximizing a cost function. This function necessarily denotes a measure, takes as input an arithmetic expression and returns an integer value. Possible cost functions associated with a set domain CSP are the sum of the set cardinality v alues, the sum of the weights, etc. Such a function constrains the sets via their associated measure and consequently no speci c optimization predicate is required to deal with sets. The user can make use of existing predicates developed for integer domain CSPs with an optimization criterion. One of these predicates used in a subsequent application (set partitioning), performs the branch and bound search.

The predicate min_max(Goal, Cost) searches for a solution to the goal Goal that minimizes t h e v alue of the linear term Cost using the branch a n d b o u n d method from operations research PS82]. As soon as a partial solution to Goal is found whose cost is worse than the previous solution the search is not explored any further and a new solution is searched for.

Another predicate is often used to minimize the cost of a solution within a xed range: min_max(Goal, Cost, Min, Max, Percent). This predicate also makes use of the branch and bound method with some restrictions. It starts with the assumption that the value Cost to be minimized is less than or equal to Max. As soon as a solution is found whose minimized v alue is less than Min, this solution is returned. When one partial solution is found, the search for the next better solution starts with a minimized value Percent % less than the previous one.

The use of these predicates in a set domain CSP requires the de nition of Goal as a set labelling procedure call, plus a graduated constraint whose integer value is Cost. The solving of min_max/2/5 will execute the labelling procedure and incrementally re ne the integer domain involved in the graduated constraint. Once all the sets are labelled the integer domain becomes one value (the cost) which c a n b e e v aluated. The optimization process will then constrain the integer variable appearing in the graduated constraint t o h a ve its value in a new domain whose upper bound is lower than the cost previously computed.

Modelling facilities

The two problems presented in this section come from the areas of combinatorial mathematics Lue89] and operations research. The rst one |the ternary Steiner problem| is to nd a speci c hypergraph whose nodes are integer variables. Our approach illustrates how a n h ypergraph whose nodes are integer variables can be modelled as a simple graph whose nodes are set variables. The second problem is a set partitioning problem usually represented by mathematical models and solved using integer linear programming techniques. Here it is modelled as a set domain CSP.

Ternary Steiner problem

The ternary Steiner problem has its origins in combinatorial mathematics. It belongs to the class of block theory problems which deal with the computation of hypergraphs. A hypergraph is a graph with the property that some arcs connect collections of nodes. This problem has only recently been addressed in computer science. Bel90b] addresses this problem for the rst time. The approach consists in representing the problem as an integer domain CSP in a constraint logic programming (CHIP DSea88]), using the new concept of global constraints. The integer domain CSP modelling corresponds to the hypergraph representation: the integer variables represent the nodes and the global constraints represent the hyperarcs.

Problem statement The statement i s t a k en from Bel90b]. A ternary Steiner system of order n is a set of T = n(n;1)=6 triples of distinct elements in f1 ::: ng such t h a t a n y t wo triples have at most one element in common. The mathematical properties of this problem prove that n modulo 6 has to be equal to 1 or 3 LR80]. One solution of Steiner 7 is for example: f1 2 6g f1 3 5g f2 3 4g f3 6 7g f2 5 7g f1 4 7g f4 5 6g

The integer domain CSP modelling or hypergraph representation uses three nodes, or variables, ranging over f1 : : : n g to represent a triple fX Y Zg. T h e constraints are (1) ordering constraints between the three nodes (X < Y < Z) s o as to remove equivalent triples under permutations of the elements (2), any triple must have at most one element in common with the other triples of nodes. This amounts to constraining each pair of a triple to be pairwise distinct from any o t h e r pair appearing in another triple. This requires constraining all the n(n;1) possible pairs (6 per triple X, Y, Z]: X,Y], Y,X], X,Z], Z,X], Y,Z], Z,Y]) to be pairwise distinct. This approach is sound but far too costly in variables and constraints. A global constraint all_pair_diff has been de ned in Bel90a] Bel90b] to free the user from specifying all the pairwise distinct pairs.

If each set of three nodes, describing a triple, can be represented as one variable, then the hypergraph corresponds to a graph. This allows the modelling to be simpler and to require less variables. Such a modelling corresponds to a set domain CSP approach.

Problem modelling Modelling the problem as a set domain CSP involves representing each triple as one set variable. Let S i 1 < i < T denote the T set variables which represent the triples. Their domains are initialized to the set domain {},{1,...,n}].

The constraint \any t wo triples have at most one element in common" is simply represented by: #(S i /\ S j) = < 1 . The constraint generation is summed up in the short program:

constraints(Lsets) :- intersect_atmost1(]). card_all(Lsets, 3), intersect_atmost1(S1 |L]) :- intersect_atmost1(Lsets). distinctsfrom(S1, L) , intersect_atmost1(L). card_all(], N). card_all(Set1|LSets], N) : - distinctsfrom(_S,]). #(Set1, N), distinctsfrom(S, S1 | L]) :- card_all(LSets, N). #(S /\ S1, C), C =< 1, distinctsfrom(S, L).
card_all constrains the cardinality of each set variable in the list Lsets to be equal to 3. The predicate intersect_atmost1 generates the main constraint to be satis ed by e a c h pair of triples.

Problem solving The resolution makes use of the labelling procedure refine(S) for each triple S. I f n = 7, the rst set is instantiated to f1 2 3g.

Then the system tries to instantiate the second set by rst adding the element 1 to its lower bound. This domain re nement requires reconsidering the constraint #(S1 /\ S2, C), C =< 1. This results in a re nement of the domain of S2 by a removal of the values 2 and 3 from the upper bound of its domain. At this stage in the resolution, the re ned domains are: S1 = {1,2,3}, S2 `:: {1},{1,4,5,6,7}], S3,S4,S5,S6,S7] `:: {},{1,...,7}].

Computation results

The problem was solved in 0.8 sec on a Sun4/40 for n = 7 . S i x c hoice points were created during the solution step. Beldiceanu Bel90b] says that 21 choice points were generated and 0.08 sec were su cient t o s o l v e the problem. This di erence in choice points and time was surprising. Unfortunately the global constraint and the program developed were not available and so, in order to make a sound comparison, we d e v eloped the same program as described in the paper using the ECL i PS e integer domain library. The choice points and the time required were then similar to the Conjunto approach, but the program was much less natural. The complexity of this problem grows exponentially with n. In Bel90b] the problem has not been tackled for larger values than 7. Indeed, it turned out that using the same program to solve the problem when n = 9 l e a d s t o a c o m binatorial explosion. We de ned a labelling strategy which consists in constraining each element to belong to at most (n ; 1)=2 triples. Indeed, there are at most n ; 1 distinct pairs containing one element i and a triple containing i must contain 2 of these pairs. In practice this labelling strategy corresponds to a simple occur check before adding one element to a set domain. This does not help when n = 7 but for n = 9 it reduced the number of choice points from 7180 to 116 and consequently the computation time from 501 sec. to 18 sec. Remark. For one value of n there exists more than one solution. The search for all the possible solutions requires us to take i n to account the symmetries inherent to the problem i.e., those which do not depend on the modelling. A permutation of two sets does not change the actual solution but corresponds, from a computational point of view, to new instances of the set variables. In fact, the modelling of a search problem as a set domain CSP removes the symmetries that come from an integer domain CSP approach. In the Steiner application, the solving of the set domain CSP program led to a pruning of the search s p a c e which is equivalent t o t h a t a c hieved by the global constraints, aiming at removing local symmetries. Consequently, set constraints resemble some global constraints in terms of problem solving and pruning ability, but to cope with this actual symmetries of the problem a global reasoning on sets is necessary.

The set partitioning problem

The set partitioning problem GM84] is an optimization problem that comes from operations research. Consider a mapping from a set of elements to a collection of equivalence classes each of which contains a subset of these elements, and has a speci c cost. The objective is to nd a subset of the classes such that they are all pairwise disjoint, each element i s m a p p e d o n to exactly one class and the total cost of the selected classes is minimal. The set partitioning problem resembles the set covering problem, but it is more complex because the disjointness constraints do not guarantee that a feasible solution exists.

This problem is currently tackled as a 0-1 integer linear programming problem using the following mathematical model:

minimize (c x) (a ij) x = e m
where c is a cost vector 1 n, (a ij) i s a n m n known matrix comprising 0 and 1 values, x is an n 1 v ector of 0-1 variables and e m is a vector of m entries equal to 1. We h a ve: 8i 2 Dom 8j 2 f 1 : : : n g a ij =

(1 if i 2 S j , 0 otherwise

Each equivalence class is denoted by a set S j .

Example 86 A 0-1 modelling corresponds to the following system of constraints: min c 1 x 1 + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6

x 1 + x 3 + x 5 = 1 x 1 + x 2 + x 3 + = 1 x 1 +

x 3 + x 6 = 1 x 4 + x 5 + x 6 = 1 x 4 +

x 6 = 1 Each column represents an equivalence class. Each line refers to one element in f1 :: 5g. The equality constraints specify that an element can belong to exactly one equivalence class.

Problem statement The mathematical statement of the problem is depicted here in terms of relations and set constraints. Consider a mapping R from Dom to Ran which is constrained to be an application. Let the DS-domain be Dom = f1 2 ::: mg and the AS-range be a family Ran of n subsets of Dom such that Ran = fS 1 ::: S n g where each S j is an equivalence class (a ground set) and:

j2f1 2 ::: ng S j = Dom

A subset P 0 of Ran is a partition of Dom if and only if: j2f1 2 ::: ng S j = Dom ^8S j S k 2 P 0 S j \ S k = A cost set S c is associated to the elements S i of Ran by considering a weighted set composed of elements (S i w i). The nal problem is to determine a partition P such that:

X i w i is minimal
This statement corresponds to the approach used with the Conjunto language.

Problem modelling Let a relation R on the ground sets Dom and Ran be constrained to be an applicative mapping. Each successor set is constrained to be a subset of the proposed sets. These constraints are not su cient to solve the problem. Two other requirements are necessary: the nal set P of equivalence classes should contain only disjoint sets. an instantiated successor set should also represent the successor set of all its predecessors. This corresponds to adding two constraints which w i l l b e c hecked using the forward checking inference rule (i.e., once a successor set becomes ground). Informally, as soon as one successor set succ(R i fs k g) becomes ground we m ust have: 8j 2 Dom succ(R j s j) (if j 2 s k s j = fs k g if j = 2 s k s j \ f s k g = (1)

These constraints correspond to the program: disj_or_eq(_R, _Dom,]). disj_or_eq(R, Dom, S | LSuccs]) :-(set(S), S = {Eq} -> iterate(Eq, E, (succ(R,E, {Eq}))), Diffset `= Dom \ Eq, succ(R,F,Sf), iterate(Diffset, F, (Eq notin Sf)) delay(disj_or_eq(R, S]), S, glb)), /* the constraint is delayed and woken when the lower bound of S gets modified */ disj_or_eq(R, Dom, LSuccs).

disj_or_eq generates the constraints (1) which should be satis ed by e a c h successor set. It takes as input the application R, its domain Dom and the list of all the successor sets S | LSuccs]. The constraint disj_or_eq(R, S]) is delayed if the successor set S is not ground, and activated as soon as it becomes ground. The iterate(S, E, Goal) predicate is an abbreviation for purposes of clarity only. Its role is to apply to each e l e m e n t E in the ground set S the goal Goal. A t the implementation level, it transforms the ground set S int o a l i s t a n d iterates over this list.

Example 87 The statement of the above example using Conjunto corresponds to the following set of constraints: R bin_r {1,2,3,4,5} --> {{1,2,3},{2},{1,2,3}, {4,5},{1,4},{3,4,5}}, appl(R), succ(R, 1, S1), S1 `< {{1,2,3},{1,4}}, succ(R, 2, S2), S2 `< {{1,2,3},{2}}, succ(R, 3, S3), S3 `< {{1,2,3},{3,4,5}}, succ(R, 4, S4), S4 `< {{4,5},{3,4,5}}, succ(R, 5, S5), S5 `< {{4,5},{3,4,5}}, /* each element i is mapped to a set Si whose domain contains the possible equivalence classes (ie. those which contain i) */ /* Note that columns 1 and 3 in the ILP modelling correspond here to one equivalence class {1,2,3}*/ disj_or_eq(R, {1,2,3,4,5}, S1,S2,S3,S4,S5]).

The search space associated to these problems is usually very large and simplication rules are applied in order to reduce the initial problem size. An overview of these rules can be found in HP92] Pad79]. They consist in removing rows and columns in the adjacency matrix formulation. This corresponds to removing, in a deterministic manner, redundant sets from the successor set domains, and to bounding some successor sets to the same variable. The main operations amount to checking disjointness and/or inclusion of sets and to computing cliques over the successor set domains.

The set of rules corresponds to the following sequences of computations: (1) compute the clique K i in the associated intersection graph of R attached to each element i in Dom. This means: for each successor set S i attached to i, collect all the sets in Ran which h a ve at least one element in common with each set in the domain of S i (2) compute for each i 2 Dom the di erence set K i n lub(succ(R i)) which c o n tains the irrelevant v alues and compute the union of all the di erence sets (3) remove from the domain of each successor set S j such that j 6 = i, t h e values which are in the union set.

Example 88 For i = 1 , we have S1 `< {{1,2,3},{1,4}} and the corresponding clique is K1 = {{1,2,3},{1,4}, {3,4,5}}. The elements removed f r om the domain of S1 are those in K1 \ lub(S1) that is the set {3,4,5}.

Problem solving One important strength of partial constraint s o l v ers is their dynamic behavior thanks to the delay m e c hanism. For example the removal of the set {3,4,5} from the successor set domains makes it necessary to reconsider the set cardinality constraint o ver S3 and S5 (cf. appl). The system infers the two instantiations S5 = {{4,5}}, S3 = {{1,2,3}}. F rom these instantiations, the system activates the disj_or_eq constraint and infers: S1 = S2 = S3 = {{1,2,3}}, a n d S4 = S5 = { { 4 , 5 } } . In this simple example, the optimal and unique solution is found without any labelling procedure. The costs of the various sets does not need to be taken into account.

A larger application has been developed, in which it is necessary to look for an optimal solution using the predicate min_max/5 and to consider a speci c labelling strategy. Both require considering an additional set variable which r a n g e s o ver a weighted set domain. This domain contains all the sets belonging to Ran with their associated cost. Let Sw be this set. The weight constraint weight(Sw,C) forms the basis in the minimization process. Additionally, the domain of Sw is used in the labelling strategy. The strategy aims at selecting a set among the remaining ones whose costs is the lowest.

The labelling procedure considers each successor set S i in order. The set E with the lowest cost which belongs to Sw and to the upper bound of the domain of S i is selected, and added to S i . A c hoice point is created and in case of failure the program backtracks. The previous state is restored and the set E is removed from the domain of S i . The optimization predicate for the set partitioning problem is:

min max((labelling(LSuccs S) take min(C)) C Min Max %):

take_min(C) is an integer domain predicate which binds an integer term C to its minimal value. C is the weight of the set variable S.

To solve the goal labelling(LSuccs, S), take_min(C), w e rst label all the sets, instantiate the weight of the set domain of S to its minimal value and then search for a better solution according to the criteria given.

Computation results A set partitioning problem describing a 0-1 matrix of size 17x197 was implemented using the approach presented here. The complete program takes 4 pages. The problem was taken from the Ho man and Padberg library HP92]. The heuristics led to a simpli ed problem within 7 seconds and the optimal solution was found within 13 seconds. The proof of optimality required 31 additional seconds. The heuristics removed 31 equivalence classes which enables us to divide the number of choice points by 3 .

As far as we know this is the rst time a set partitioning problem was modelled concisely, and solved with reasonable e ciency within a logic-based language using constraint satisfaction techniques. A modelling using integer domains (0-1) has be tried, but the programmer gave up due to the di culties he encountered in representing the heuristics.

On the one hand, the exibility and conciseness of the Conjunto approach is a strength compared with existing mathematical models. On the other hand, constraint satisfaction techniques are not competitive when compared with global methods like the simplex. For example, the system of Padberg et al. dedicated to set partitioning problem solving solves this problem in less than one second. While completing this work, it appeared to us that the set domain CSP approach is promising when investigating feasibility issues that are problematic with the simplex method. The simplex stops when the model is detected to be inconsistent but it cannot detect the reasons for failure. The inherent incremental solving of constraint satisfaction techniques can be of a great help. In addition, the partitioning problem appears as a sub_problem in numerous real life applications (eg. timetables, bus line balancing), which are currently solved using integer domain solvers. While integer domain CSP are well suited to the scheduling constraints of these problems, a set domain CSP can provide an easy way to tackle the partitioning constraints. The cooperation between the solvers is not a problem, provided that the constraints which i n volve s e t a n d i n teger variables can be attached to both. A real life application is worth considering.

E ciency issues: A case study

The previous section illustrated the applicability of the system for dealing with a large class of search problems involving sets, relations, graduations and optimization criteria. The question is: \can a gain in expressiveness be combined with a gain in e ciency ?". From a pruning point of view, the one-to-one correspondence between a set variable ranging over a set domain and a vector of 0-1 variables guarantees that if both sorts of variables are handled using the same labelling procedure (cf. refine), the pruning will be exactly the same. If there is a gain, it might therefore come from the saving in memory utilization and consequently from the garbage collection time. This point is illustrated through an integer linear programming optimization problem: the bin packing problem.

Problem description Bin packing problems belong to the class of set partitioning problems GJ79]. A multiset of n integers fw 1 : : : w n g is given that speci es the weight elements to partition. Another integer W max is given that represents the weight capacity. The aim is to nd a partition of the n integers into a minimal number of m bins (or sets) fs 1 : : s k g such that in each bin the sum of all weights does not exceed W max . This problem is usually stated in terms of arithmetic constraints over binary variables and solved using various operations research or constraint satisfaction techniques over binary nite domains. It requires one matrix (a ij) to represent the elements of each s e t , o n e v ector x j to represent the selected subsets s k and one vector w i to represent t h e w eights of the elements a ij . The cost function to be optimized is the total number of bins.

The mathematical formulation in 0-1 CSP and set domain CSP is described in the following gure. 0-1 CSP abstract formulation set domain CSP abstract formulation P m j=1 a ij x j = 1 for all i 2 f 1 : : n g s 1 \ s 2 = fg : : : s n;1 \ s m = fg s 1 ::: s m = f(1 w 1) : : (n w n)g where:

x j = 0 ::1

(1 if s j 2 f s 1 : : s k g 0 otherwise s j :: fg::f(1 w 1) : : (n w n)g a ij = 0 ::1

(1 if i 2 s j 0 otherwise P n i=1 a ij w i W max 8j 2 f 1 ::: mg weight(i w i) = w i P #glb(s j) i=1 weight(i w i) W max 8s j Under these assumptions, the program to solve i s t o minimize the number of bins:

min x 0 = P m j=1 x j minx 0 = # fs j j s j 6 = fgg Problem statement Let P = f (1 w 1) ::: (i w i) : : : (n w n)g be a non empty set of items i with a weight w i . The aim is to partition P into a minimal number of N bins such that the sum of the w i in a computed subset of P does not exceed a limited weight Wmax. A bin is represented by a set variable with initial domain fg P]. The union of all bins should be equal to P. This is represented using the all_union predicate. All the bins should be pairwise disjoint, which i s represented using the all_disjoint predicate. Problem solving The labelling procedure makes use of the rst t descending heuristic. This heuristic sorts the elements (i W i) in decreasing order of their weight. Bins are then lled one after another, which is more e cient than lling all the bins in parallel. The optimization predicate is the classical one for packing problems which initializes the number of bins N to the value weight(P)=Wmax and increases it at each call of goal predicate in case of failure. The solution is the rst successful partition. This program was used to solve a large instance of 80 items partitioned into 30 sets. The optimal solution was found in about 22 seconds on a SUN 4/40.

Experimental results and comparisons A comparative study was made with a integer domain (0-1) formulation implemented using the nite domain library of ECL i PS e . F or the encoding of sets and set constraints, we used respectively lists of binary variables and arithmetic constraints on the variables described previously. The arithmetic constraint predicates were handled using the ECLiPSe solver1 of arithmetic constraints over nite domains. The two programs di er in the data structure used, and thus in the constraints applied to these data. The rst point to note is that this di erence has an impact both on the space usage (stack p e a k s 2) and on the cpu time. The space utilization comprises, among other stacks, the global stack and the trail stack. The data structure is largely responsible for the growth of the global stack peak. The di erence in space utilization (stack sizes) between the two approaches comes from the set-like representation as a list of zero-one domain variables versus two sorted lists in Conjunto. The lists of zero-one variables are never reduced because retrieving an element from a set corresponds to setting a variable domain to zero. This is not the case with the set domain representation.

The trail stack is used to record information (set domains or lists of zero-one variables) that is needed on backtracking. The number of times the two program execution backtrack is the same, so the di erence comes from the amount o f information recorded.

The garbage collection number is the times garbage collections are performed which is closely linked to the global and trail stack because the garbage collection on both at the same time. Thus, the di erence in the garbage collection number comes again from the space utilization.

The di erence between the cpu times is due rst to the time needed for garbage collection which is a direct consequence of the size of the global and trail stack and secondly to the time needed for performing operations on the data.

Pro ling the cpu time consumption indicates that half of time spent i n t h e F D program resolution is the time needed for performing arithmetic operations on the zero-one variables. The weight constraint applied to each set is one of the most expensive computations. The weight constraint a i1 w 1 +a i2 w 2 + ::: a in w n w max which i s w oken each time an a ij is set to 1, consists of a Cartesian product of two lists. In the Conjunto program, it consists in constraining the sum of weights w i directly available from the elements (i w i) of a domain upper bound. Another costly computation in the FD formulation, is the computation of the largest weight not already considered for one set. This requires checking the value of the zero-one variable, and if this value is one, considering the weight associated to this variable. A weight is not considered if the corresponding domain variable is not instantiated. In the Conjunto program, this computation corresponds to the di erence of the two bounds of a set domain, and the resulting set contains the elements (i w i) w h i c h h a ve n o t y et been considered. Computing this di erence is in fact the most time consuming step in the Conjunto program resolution, because it is also performed when computing disjoint sets, but it represents half of the cpu time consumption of arithmetic operations. This application shows that set constraints together with set domains are expressive enough to embed the problem semantics, and to avoid encoding the information as lists of binary variables or handling additional data (the list of weights). It also shows that consistency techniques for set constraints are e cient enough to solve c o m binatorial problems on sets.

Conclusion

In this chapter, we h a ve shown how set based combinatorial search problems coming from combinatorial mathematics and operations research can be modelled and solved using Conjunto. The modelling is based on a set domain CSP approach and the solving on constraint satisfaction and search t e c hniques. The solving of set-based optimization problems is possible thanks to the graduated constraints (set cardinality and weight constraints) which map set terms onto quanti able terms.

With regard to an integer domain CSP, a set domain CSP approach contributes transparency with respect to the mathematical de nition of set problems, and allows the user to go from a hypergraph to a graph representation, thus reducing the number of variables and simplifying the constraint statement phase. As far as e ciency is concerned, the rst application (ternary Steiner problem) showed that the solving of set constraint a c hieves a pruning identical to that of global constraints. The cpu were also similar. This can be generalized to the class of global constraints whose behaviour resembles that of set constraints. The second application (bin packing) showed that an e cient set labelling procedure in a set domain CSP, p r o vides a pruning equivalent to the one of the labelling procedure currently used for 0-1 CSP problems .e., assigning one by one to 0-1 variables from a boolean vector the value 1 (or 0 in case of failure). Consequently, any 0-1 CSP can be modelled more concisely using Conjunto with a possible gain in e ciency. The gain comes essentially from the time needed for garbage collection which is more important in the 0-1 CSP approach w h i c h uses a larger amount o f v ariables.

The last application (set partitioning) makes us of the one-to-one correspondence between a set variable ranging over a set domain and a 0-1 vector which allows us to model 0-1 Integer Linear Programming (ILP) problems as set domain CSPs. The modelling of 0-1 ILP problems as set domain CSPs in a constraint logic programming language shows the programming facilities of logic programming and enhances the class of CSPs. In particular, a CSP view of 0-1 ILPs brings exibility to the modelling and can be useful when (1) unpure 0-1 ILP problems are to be tackled, (2) when their feasibility is problematical with ILP tools, (3) and when small 0-1 ILP problems are involved in some real CSP applications (eg. timetables, bus line balancing, etc).

Conclusion

Que chaque critique t' el eve, car tes possibilit es s' elargissent a vec elle ! Du matin au soir, ne cesse pas d'appeler le Nouveau.

In this document, we h a ve described the formal and practical framework of a new constraint logic programming language over sets. Its design and implementation allowed us to tackle e ciently set-based combinatorial search problems with a natural and concise modelling. The word \natural" is referring to the transparency of the modelling with respect to the mathematical formulation of the problem. The language models set-based problems as set domain Constraint Satisfaction Problems (CSP), and solves them using constraint satisfaction techniques. On the one hand, the set domain CSP paradigm extends the standard CSP paradigm to deal with partially ordered domains. On the other hand, we d o not lose the pruning power of constraint satisfaction techniques when applying them over set and graduated constraints. The applications developed with the Conjunto language showed its practical viability.

Today, the Conjunto solver is available as a library in the ECL i PS e platform, developed at ECRC. An industrial interest for this solver has appeared while we were implementing the system. Set constraints over set domains are now e m bedded in the ILOG solver.

While our work has essentially aimed at solving applications, it has provided us with a matter for a formal de nition of the language. The formal framework distinguishes between the computation domain of the constraint logic programming language, and the constraint domain over which the computations are actually performed. These two levels of discourse are linked together by approximations and closure operations. On the one hand, the user reasons on elements from the computation domain. On the other hand, the constraint s o l v er performs computations over elements from the constraint domain. Up to now, CLP(FD) languages are de ned as constraint logic programming languages, but their formal de nition is still based on the formal framework de ned by V an Hentenryck that is, embedding consistency techniques in logic programming. The formal description of the Conjunto language can be used to give a formal de nition of CLP(FD) languages in the CLP framework, since both systems handle constraints in a similar way.

The applications that we h a ve considered are operations research and combinatorial mathematics problems. However, those lasts years the notions of set constraints and set domains have been set for other purposes as well.

Related work A related line of work is program analysis systems HJ91] AW92] BGW93]

Aik94] among others. They handle a class of sets (possibly in nite sets) larger than that of CLP(Sets) languages or Conjunto, and deal with set constraints of the form s s 1 where s and s 1 denote speci c set expressions (depending on the system at hand). The di erent resolution algorithms are based on transformation algorithms which preserve the consistency of the system either by computing a least model HJ91] which does not preserve all solutions, or by computing a nite set of systems in solved form AW92]. In BGW93], the authors demonstrated that the latter algorithm takes non-deterministic exponential time. The di erence between these systems and the class of CLP(Sets) languages is that they do not interpret set operations. However, they show the expressiveness of set constraints for the analysis of programs developed in logic programming, functional programming, etc.

Another line of research which has some similar points with set domains is the rough set theory. Rough sets have been introduced in Paw84] Paw91] as a tool for dealing with incomplete knowledge in applications from arti cial intelligence (decision systems, pattern recognition, approximate reasoning, etc.). In order to reason on imprecise data in an information system, rough sets approximate the data by a pair of sets similar to the set domain concept. The idea consists in representing an information system as a data table which c o n tains partial information about some objects in terms of attribute values. The row indices of the data table contain the set of objects and the column indices, the list of attributes. The attribute values intersect rows and columns to describe the partial information which c haracterizes the objects. In general, any pair of objects in an information system may h a ve identical values for some attributes. Such similarities among objects are re ected by a relation called the \indiscernability relation". It is an equivalence class over the sets of objects (called the universe). This relation is used to de ne approximations of sets of objects from the universe. Two t ypes of approximations are de ned, the lower and upper approximations. Each o f t h e s e approximations tells us whether a set of object can be characterized by a given set of attributes. The lower approximation contains the set of objects which can be de nitely characterized by the attributes and the upper bound contain the set of objects which m i g h t b e c haracterized by the attributes. If some objects being in the upper bound do not appear in the lower one, this means that they are described by the same attribute values, and consequently can not be characterized by this set of attributes. The concept of rough sets di ers from that of set domains essentially in two p o i n ts. On the one hand, rough sets derive approximations from an external parameter which is the class of attributes considered. On the other hand, the approximations are not used to search f o r v ariable values, but to answer the following questions. If a set of objects can not be characterized in an information system can it be approximately characterized ? Is the whole knowledge necessary to describe an information system ? To w h i c h extent can we reduce it while keeping the initial information ?

Further developments Some issues are still open with respect to \what we did not do and remains to be done". We believe that some further research on applications and algorithms is needed.

Applications The concept of graduated constraints helped us with tackling setbased optimization problems, and studying the cooperation between two solvers (Conjunto and integer domain solvers), but the search space was de ned with set domains essentially. The Conjunto language has not been used so far to tackle real life applications de ned over a search space containing also integer domains. Applications involving scheduling constraints and set constraints are still to be developed. In particular, they would allow us to gure out whether it is possible or not to work on a mixed-search space. Time tables, bus line balancing, are some of the applications.

Another point that has not been considered yet, is the use of the language to deal with other application domains like databases. In recent y ears, linear constraints and constraint solving techniques over tuples of relations have been respectively embedded in constraint databases and query languages. The main motivations are respectively (1) to use constraints to model an in nite number of relations, (2) to use consistency techniques (mainly forward checking) for query optimization. The former approach (see KKR90]) considers linear constraints to model some classes of databases (e.g. in graphics). In the latter approach, a constraint in a database query is a condition that must be satis ed by a n s w ers to the query (see WBP95]). One can think of using set constraints in the former approach to model other sorts of databases. In the second approach set constraints could be used to state queries over collections of tuples.

Algorithms Regarding the class of consistency methods we h a ve been using, we h a ve e s s e n tially considered node and arc consistency techniques applied to set and graduated constraints. It sounds interesting to go beyond this, to use path consistency algorithms, and to take i n to account the latest researchs on the topology of constraint graphs. Some issues might be di erent from those already established with respect to integer domain CSPs. In this respect, the study of the ratio complexity/pruning is very important.

Future work

More work has to be done on extending the class of graduated constraints. Currently they map set domains to integer domains, that is a partially ordered structure to an ordered one. It could be interesting to consider mappings on two partially ordered structures, for example from sets to real intervals or vice versa. This would extend the expressivity and the application domain of the language. This requires studying the formal properties of such mappings and the nature of their closure which deal with elements from a powerset of convex parts. It also requires studying their handling when using constraint satisfaction techniques, in particular the degree of pruning achieved during the resolution is an important issue with respect to a practical use of these mappings.

It would also be interesting to extend the set domain concept to that of lattice domains. When solving set partitioning and Steiner problems we realized that if lattice domains and lattice inclusion constraints had been provided, the handling of a set of equivalence classes in the partitioning problem would have b e e n e a sier. For example, considering the lattice domains ff1 3g f1 2gg and ff1 2 3gg, we h a ve ff1 3g f1 2g g v f f 1 2 3gg. In addition, the global reasoning on the Steiner problem can be achieved in a straightforward way. A solution to the ternary Steiner problem modelled with lattice domains and constraints would have been the value of a single lattice variable, and consequently the symmetries generated by possible permutations of triples disappear. A set of constraints applied to variables ranging over lattice domains would ease the modelling and solving of set based problems dealing with the search for equivalence classes. They would model a set domain CSP as a lattice domain CSP, a n d t h us add a higher level of expressiveness with respect to set domains. On the one hand, the formal framework corresponding to embedding lattice intervals in CLP can be derived from the one we h a ve presented. On the other hand, the practical framework requires further works describing the algorithms and studying the trade-o between expressiveness and e ciency.

Annexe A

The set domain library: user manual We present the user manual of the set domain library which is currently available in ECL i PS e . I t d o es not comprise the mapping terms and constraints. Conjunto is a system to solve set constraints over nite set domain terms. It has been developed using the kernel of ECL i PS e based on metaterms (attributed variables). It contains the nite domain library of ECL i PS e . The library conjunto.pl implements constraints over set domain terms that contain herbrand terms as well as ground sets. Modules that use the library must start with the directive :-use_module(library(conjunto)) or :-lib(conjunto).

For those who are already familiar with the ECL i PS e extension manual this manual follows the nite domain library structure.

Note: for any question or information request, please send an email to carmen@ecrc.de.

A.1 Syntax

A ground set is written using the characters f and g, e.g. S = f1 3 fa gg f (2)g A domain D attached to a set variable is speci ed by t wo ground sets : Glb s Lub s] Set expressions: Unfortunately the characters representing the usual set operators are not available on our monitors so we use a speci c syntax making the connection with arithmetic operators: { is represented by \/, { \ is represented by /\, { n is represented by \

A.2 The solver

The Conjunto solver acts in a data driven way using a relation between states.

The transformation performs interval reduction over the set domain bounds. The set expression domains are approximated in terms of the domains of the set variables involved. From a constraint propagation viewpoint this means that constraints over set expressions can be approximated in terms of constraints over set variables. A failure is detected in the constraint propagation phase as soon as one domain lower bound glb s is not included in its associated upper bound lub s . O n c e a solved form has been reached all the constraints which are not de nitely solved are delayed and attached to the concerned set variables.

A. [START_REF] Hui | [END_REF] ?S `= ?S1

The value of the set term S is equal to the value of the set term S1.

?E in ?S

The element E is an element o f S. I f E is ground it is added to the lower bound of the domain of S, otherwise the constraint is delayed. If E is ground and does not belong to the upper bound of S domain, it fails.

?E notin ?S

The element E does not belong to S. I f E is ground it is removed from the upper bound of S, otherwise the constraint i s d e l a yed. If E is ground and belongs to the upper bound of the domain of S, i t i s removed from the upper bound and the constraint i s s o l v ed. If E is ground and belongs to the lower bound of S domain, it fails. ?S `< ?S1

The value of the set term S is a subset of the value of the set term S1. I f the two terms are ground sets it just checks the inclusion and succeeds or fails. If the lower bound of the domain of S is not included in the upper bound of S1 domain, it fails. Otherwise it checks the inclusion over the bounds. The constraint is then delayed.

?S `<> ?S1

The domains of S and S1 are disjoint (i n tersection empty). all_union(?Lsets, ?S)

Lsets is a list of set variables or ground sets. S is a set term which i s t h e union of all these sets. If S is a free variable, it becomes a set variable and its attached domain is de ned from the union of the domains or ground sets in Lsets.

all_disjoint(?Lsets)

Lsets is a list of set variables of ground sets. All the sets are pairwise disjoint.

#(?S,?C) S is a set term and C its cardinality. C can be a free variable, a nite domain variable or an integer. If C is free, this predicate is a mean to access the set cardinality and attach it to C. If not, the cardinality o f S is constrained to be C. The rst example gives a set of cars from which w e k n o w renault belongs to. The other labels {renault, bmw, mercedes, peugeot} are possible elements of this set. The Type_french set is ground and Choice is the set term resulting from the intersection of the rst two sets. The rst execution tells us that renault is element o f Choice and peugeot might be one. The intersection constraint i s partially satis ed and might be reconsidered if one of the domain of the set terms involved changes. The cosntraint is delayed.

In the second example an additional constraint restricts the cardinality of Choice to 2. Satisfying this constraint implies setting the Choice set to {peugeot, renault}. The domain of this set has been modi ed so is the intersection constraint activated and solved again. The nal result adds peugeot to the Car set variable. The intersection constraint i s n o w satis ed and removed from the constraint store.

A.4.2 Subset-sum computation with convergent w eight A more elaborate example is a small decision problem. We are given a nite weighted set and a target t 2 N. W e ask whether there is a subset s 0 of S whose weight i s t. This also corresponds to having a single weighted set domain and to look for its value such that its weight i s t.

This problem is NP-complete. It is approximated in Integer Programming using a procedure which "trims" a list according to a given parameter. For example, the set variable S `:: fg f The approach is the following: rst create the set domain variable(s), here there is only one which is the set we w ant t o n d . W e state constraints which limit the weight of the set. We apply the \trim" heuristics which r e m o ves possible elements of the set domain. And nally we de ne the cost term as a nite domain used in the min_max/2 predicate. The cost term is an integer. The conjunto.pl library makes sure that any modi cation of an fd term involved with a set term is propagated on the set domain. The labelling procedure re nes a set domain by selecting the element of the set domain which has the biggest weight using max_weight(Sub, X), and by adding it to the lower bound of the set domain. When running the example, we get the following result: An interesting point is that in set based problems, the optimization criteria mainly concern the cardinality o r t h e w eight of a set term. So in practice we just need to label the set term while applying the fd optimization predicates upon the set cardinality or the set weight. There is no need to de ne additional optimization predicates.

A.5 When to use set variables and constraints... The subset-sum example shows that the general principle of solving problems using set domain constraints works just like nite domains:

Stating the variables and assigning an initial set domain to them. Constraining the variables. In the above example the constraint i s j u s t a built-in constraint but usually one needs to de ne additional constraints. Labelling the variables, i.e., assigning values to them. In the set case it would not be very e cient to select one value for a set variable for the size of a set domain is exponential in the upper bound cardinality and thus the number of backtracks could be exponential too. A second reason is that no speci c information can be deduced from a failure (backtrack) whereas if (like in the re ne predicate) we a d d o n e b y one elements to the set till it becomes ground or some failure is detected, we b e n e t m uch more from the constraint propagation mechanism. Every domain modi cation activates some constraints associated to the variable (depending on the modi ed bound) and modi cations are propagated to the other variables involved in the constraints. The search space is then reduced and either the goal succeeds or it fails. In case of failure the labelling procedure backtracks and removes the last element added to the set variable and tries to instanciate the variable by adding another element t o i t s l o wer bound. In the subset-sum example the labelling only concerns a single set. Although the choice for the element to be added can be done without speci c criterion like i n t h e steiner example, some user de ned heuristics can be embedded in the labelling procedure like i n t h e subset-sum example. Then the user needs to de ne his own refine procedure.

Set constraints propose a new modelling of already solved problems or allows (like for the subset-sum example) to solve new problems using CLP. Therefore, one should take i n to account the problem semantics in order to de ne the initial search space as small as possible and to make a p o werful use of set constraints. The objective of this library is to bring CLP to bear on graph-theorical problems, thus leading to a better speci cation and solving of problems as, packing and partitioning which nd their application in many real life problems. A partial list includes: railroad crew scheduling, truck d e l i v eries, airline crew scheduling, tanker-routing, information retrieval,time tabling problems, location problems, assembly line balancing, political districting,etc.

Sets seem adequate for problems where one is not interested in each element as a speci c individual but in a collection of elements where no speci c distinction is made and thus where symmetries among the element v alues need to be avoided (eg. steiner problem). They are also useful when heterogeneous constraints are involved in the problem like w eight constraints combined with some disjointness constraints.

A.6 User-de ned constraints

To de ne constraints based on set domains one needs to access the properties of a set term like its domain, its cardinality, its possible weight. As the set variable is a metaterm i.e. an abstract data structure, some built-in predicates allow the user to process the set variables and their domains, modify them and write new constraint predicates.

A.6.1 The abstract set data structure A set domain variable is a metaterm. The conjunto.pl library de nes a metaterm attribute set with setdom : Glb,Lub], card: C, weight: W, del_glb: Dglb, del_lub: Dlub, del_any: Dany] This attribute stores information regarding the set domain, its cardinality, a n d weight (n ull if unde ned) and together with three suspension lists. The attribute arguments have the following meaning: setdom The representation of the domain itself. As set domains are treated as abstract data types, the users should not access them directly, but only using built-in access and modi cation predicates presented hereafter. card The representation of the set cardinality. The cardinality is initialized as soon as a set domain is attach e d t o a s e t v ariable. It is either a nite domain or an integer. It can be accessed and modi ed in the same way a s set domains (using speci c built-in predicates).

weight The representation of the set weight. The weight i s i n tialized to zero if the domain is not a weighted set domain, otherwise it is computed as soon as a weighted set domain is attached to a set variable. it can be accessed and modi ed in the same way as set domains (using speci c built-in predicates).

del_glb A suspension list that should be woken when the lower bound of the set domain is updated. del_lub a suspension list that should be woken when the upper bound of the set domain is updated. del_any a suspension list that should be woken when any reduction of the domain is inferred.

The attributes of a set domain variable can be accessed with the predicate svar_attribute/2 or by uni cation in a matching clause: get_attribute(_{set: Attr}, A) :--?-> nonvar(Attr), Attr = A.

The attribute arguments can be accessed by macros from the ECL i PS e structures.pl library, if e.g. Attr is the attribute of a set domain variable, the del_glb list can be obtained by: arg(del_glb of set, Attr, Dglb) or by using a uni cation: Attr = set with del_glb: Dglb

A.6.3 Set variable modi cation

A speci c predicate operate on the set domain variables. When a set domain is reduced, some suspension lists have t o b e s c heduled and woken depending on the bound modi ed. NOTE: There are 3 suspension lists in the conjunto.pl library, which are woken precisely when the event associated with each list occurs. For example, if the lower bound of a set variable is modi ed, two suspension lists will be woken: the one associated to a glb modi cation and the one associated to any modi cation. This allows user-de ned constraints to be handled e ciently. modify_bound(Ind, ?S, ++Newbound) Ind is a ag which should take t h e v alue lub or glb, otherwise it fails ! I f S is a ground set, it succeeds if we h a ve Newbound e q u a l t o S . I f S is a set variable, its new lower or upper bound will be updated.

A.7 Example of de ning a new constraint

The following example demonstrates how to create a new set constraint. To show that set inclusion is not restricted to ground herbrand terms we can take t h e following contraint w h i c h de nes lattice inclusion over lattice domains:

S 1 incl S

Assuming that S and S 1 are speci c set variables of the form S`::

fg ffa b cg fd e fgg] S 1 : : fg ffcg fd fg fg fgg], we w ould like t o d e n e such a predicate that will be woken as soon as one or both set variables' domains are updated in such a w ay t h a t w ould require updating the other variable's domain by propagating the constraint. This constraint de nition also shows that if one wants to iterate over a ground set (set of known elements) the transformation to a list is convenient. In fact iterations do not suit sets and bene t much more from a list structure. We de ne the predicate incl(S,S1) which corresponds to the following program. The program is quite long. Extending the solver to bear on lattice domains and constraints over lattices would add a lot of expressivity.

:-use_module(library(conjunto)).

incl(S,S1) :set(S),set(S1), !, check_incl(S, S 1) . incl(S, S1) :set(S), set_range(S1, Glb1, Lub1), !, check_incl(Glb, Lub1) :-set2list(Glb, L s e t s) , set2list(Lub1, Lsets1), all_union(Lsets, Union), all_union(Lsets1, Union1), Union < Union1,!, checkincl(Lsets,Lsets1). The execution of this constraint is dynamic, i.e., the predicate incl/2 is called and woken following the following steps:

We c heck if the two set variables are ground set. I f s o w e j u s t c heck deterministically if the rst one is included (lattice inclusion) in the second one check_incl. This predicate checks that any e l e m e n t of a ground set (which is a set itself in this case) is a subset of at least one element of the second set. If not it fails. We c heck if the rst set is ground and the second is a set domain variable. If so, check_incl is called over the rst ground set and the upper bound of the second set. If it succeeds, then the lower bound of the set variable might not be consistent a n y more, we compute the new lower bound (i.e., a d d i n g elements from the ground set in it (by using the union predicate) and we modify the bound modify_bound. This predicate also wakes all concerned suspension lists and instantiates the set variable if its domain is reduced to a single set (upper bound = lower bound). We c heck if the second set is ground and the rst one is a set variable. If so, check_incl is called over the lower bound of the rst set and the second ground set. If it succeeds then the upper bound of the set variable might not be consistent a n y more. The new upper bound is computed by intersecting the rst set with the upper bound of the set variable in the lattice acceptation large_inter and is updated modify_bound. we c heck if both set variables are domain variables. If so the lower bound of the rst set should be included in the lattice sense in the upper bound of the second one check_incl. If it succeeds, then if the lower bound the second set is no more consistent w e compute the new one by making the union with rst sec lower bound. In the same way, the upper bound of the rst set might not be consistent a n y more. If so, we compute the new one by intersecting (in the lattice acceptation) the both upper bounds to compute the new upper bound of the rst set large_inter. The upper bound of the rst set variable is updated as well as the lower bound of the second set modify_bound.

After checking all these updates, we test if the constraint implies an instanciation of one of the two sets. If this is not the case, we h a ve t o s u s p e n d the predicate so that it is woken as soon as any bound of either set domain is changed. The predicate make_suspension/3 can be used for any ECL i PS e module based on a meta-term structure. It creates a suspension, and then the predicate insert_suspension/4, puts this suspension into the appropriate lists (woken when any bound is updated) of both set variables. the last action wake triggers the execution of all goals that are waiting for the updates we h a ve made. These goals should be woken after inserting the new suspension, otherwise the new updates coming from these woken goals won't be propagated on this constraint !

A.8 Set Domain output

The library conjunto.pl contains output macros which print a s e t v ariable as well as a ground set respectively as an interval of sets or a set. The setdom attribute of a set domain variable (metaterm) is printed in the simpli ed form of just the glb lub] i n terval, e.g.

 An interval of two arbitrary elements x y in a lattice is the set x ^y x_ y]. De nition 18 A subset S of a lattice L is convex if x y 2 S imply x ^y x_ y] S Corollary 19 A c onvex subset of a lattice is itself a lattice. Corollary 20 A closed interval x ^y x_ y] is convex.

 x y) x ^z y ^z x y) x _ z y _ z Example 23 This property is extremely useful when reasoning about intervals i n a p o werset lattice P (X). Consider the following inclusion relations between elements of P (X): a x b and c y d x and y belong to the respective i n tervals a b] a n d c d]. From property 22, we infer a \ c x \ y b \ d and dually for the union operation. So if x and y are only de ned from the intervals they belong to, their union and intersection can be approximated by the new intervals a c b d] and a \ c b \ d].

 \ b a b]. De nition 33 A set interval domain or set domain is a convex subset of D S speci ed b y a b] such that a b and a b 2 P (H u). De nition 34 A set variable s is said to range over a set domain a b] if and only if s 2 a b].

 The set of all convex parts of P(D S) is a subset of P(D S) ordered by set inclusion and designated b y D S . De nition 37 The constraint domain CDis the algebraic structure of the lattice D S of set intervals ordered by set inclusion such that: CD= D S D S 2 a b]]

Property 4 2

 2 The operation conv(x) = x = glb(x) l u b (x)] has the following properties: C1. x x Extension C2. x = x Idempotence C3. If x y, then x y Monotony

 a b] c d] a c b d] and a b] \ c d] a \ c b \ d] This is achieved by making use of the convex closure operation. The resulting set interval calculus is described as follows: a b] c d] = a c b d] a b] \ c d] = a \ c b \ d] P(D s) = P(D s) a n d = With regard to the set di erence operation a b] n c d], its set theoretical de nition is x n y = x \ y 0 where y 0 is the complement o f y. The complement o f a set interval is characterized only by the fact that it does not contain the elements in the lower bound (e.g. c in this case). So the convex closure of a set interval di erence is: a b] n c d] = a n c b n c]

 Assuming that a b] c d] specify set domains, the consistency property in CD is de ned by: a b] c d] , b = b \ d c = c a This de nition of consistency is fundamental from an operational point o f view. It gives us the necessary conditions to be satis ed when checking and/or inferring consistency of the set inclusion constraint o ver set domain variables.

 the constraint s 2 fg f1 2g]. The cardinality function # is approximated b y #. Intuitively we have #(s) = 0 2].

De nition 53

 53 Let a b denote ground sets. The lower ordering is the relation: a L b , 8 x 2 a x 2 b De nition 54 Let a b denote ground sets. The upper ordering is the relation: a U b , 8 x = 2 b x = 2 a

Property 5 6

 6 A primitive set constraint is consistent if an only if it is arcconsistent. Proof. This property holds because the operations and \ are isotone. The constraint s 2 a b] is equivalent t o 8e s 2 a b] w e might h a ve s = a e s . T h e isotony o f means that a e s b) a e s a b (since a b). Assume the domain constraints s 2 a b] s 1 2 c d]. The set constraint s s 1 is consistent i : a L c and b U d , 8e s 2 a b] a e s L c e s and b e s U d e s 8e s 2 a b] 9e s1 2 c d] e s1 = c e s such that e s e s 1 s s 1 is arc-consistent. 2

4. 3

 3 .4.1 For set constraints Consider the constraint s s 1 such that s 2 a b] s 1 2 c d]. Inferring its consistency by means of a domain bound reasoning amounts to satisfying the lower ordering by possibly extending the lower bound of the domain of the set variable s 1 and satisfying the upper ordering by possibly reducing the upper bound of the domain of s. This is depicted by the following inference rule:I1. b 0 = b \ d c 0 = c a fs 2 a b] s 1 2 c d] s s 1 g 7 ;! f s 2 a b 0] s 1 2 c 0 d] s s 1 gWhen s s 1 denote set expressions, the relational forms are created and the following additional inference rule is necessary to deal with the projection functions. For each projection function i describing the domain of an s i appearing in a set expression, we h a ve:I2. a 0 i = a i c b 0 i = b i \ d f s i 2 a i b i] i = c d] g 7 ;! f s i 2 a 0 i b 0 i]gTwo additional inference rules describe the cases where the set domain of a set is reduced to one value or is inconsistent: I3. a = b f s i 2 a b] g 7 ;! f s = ag I3'. a b f s i 2 a b] g 7 ;! fail 4.3.4.2 For primitive graduated constraints.

Figure 4 . 1

 41 Figure 4.1 Derivation rule of the operational semantics

 U) which represents a nite set of Herbrand terms delimited by the characters f and g. Example 64 {2,3,f(f(u,o))} is a ground set. De nition 65 A set domain is a convex set of ground sets semantically equivalent to a set interval. It is denoted b y a b] where a and b are g r ound sets such that a b. De nition 66 A weighted set domain is a speci c set domain where e ach element of the set domain bounds has the syntax (e m) such that e is a Herbrand term and m is an integer. De nition 67 A set variable is a logical variable whose value lies in a set or weighted set domain. Its syntax is s = s { a,b]}.

 produces the re ned domains: S = S{ {1},{1,2,3}]} S1 = S1{ {1,3},{1,2,3}]} and the delayed g o al: S < S 1 Example 75 The goal: :-S `:: {1},{1,2,3,4}], # (S , 1) .

:

 -S1,S2,S3] `:: {},{a,b,c}], all_union(S1,S2,S3], {a,b}) produces the re ned domains: S1 = S1{ {},{a,b}]}, S2 = S2{ {},{a,b}]}, S3 = S3{ {},{a,b}]} and the set of delayed g o als: S1S2 \/ S3 `= {a,b} and S1 \/ S2 `= S1S2{ {},{a,b}]}

Figure 5 . 1

 51 Figure 5.1 Example: search tree of the prede ned labelling procedure

Figure 5

 5 Figure 5.2 Example: cutting branches of the search tree

:

 -R bin_r {1,2} --> {a,b,c}. creates the term: R = birel(Set1{ {},{a,b,c}]}, Set2{ {},{a,b,c}]}], {1,2}, {a,b,c})

 a #d = n s 1 \ s 2 = s 1 \ s 3 = : : : s n;1 \ s n = 8i 2 d #s i n #a = n s 1 \ s 2 = s 1 \ s 3 = : : : s n;1 \ s n = 8i 2 d #s i = 1 These constraints do not require any speci c solver since the reasoning is based on the successor set variables. Example 82 The goal: :-R bin_r {1, 2} --> {a, b, c}, funct(R). creates the term: R = birel(Set1{ {},{a,b,c}]}, Set2{ {},{a,b,c}]}], {1,2}, {a,b,c}) and the list of delayed g o als: #(Set1{ {},{a,b,c}]}, 1), #(Set2{ {},{a,b,c}]}, 1)

Figure 5 . 7

 57 Figure 5.7 Transformation rules for the set cardinality constraint

Figure 5

 5 Figure 5.10 Execution of a Conjunto program

 labelling(], _). labelling(S1 | LSuccs], S) :-set(S1), !, labelling(LSuccs, S). labelling(S1 | LSuccs], S) :lub(S, Lub), select_cheapest(S1, E, Lub), (E in S1 E notin S1), labelling(S1 | LSuccs], S).

 weight(?S,?W) eclipse 3]: Car `:: {renault}, {renault, bmw, mercedes,peugeot}], Type_french = {renault, peugeot} , Choice `= Car /\ Type_french, #(Choice, 2). Car = Car{ {peugeot, renault}, {bmw, mercedes, peugeot, renault}]} Type_french = {peugeot, renault} Choice = {peugeot, renault} yes.

 (a 104) (b 102) (c 201) (d 101)g] is approximated by the set variable S 0 `:: fg f(c 201) (d 101)g] if the parameter delta is 0.04 (0:04 = 0:2 n where n = # S).:-lib(conjunto).

 %Find the optimal solution to the subset-sum p r o b l e m solve(S1, Sum) :getset(S), S1 `:: {}, S], trim(S, S1), constrain_weight(S1, S u m) , weight(S1, W), Cost = Sum -W, min_max(labelling(S1), Cost). %The set weight has to be less than Sum constrain_weight(S1, Sum) :weight(S1, W), W #<= Sum. %Get rid of a set of elements of the set according to a given delta trim(S, S1) :-set2list(S, LS), trim1(LS, S1). trim1(E | LS], S1) :getdelta(D), testsubsumed(D, E, LS, S1). testsubsumed(_, _,], _). testsubsumed(D, E, F | LS], S1) :-el_weight(E, We), el_weight(F, Wf), (We =< (1 -D)*Wf -> testsubsumed(D, F , L S , S 1) F notin S1, testsubsumed(D, E, LS, S1)). (a,104), (b,102), (c,201) ,(d,101), (e,305), (f,50), (g,70),(h,102)}. getdelta(0.05).

eclipse 3]

 3 : solve(S, 550).Found a solution with cost 44 Found a solution with cost 24 10 backtracks 0.116667 S = {(f, 50), (g, 70), (c, 101), (e, 305)} yes.

 For monotonicity reasons, domains can only get reduced. So a new upper b o u n d h a s t o b e c o n tained in the old one and a new lower bound has to contain the old one. Otherwise it fails.

 checkincl(], _Lsets1). checkincl(S | Lsets],Lsets1):contained(S, Lsets1), checkincl(Lsets,Lsets1). contained(_S,]) :-fail,!. contained(S, Ss | Lsets1]) :-(S < Ss -> true contained(S, L s e t s 1)).

 eclipse 2]: S `:: {},{a,v,c}], svar_attribute(S,A), A = set with setdom : D. S = S{ {}, {a,c,v}]} A = {}, {a,c,v}] D = {}, {a, c, v}] yes.

 and Freuder show the complexity o f A C-1, AC-2 and AC-3 in MF85]. Let us consider a to be the largest domain size, e the number of arcs and n the number of nodes. The results in the gure below are given in terms of worst case time complexity.

	NC O(an) O(a 3 ne) cf. AC-3 O(a 3 e) O(ea 2) O(ea 2) AC-1 AC-2 AC-3 AC-4 AC-5
	Figure 3.2 Complexity o f A C algorithms
	This complexity result assumes that the constraint network is connected (it implies e n ; 1).

 3.Consider the set inclusion constraint s 1 `< s 2 such t h a t s 1 2 d 1 , s 2 2 d 2 . T h e transformation rule makes use of the lower and upper ordering of the set inclusion. Making this constraint consistent might require adding elements to the lower bound of the domain d 2 and removing elements from the upper bound of d 1 . T h e re nements lead to the new domain bounds: Consider the disjointness constraint s 1 `<> s 2 such that s 1 2 d 1 , s 2 2 d 2 . The only possible re nement aims at removing elements from each upper bound of a set domain which are de nite elements that belong to the other set. This constraint is consistent if the re ned domains for the variables are:

	T1. glb(d 0 1) T2. glb(d 0 2)	glb(d 1) glb(d 2) glb(d 1)	lub(d 0 1) lub(d 0 2)	lub(d 1) \ lub(d 2) lub(d 2)
	T3. glb(d 0 1) T4. glb(d 0 2) glb(d 2) glb(d 1)	lub(d 0 1) lub(d 0 2)	lub(d 1) n glb(d 2) lub(d 2) n glb(d 1)
	Figure 5.3 Interval re nement for primitive set constraints

 The last state of the resolution is reached once no goal remains in G, or when a failure is encountered (i.e., at least one set domain a b] o r i n teger interval m n] i s s u c h that a 6 b or m 6 n). The program returns the set of constraints C which are locally consistent. The general schema of the algorithm is depicted in gure 5.9.

	begin Initialize G to the list of all the constraints in the admissible system Initialize C to the empty l i s t while G is not empty do begin select and remove the rst constraint (c s) from G apply the adequate transformation rule on (c s) w h i c h returns (c s0) if s0 is inconsistent then exit with failure else if s 6 = s0 then begin s s0

 The 0-1 integer domain program was encoded so as to use the same rst t descending heuristics and the same labelling procedure as the set domain CSP program. The following array g i v es the results regarding time consumption together with space utilization.

	Criterion global stack peak (bytes) 847 872 Conjunto program FD program 2 334 720 trail stack peak (bytes) 126 968 987 136 garb. collection number 27 77 cpu time (sec.) 21.6 31.5 garb. collection time (sec.) 1.21 6.28

 Constraint predicates ?Svar `:: ++Glb,++Lub] attaches a domain to the set variable or to a list of set variables Svar. If Glb 6 Lub it fails. If Svaris already a domain variable its domain will be updated according to the new domain if Svaris instantiated it fails. Otherwise if Svaris free it becomes a set variable.

	set(?Term)
	succeeds if Term is a ground set.

 A.6.2 Set Domain accessThe domains are represented as abstract data types, and the users are not supposed to access them directly. S o w e p r o vide a numb e r o f p r e d i c a t e s t o a l l o w operations on set domains. set_range(?Svar,?Glb,?Lub) If Svar is a set domain variable, it returns the lower and upper bounds of its domain. Otherwise it fails. glb(?Svar,?Glb) If Svar is a set domain variable, it returns the lower bound of its domain. Otherwise it fails. lub(?Svar, ?Lub) If Svar is a set domain variable, it returns the upper bound of its domain. Otherwise it fails.If Svar i s a s e t v ariable, it returns the element of its domain which belongs to the set resulting from the di erence of the upper bound and the lower bound and which has the greatest weight. If Svar is a ground set, it returns the element with the biggest weight. Otherwise it fails.Two speci c predicates make a link between a ground set and a list. S is a ground set, it returns the corresponding list. If L is also ground it checks if it is the corresponding list. If not, or if S is not ground, it fails. L is a ground list, it returns the corresponding set. If S is also ground it checks if it is the corresponding set. If not, or if L is not ground, it fails.

	el_weight(++E, ?We)
	If E is element o f a w eighted domain, it returns the weight associated to E. Otherwise it fails.
	max_weight(?Svar,?E)

set2list(++S, ?L) If list2set(++L, ?S) If

All the citations given in this document are from \Dialogues avec l'ange", a document taken down by Gitta Mallasz.

Thrashing means that some unacceptable values will be considered at several steps of the search e v en though they can never be part of any feasible solution.

l 2 f k + 1 ::: n ; 1g 8 x l 2 X l such t h a t : 8m 2 f l + 1 ::: ng

9x m 2 X m which satis es (x 1 ::: x k x k+1 ; ::: ; x l ; ::: ; x m ; ::: ;) = 1

concurrent constraint framework, cf. ask & tell connectives

A CLP language is a logic-based language parameterized by its computation domain and more generally by its constraint d o m a i n .

Conjunto means \set" in Spanish

cf. the 2 a b] a b predicate in the formal part.

cf. de nition in the formal part 3.3.1

DS-domain stands here for departure set

AS-range stands here for arrival set

They have been described in the formal part 3.2.3

based on consistency techniques which perform a reasoning about variation domain bounds or about variation domains, depending on the constraint predicate.

the peak value indicates what the maximum amount allocated was during the session.

Remerciements

Remerciements Abstract

The set domain library: user manual S is a set variable whose domain is a weighted domain. W is the weight of S. I f W is a free variable, this predicate is a mean to access the set weight and attach i t t o W . I f n o t , t h e w eight of S is constrained to be W. e.g. S: : f(2 3)g f(2 3) (1 4)g] weight(S W)

A.4 Examples

A.4.1 Set domains and interval reasoning

First we g i v e a v ery simple example to demonstrate the expressiveness of set constraints and the propagation mechanism.

:-lib(conjunto).

If now w e add one cardinality constraint:

A.9 Debugger

The ECL i PS e debugger which supports debugging and tracing of nite domain programs in various ways, can just be used the same way for set domain programs. No speci c set domain debugger has been implemented for this release.

Index