J. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry, Chem. Soc. Rev, vol.36, pp.151-160, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00680548

A. A. Marquis, V. Smith, J. Harrowfield, J. Lehn, H. Herschbach et al., Messages in Molecules: Ligand/Cation Coding and Self-Recognition in a Constitutionally Dynamic System of Heterometallic Double Helicates, Chem. -Eur. J, p.5632, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123515

J. Lehn, Supramolecular Chemistry: Concepts and perspectives, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00019531

E. Fisher, Synthesen in der Zuckergruppe II, Ber. Dtsch. Chem. Ges, vol.27, pp.3189-3232, 1894.

S. R. Wilson and A. W. Czarnik, Combinatorial Chemistry-Synthesis and Applications, 1997.

J. Lehn, Toward complex matter: Supramolecular chemistry and self-organization, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.4763-4768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670

O. Ramstrom and J. Lehn, Drug discovery by dynamic combinatorial libraries, Nat. Rev. Drug Disc, vol.1, pp.26-36, 2002.

J. Lehn, Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries, Chem. Eur. J, vol.5, pp.2455-2463, 1999.

P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. Wietor et al., Dynamic combinatorial chemistry, Chem. Rev, p.3652, 2006.

O. Ramstrom and J. Lehn, In situ generation and screening of a dynamic combinatorial carbohydrate library against Concanavalin A, ChemBioChem, 2000.

O. Ramstrom, S. Lohman, T. Bunyapaiboonsri, and J. Lehn, Dynamic Combinatorial Carbohydrate Libraries: Probing the Binding Site of the Concanavalin A Lectin, Chem Eur. J, p.1711, 2004.

T. Bunyapaiboonsri, O. Ramström, S. Lohman, and J. Lehn, Dynamic deconvolution of a pr-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors, ChemBioChem, issue.2, p.438, 2001.

M. Hochgurtel, H. Kroth, D. Piecha, M. W. Hofmann, C. Nicolau et al., Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.3382-3387, 2002.

A. Vlade, D. Urban, and J. Beau, Target-assisted selection of galactosyltransferase binders from dynamic combinatorial libraries. An unexpected solution with restricted amounts of the enzyme, ChemBioChem, vol.7, pp.1023-1027, 2006.

S. Gerber-lemaire, F. Popowycz, E. Rodriguez-garcia, A. T. Asenjo, I. Robina et al., An Efficient Combinatorial Method for the Discovery of Glycosidase Inhibitors, ChemBioChem, vol.3, pp.466-470, 2002.

A. M. Whitney, S. Ladame, and S. Balasubramanian, Templated Ligand Assembly by Using G-Quadruplex DNA and Dynamic Covalent Chemistry, Angew. Chem., Int. Ed, vol.43, pp.1143-1146, 2004.

J. Sadowski, M. Wagener, and J. Gasteiger, Assessing Similarity and Diversity of Combinatorial Libraries by Spatial Autocorrelation Functions and Neural Networks, Angew. Chem., Int. Ed. Engl, vol.34, pp.2674-2677, 1995.

P. J. Edwards, M. Gardner, W. Klute, G. F. Smith, and N. K. Terrett, Applications of combinatorial chemistry to drug design and development, Curr Opin Drug Disc Devel, pp.321-331, 1999.

S. H. Dewitt and A. W. Czarnik, Combinatorial organic synthesis using Parke-Davis' DIVERSOMERS? method, Acc. Chem. Res, vol.29, p.114, 1996.

J. W. Szostak, Introduction: Combinatorial Chemistry, Chemical Reviews, vol.97, issue.2, pp.347-348, 1997.

F. Balkenhohl, C. Dem-bussche-huennefeld, A. Lansky, and C. Zechel, Combinatorial synthesis of small organic molecules, Angewandte Chemie, vol.35, issue.20, pp.2288-2337, 1996.

N. K. Terrett, M. Gardner, D. W. Gordon, R. J. Kobylecki, and J. Steele, Combinatorial synthesis -the design of compound libraries and their application to drug discovery, Tetrahedron, issue.30, pp.8135-73, 1995.

M. Famulok, E. L. Winnacker, and C. H. Wong, Combinatorial Chemistry in Biology, vol.5, pp.195-243, 1999.

B. Volker, combinatoires et dynamiques, d'auto-assemblages organiques, 2000.

R. B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide, Journal of the American Chemical Society, vol.85, issue.14, pp.2149-54, 1963.

A. Furka, M. Sebestyen, G. Dibo, A. 14th, and C. , Biochem, p.47, 1988.

B. Volker, Aspects structuraux, combinatoires et dynamiques, d'auto-assemblages organiques, 2000.

F. Balkenhohl, C. Von-dem-bussche-huennefeld, A. Lansky, and C. Zechel, Combinatorial synthesis of small organic molecules, Angewandte Chemie, vol.35, issue.20, pp.2288-2337, 1996.

G. Nasr, Matériaux polymères dynamiques pour membranes adaptatifs, 2007.

S. J. Rowan, S. J. Cantrill, G. R. Cousins, J. K. Sanders, and J. F. Stoddart, Dynamic Covalent Chemistry, Angew. Chem. Int. Ed, issue.6, pp.898-952, 2002.

P. A. Brady and J. K. Sanders, Selection approaches to catalytic systems, Chem. Soc. Rev, vol.26, issue.5, pp.327-336, 1997.

S. J. Rowan and J. K. Sanders, Enzyme models: design and selection, Curr. Opin. Chem. Biol, vol.1, issue.4, pp.483-490, 1997.

A. Ganesan, Strategies for the Dynamic Integration of Combinatorial Synthesis and Screening, Angew. Chem, issue.20, pp.2828-2831, 1998.

P. Timmerman and D. N. Reinhoudt, A Combinatorial Approach to Synthetic Receptors, Adv. Mater, vol.11, issue.1, pp.71-74, 1999.

B. Klekota and B. J. Miller, Dynamic diversity and small-molecule evolution: a new paradigm for ligand identification, Trends Biotechnol, vol.17, issue.5, pp.205-209, 1999.

G. R. Cousins, S. Poulsen, and J. K. Sanders, Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function, Curr. Opin. Chem. Biol, vol.4, issue.3, pp.270-279, 2000.

J. Lehn and A. V. Eliseev, Dynamic Combinatorial Chemistry, Science, vol.291, issue.5512, pp.2331-2332, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00680655

S. Otto, R. L. Furlan, and J. K. Sanders, Dynamic combinatorial chemistry:review, Drug Discovery Today, vol.7, pp.117-125, 2002.

P. A. Brady and J. K. Sanders, Thermodynamically-controlled cyclisation and interconversion of oligocholates: metal ion templated 'living' macrolactonisation, J. Chem. Soc. Perkin Trans. 1, vol.21, pp.3237-3254, 1997.

I. Huc and J. Lehn, Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly, Proc. Natl. Acad. Sci, vol.94, pp.2106-2110, 1997.

S. Lindskog and D. W. Silverman, The catalytic mechanism of mammalian carbonic anhdrases, The Carbonic Anhydrases -New Horizons, pp.175-196, 2000.

D. K. Scrivastava, K. M. Jude, A. L. Banerjee, M. Haldar, S. Manokaran et al.,

. Christianson, Structural Analysis of Change Discrimination in the Binding of Inhibitors to Human Carbonic Anhydrases I and II, J. Am. Chem. Soc, vol.129, pp.5528-5537, 2007.

C. T. Supuran, A. Scozzafava, and A. Casini, Carbonic Anhydrase Inhibitors, Medicinal Research Reviews, vol.23, issue.2, pp.146-189, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00460025

A. Casini, J. Antel, F. Abbate, A. Scozzafava, S. David et al., Carbonic Anhydrase Inhibitors: SAR and X-Ray Crystallographic Study for the interaction of Sugar Sulfamates/Sulfamides with Isozymes I, II and IV, Bioorg. Med. Chem. Lett, vol.13, pp.841-845, 2003.

M. Ferraroni, F. Briganti, W. R. Chegwidden, C. T. Supuran, and A. Scozzafava, Crystal analysis of aromatic sulfonamide binding to native and (Zn)2 adduct of human carbonic anhydrase I Michigan1, Inorganica Chimica Acta, vol.339, pp.135-144, 2002.

C. Temperini, A. Scozzafava, D. Vullo, C. T. Supuran, ;. Ii et al., Crystallographic Analysis of Their Adducts with Isozyme II: Stereospecific Recognition within the Active Site of an Enzyme and Its Consequences for the Drug Design, Carbonic Anhydrase Activators. Activation of Isoforms I, vol.49, pp.3019-3027, 2006.

K. K. Kannan, B. Notstrand, K. Fridborg, S. Lövgren, A. Ohlsson et al., Crystal Structure of Humain Erythrocyte Carbonic Anhydrase B. Three-Dimensional Structure at a Nominal 2.2-A Resolution, Proc. Natl. Acad. Sci, vol.72, pp.51-55, 1975.

T. Stams, Y. Chen, P. A. Boriack-sjodin, J. D. Hurt, J. Liao et al., Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: Molecular basis of isozymedrug discrimination, Protein Science, vol.7, pp.556-563, 1998.

D. A. Whitington, J. H. Grubbs, A. Waheed, G. N. Shah, W. S. Sly et al., Expression, Assay, and Structure of the Extracellular Domain of Murine Carbonic Anhydrase XIV, J. Biol. Chem, vol.279, issue.8, pp.7223-7228, 2004.

C. T. Supuran, F. Briganti, S. Tilli, R. Chegwidden, and A. Scozzafava, Carbonic Anhydrase Inhibitors: Sulfonamide as antitumor agents?, Bioorg. Med. Chem. Lett, vol.9, pp.703-714, 2001.

A. Casini, A. Scozzafava, A. Mastrolorenzo, and C. T. Supuran, Sulfonamides and Sulfonylated Derivatives as anticancer agents, Current Cancer Drug Target, vol.2, pp.55-75, 2002.

I. Bertini, C. Luchinat, and A. Scozzafava, Carbonic anhydrase: an insight into the zinc binding site and into the active site through metal substitution, Struct. Bonding, vol.48, pp.45-92, 1982.

F. Briganti, A. Pierattelli, A. Scozzafava, and C. T. Supuran, Carbonic anhydrase inhibitors. Part 37. Novel classes of isozyme I and II inhibitors and their mechanism of action. Kinetic and spectroscopic investigations on native and cobalt-substituted enzymes, Eur.J.Med.Chem, issue.12, pp.1001-1010, 1996.

M. Lindahl, J. Vidgren, E. Eriksson, J. Habash, S. Harrop et al., crystallographic studies of carbonic anhydrase inhibtion, Carbonic Anhydrase, pp.111-118, 1991.

J. Winum, A. Innocenti, J. Nasr, J. Montero, A. Scozzafava et al., Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Nhydroxysulfamides -a new zinc-binding function in the design of inhibitors

, Med Chem Lett FIELD Full Journal Title:Bioorganic & medicinal chemistry letters, vol.15, issue.9, pp.2353-2361, 2005.

I. Huc and J. Lehn, Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self assembly, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.2106-2110, 1997.

R. Nguyen and I. Huc, Using and enzyme's active site to template inhibitors, Angew. Chem., Int. Ed, vol.40, pp.1774-1776, 2001.

S. Poulsen and L. F. Bornaghi, Fragment-based drug discovery of carbonic anhydrase II inhibitors by dynamic combinatorial chemistry utilizing cross metathesis, Bioorg. Med. Chem, vol.14, pp.3275-3284, 2006.

S. Poulsen, Direct screening of a dynamic combinatorial library using mass spectrometry, J. Am. Soc. Mass Spectrom, vol.17, pp.1074-1080, 2006.

S. Poulsen, R. A. Davis, and T. G. Keys, Screening natural product-based combinatorial library using FTICR mass spectrometry, Bioorg. Med. Chem, vol.14, pp.510-515, 2006.

N. Giusepponne and J. Lehn, Protonic and Temperature Modulation of Constituent Expression by Component Selection in a Dynamic Combinatorial Library of Imines, Chem. Eur. J, vol.12, pp.1715-1722, 2006.

J. Lehn, Dynamic combinatorial chemistry and virtual combinatorial libraries, Chem. Eur. J, vol.5, pp.2455-2463, 1999.

J. Lehn, Toward complex matter: Supramolecular chemistry and self-organization, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.4763-4768, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670

A. Valade, D. Urban, and J. Beau, Two galactosyltransferases' selection of different binders from the same uridine-based dynamic combinatorial library, J. Comb. Chem, vol.9, pp.1-4, 2007.

C. T. Supuran, M. Barboiu, C. Luca, E. Pop, and A. Dinculescu, Carbonic Anhydrase Activators. Part 14. Syntheses of positively charged derivatives of 2-amino-5-(2-aminoethyl) and 2-amino-5-(2-aminopropyl)-1,3,4 thiadiazole and their interaction with isozyme II, Eur. J. Med. Chem, vol.31, pp.597-606, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01671828

F. Dumitru, E. Petit, A. Van-der-lee, and M. Barboiu, Homo-and Heteroduplex Complexes Containing Terpyridine-Type Ligands and Zn 2+, Eur. J. Inorg. Chem, vol.21, pp.4255-4262, 2005.

Y. Legrand, A. Van-der-lee, and M. Barboiu, Self-Optimizing Charge-Transfer Energy Phenomena in Metallosupramolecular Complexes by Dynamic Constitutional Self-Sorting, Inorg. Chem, vol.46, issue.23, pp.9540-9547, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00276639

M. Barboiu, E. Petit, A. Van-der-lee, and G. Vaughan, Constitutional Self-Selection of [2 × 2] Homonuclear Grids from a Dynamic Mixture of Copper(I) and Silver(I) Metal Complexes, Inorg. Chem, vol.45, issue.2, pp.484-486, 2006.

M. Barboiu and J. Lehn, Dynamic chemical devices: modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching, Proc. Natl. Acad. Sci. U.S.A, p.5201, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01726382

M. Barboiu, F. Dumitru, Y. Legrand, and A. Van-der-lee, Self-sorting of equilibrating metallosupramolecular DCLs via constitutional crystallization, Chem. Commun, issue.16, pp.2192-2194, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424393

F. Dumitru, Y. Legrand, E. Petit, A. Van-der-lee, and M. Barboiu, Constitutional self sorting of homochiral supramolecular helical single crystals from achiral components, Chem. Commun, issue.19, pp.2667-2669, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424427

G. Nasr, E. Petit, C. T. Supuran, J. Winumc, and M. Barboiu, Carbonic anhydrase II-induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.21, pp.6014-6017, 2009.

G. Nasr, E. Petit, D. Vullo, J. Winum, C. T. Supuran et al., Carbonic Anhydrase-Encoded Dynamic Constitutional Libraries: Toward the Discovery of Isozyme-Specific Inhibitors, J. Med. Chem, issue.15, pp.4853-4859, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425229

A. Innocenti, A. Scozzafava, S. Parkkila, L. Puccetti, G. D. Simone et al., Investigation of the Esterase, Phosphate, and Sulfatase Activities of the Cytosolic Mammalian Carbonic Anhydrase Isoform I, II and XIII with 4-nitrophenyl Esters as Substrates, Bioorganic & Medicinal Chemisry Letters, pp.2267-2271, 2008.

A. Thorslund and S. Lindskog, Studies of the Esterase Activity and Anion Inhibition of Bovine Zinc and Cobalt Carbonic Anhydrases, Europen J. Biochem, pp.117-123, 1967.

C. Luca, M. Barboiu, and C. T. Supuran, Stability constant of complex inhibitors and their mechanism of action, Rev Roum Chim, vol.36, issue.9, pp.1169-1173, 1991.

M. Barboiu, C. T. Supuran, L. Menabuoni, A. Scozzafava, F. Mincione et al., Carbonic Anhydrase Inhibitors. Synthesis of Topically Effective Intraocular Pressure Lowering Agents Derived from 5-( -Amino-Alkylcarboxamido)-1,3,4-Thia-Diazole-2-Sulfonamide, J. Enzyme Inhib, vol.15, issue.1, pp.23-46, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02069182

V. Alterio, A. D. Fiore, K. Ambrosio, C. T. Supuran, and G. Simone, Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms?, Chem. Rev, vol.112, issue.8, pp.4421-4468, 2012.

C. Temperini, A. Cecchi, A. Scozzafava, and C. T. Supuran, Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference, Bioorg. Med. Chem, vol.17, issue.3, pp.1214-1221, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00127733

C. T. Supuran, Bacterial Carbonic Anhydrases as Drug Targets: Toward Novel Antibiotics?, Front. Pharmacol, vol.2, issue.34, pp.1-6, 2011.

A. Scozzafava, B. Iorga, and C. T. Supuran, Carbonic Anhydrase Activators: Synthesis of High Affinity Isozymes I, II and IV Activators, Derivatives of 4-(4-Tosylureido-Amino Acyl) Ethyl-1H-Imidazole (Histamine Derivatives), J. Enzyme Inhib, vol.15, issue.2, pp.139-161, 2000.

C. T. Supuran, Structure-based drug discovery of carbonic anhydrase inhibitors, J. Enzyme Inhib. Med. Chem, issue.6, pp.759-772, 2012.

C. T. Supuran, Carbonic anhydrase inhibitors, Bioorg. Med. Chem. Lett, issue.12, pp.3467-3474, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460025

R. P. Budhiraja, Separation Chemistry, New Age International (P) Ltd., Publishers, 2004.

S. Pratibha, T. Renu, S. Pankaj, and T. Radha, J. Radioanal. Nucl. Chem, vol.268, p.329, 2006.

R. Harjula and J. Lehto, Effect of sodium and potassium ions on cesium absorption from nuclear power plant waste solutions on synthetic zeolites, Nuclear and Chemical Waste Management, vol.6, issue.2, pp.133-137, 1986.

P. Misaelides, A. Godelitsas, A. Filippidis, D. Charistos, and I. Anousis, Thorium and uranium uptake by natural zeolitic materials, Science of The Total Environment, pp.237-246, 1995.

D. M. Ruthven, Principles of adsorption and adsorption processes, 1984.

S. Moreno and G. Poncelet, Dealumination of small-and large-port mordenites: A comparative study, Microporous Materials, vol.12, pp.197-222, 1997.

H. Mimura and T. Kanno, Ion-exchange properties of zeolites and their application to processing of high-level liquid waste, International Atomic Energy Agency, vol.282, pp.237-247, 1985.

C. Fernandez, J. C. Faivre, D. Fasching, and F. Feinstein, Measurement of the spin-dependent structure function gl (x) of the proton, Physics Letters B, vol.329, pp.399-406, 1994.

S. Moreno, G. Poncelet, and M. Mater, , vol.12, 1997.

J. A. Moreno and G. Poncelet, Isomerization of n-Butane over Sulfated Al-and Ga-Promoted Zirconium Oxide Catalysts. Influence of Promoter and Preparation Method, Journal of Catalysis, vol.203, issue.2, pp.453-465, 2001.

A. B. Farag, A. M. Helmy, M. S. El--shahawi, and S. Farag, Talanta, vol.41, issue.4, p.617, 1994.

H. P. Gregor, D. Y. Semnzare, G. H. Yenah, L. Eng, and . Chem, , vol.44, p.2834, 1952.

A. M. Soliman, Generation of Current Conveyor-Based All-Pass Filters From Op Amp-Based Circuits, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, vol.44, issue.4, 1997.

G. S. Franz, B. Vera, and P. Burkhard, Applied Geochemistry, vol.23, p.2137, 2008.

J. R. Klaehn, D. R. Peterman, M. K. Harrup, R. D. Tillotson, T. A. Luther et al.,

M. Daniels, Synthesis of symmetric dithiophosphinic acids for "minor actinide" extraction, Inorganica Chimica Acta, vol.361, issue.8, pp.2522-2532, 2008.

A. Z. Ansari, G. Badis, E. T. Chan, H. V. Bakel, L. Pena-castillo et al.,

A. J. Carlson, M. J. Gossett, C. L. Hasinoff, M. Warren, . Gebbia et al.,

D. Mnaimneh, D. Terterov, A. L. Coburn, Z. X. Yeo, N. D. Yeo et al.,

R. Hughes, A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters, Molecular cell, vol.32, issue.6, pp.878-887, 2008.

J. S. Vrentas, J. L. Dude, and A. C. How, J. Appl. Polym. Sci, vol.29, p.399, 1984.

W. M. Mekenzie and O. C. Sherington, J. polym. Sci. Poly. Chem, vol.20, p.431, 1982.

V. K. Gupta and I. Ali, J. Colloid. Interf. Sci, vol.271, p.321, 2004.

B. Volesky, Removal and recovery of heavy metals by biosorption, Biosorption of Heavy Metals, pp.7-43, 1990.

B. Volesky, Hydrometallurgy, vol.59, issue.2-3, 2001.

C. Kim and . Surf, , vol.227, p.93, 2003.

J. Lehn, Supramolecular chemistry: concepts and perspectives, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00019531

. Jl, J. Atwood, D. D. Davies, F. Macnicol, J. Vogtle et al., Comprehensive supramolecular chemistry, 1996.

J. Lehn, Toward complex matter: supramolecular chemistry and self-organization, Proc Natl Acad Sci, vol.99, pp.4763-4771, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00690670

D. Philp and J. F. Stoddart, Self-assembly in natural and unnatural systems, Angew Chem Int Ed Engl, vol.35, pp.1154-96, 1996.

J. Lehn, Supramolecular chemistry/science. Some conjectures and perspectives, Supramolecular science: where it is and where it is going, pp.287-304, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00681068

J. Lehn, Dynamers: dynamic molecular and supramolecular polymers, Prog Polym Sci, vol.30, pp.814-831, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271014

S. J. Sj.-rowan, G. Cantrill, J. Cousins, J. F. Sanders, and . Stoddart, Dynamic covalent chemistry, Angew Chem Int Ed Engl, vol.41, pp.898-952, 2002.

J. Lehn, Dynamic combinatorial chemistry and virtual combinatorial libraries, Chem Eur J, vol.5, pp.2455-63, 1999.

. Grl, S. A. Cousins, J. Poulsen, and . Sanders, Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function, Curr OpinChem Biol, vol.4, pp.270-279, 2000.

. Wg, J. Skene, and . Lehn, Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity, Proc Natl Acad Sci, vol.101, pp.2012-2015, 2004.

. Chapter,

J. Lehn, Supramolecular polymer chemistry-scope and perspectives, Polym Int, vol.51, pp.825-864, 2002.

A. Ciferri, Supramolecular polymers, 2000.

J. Lehn, Supramolecular chemistry-molecular information and the design of supramolecular materials, Makromol Chem Macromol Symp, vol.69, pp.1-17, 1993.

L. Brunsveld, B. Folmer, E. W. Meijer, and R. P. Sijbesma, Supramolecular polymers, Chem Rev, vol.101, pp.4071-4097, 2001.

. Hr and . Kricheldorf, Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled polycondensations, Macro-molecules, vol.36, pp.2302-2310, 2003.

J. Xie and Y. Hsieh, Enzyme-catalyzed transesterification of vinyl esters on cellulose solids, J Polym Sci Polym Chem Ed, vol.39, pp.1931-1940, 2001.

C. Berkane, G. Mezoul, T. Lalot, M. Brigodiot, and E. , Lipase-catalyzed polyester synthesis in organic medium. Study of ring-chain equilibrium, Macromolecules, vol.30, pp.7729-7763, 1997.

A. Lavalette, T. Lalot, M. Brigodiot, and E. , Lipase-catalyzed synthesis of a pure macrocyclic polyester from dimethyl terephthalate and diethylene glycol, Biomacromolecules, vol.3, pp.225-233, 2002.

. Hm, D. F. Colquhoun, A. Lewis, P. Ben-haida, and . Hodge, Ring-chain interconversion in highperformance polymer systems. 2. Ring-opening polymerization-copolyetherification in the synthesis of aromatic poly(ether sulfones), Macromolecules, vol.36, pp.3775-3783, 2003.

X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen et al., A thermally remendable cross-linked polymeric material, Science, vol.295, pp.1698-702, 2002.

X. Chen and E. Ruckenstein, Thermally reversible covalently bonded linear polymers prepared from a dihalide monomer and a salt of dicyclopentadiene dicarboxylic acid, J Polym Sci Polym Chem, vol.38, pp.1662-72, 2000.

Y. Chen and K. Chen, Synthesis and reversible photo-cleavage of novel polyurethanes containing coumarin dimer components, J Polym Sci Polym Chem, vol.35, pp.613-637, 1997.

H. Otsuka, K. Aotani, Y. Higaki, and A. Takahara, Polymer scrambling: macromolecular radical crossover reaction between the main chains of alkoxyamine-based dynamic covalent polymers, J Am Chem Soc, vol.125, pp.4064-4069, 2003.

I. Nakazawa, S. Suda, M. Masuda, M. Asai, and T. Shimizu, pH-dependent reversible polymers formed from cyclic sugar-and aromatic boronic acid-based bolaamphiphiles, Chem Commun, pp.881-883, 2000.

. Eudime, , 2012.

. Chapter,

O. Ramstrom and J. Lehn, Drug discovery by dynamic combinatorial libraries, Nat Rev Drug Discov, vol.1, pp.26-36, 2002.

J. Lehn, Supramolecular Chemistry -Concepts and Perspectives, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00019531

. Gw, A. Gokel, and . Mukhopadhyay, Synthetic models of cation-conducting channels, Chem SocRev, vol.30, pp.274-286, 2001.

N. Voyer, The development of peptide nanostructures, Top Curr Chem, vol.184, pp.1-35, 1996.

J. Lehn and J. Behr, Transport of amino acids through organic liquid membranes, J Am Chem Soc, vol.95, pp.6108-6110, 1973.

M. Barboiu, G. Vaughan, and A. Van-der-lee, Self-organized heteroditopic macrocyclic superstructures, Org Lett, vol.5, pp.3073-3076, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00451854

M. Barboiu, Supramolecular macrocyclic receptors-hybrid carrier vs. Channel transporters in bulk liquid membranes, J Inclusion Phenom Mol Recognit Chem, vol.49, pp.133-137, 2004.

A. Cazacu, C. Tong, A. Van-der-lee, T. M. Fyles, and M. Barboiu, Columnar self-assembled ureidocrown-ethers-an example of ion-channel organization in lipid bilayers, J Am Chem Soc, vol.128, pp.9541-9548, 2006.

. Dt, . Bong, . Td, J. R. Clark, M. R. Granja et al., Self-assembling organic nanotubes, Angew Chem Int Ed, vol.40, pp.988-1011, 2001.

S. Matile, En route to supramolecular functional plasticity: Synthetic -barrels, the barrel-stave motif, and related approaches, Chem Soc Rev, vol.30, pp.158-167, 2001.

. Pk, T. M. Eggers, K. Fyles, T. Mitchell, and . Sutherland, Ion channels from linear and branched bolaamphiphiles, J Org Chem, vol.68, pp.1050-1058, 2003.

M. Barboiu, C. Luca, C. Guizard, N. Hovnanaian, L. Cot et al., Hybrid organicinorganic fixed site dibenzo-18-crown complexant membranes, J Membr Sci, vol.129, pp.197-207, 1997.

M. Barboiu, C. Guizard, C. Luca, B. Albu, N. Hovnanian et al., A new alternative to amino acid transport: Facilitated transport of L-Phenylalanine by hybrid siloxane membrane containing a fixed site macrocyclic complexant, J Membr Sci, vol.161, pp.193-206, 1999.

M. Barboiu, C. Guizard, C. Luca, N. Hovnanian, J. Palmeri et al., Facilitated transport of organics of biological interest II. Selective transport of organic acids by macrocyclic fixed site complexant membranes, J Membr Sci, vol.174, pp.277-286, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01727784

M. Barboiu, C. Guizard, N. Hovnanian, J. Palmeri, C. Reibel et al., Facilitated transport of organics of biological interest I. A new alternative for the amino acids separations by fixed-site crown-ether polysiloxane membranes, J Membr Sci, vol.172, pp.2012-2015, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01727697

. Chapter, , p.102

M. Barboiu, S. Cerneaux, G. Vaughan, and A. Van-der-lee, Ion-driven ATP-pump by selforganized hybrid membrane materials, J Am Chem Soc, vol.126, pp.3545-3550, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00163752

C. Herault, M. Michau, A. Pasc-banu, and M. Barboiu, Amplification and transcription of the dynamic supramolecular chirality of G-quadruplex, Angew Chem Int Ed, vol.46, pp.4268-4272, 2007.

A. Cazacu, M. Michau, R. Caraballo, C. Arnal-herault, A. Pasc-banu et al., Dynamic supramolecular hybrid and mesoporous membranes, Ann Chem Sci Mater, vol.32, pp.127-139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165742

C. Herault, M. Barboiu, A. Pasc, M. Michau, P. Perriat et al., Constitutional self-organization of adenine-uracil-derived hybrid materials, Chem Eur J, vol.13, pp.6792-6800, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167657

J. Lehn, From supramolecular chemistry towards constitutional dynamic chemistry and adaptative chemistry, Chem Soc Rev, vol.36, pp.151-160, 2007.

. Wg, J. Skene, and . Lehn, Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity, Proc Natl Acad Sci, vol.99, pp.8270-8275, 2002.

T. Ono, T. Nobori, and J. Lehn, Dynamic polymer blends-component recombination between neat dynamic polymers at room temperature, Chem Commun, vol.12, pp.1522-1524, 2005.

T. Ono, S. Fujii, T. Nobori, and J. Lehn, Soft-to-hard transformation of the mechanical properties of dynamic covalent polymers through component incorporation, Chem Commun, vol.1, pp.46-48, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166415

T. Ono, S. Fujii, T. Nobori, and J. Lehn, Optodynamers: expression of color and fluores-cence at the interface between two films of different dynamic polymers, Chem Commun, vol.42, pp.4360-4362, 2007.

G. Nasr, M. Barboiu, T. Ono, S. Fujii, and J. Lehn, Dynamic polymer membranes displaying tunable transport properties on constitutional exchange, J Membr Sci, vol.321, pp.8-14, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315843

G. Nasr, A. Gilles, T. Macron, C. Charmette, J. Sanchez et al., Tuning gas-diffusion through dynameric membranes: toward rubbery organic frameworks (ROFs), Isr. J. Chem, vol.53, pp.97-101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01689473

M. Barboiu, Constitutional Dynameric Networks for Membranes, Encyclopedia of Membrane Science and Technology, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01735297

Y. Yuan and T. R. Lee, Surface Science, p.978, 2013.

L. A. Neves, C. Afonso, I. M. Coelhoso, and J. G. Crespo, Integrated CO 2 capture and enzymatic bioconversion in supported ionic liquid membranes, Sep. Purif. Technol, vol.97, pp.34-41, 2012.

R. Fortunato, M. González-muñoz, M. Kubasiewicz, S. Luque, J. Alvarez et al., Liquid membranes using ionic liquids: influence of water on solute transport, J. Membr. Sci, vol.249, pp.153-162, 2005.

C. D. Keeling, T. P. Whorf, M. Wahlen, and J. Vanderplicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since, Nature, pp.666-670, 1980.

M. R. Raupach, G. Marland, P. Ciais, C. Le-quere, J. G. Canadell et al., Global and regional drivers of accelerating CO 2 emissions, vol.24, pp.10288-10293, 2007.

A. J. Mc-michael, R. E. Woodruff, and S. Hales, Climate change and human health: present and future risks, The Lancet, vol.9513, pp.859-869, 2006.

, CO 2 Emissions From Fuel Combustion Highlights, International Energy Agency, 2010.

M. Hasib-ur-rahman, M. Siaj, and F. Larachi, Ionic liquids for CO 2 captureDevelopment and progress, Chem. Eng. Process, vol.49, pp.313-322, 2010.

B. A. Oyenekan and G. T. Rochelle, Energy performance of stripper configurations for CO 2 capture by aqueous amines, Ind. Eng. Chem. Res, vol.45, pp.2457-2466, 2006.

K. S. Fisher, G. T. Rochelle, S. Ziaii, and C. Schubert, Advanced amine solvent formulations and process integration for near-term CO 2 capture success, Trimeric Corporation, 2007.

O. F. Dawodu and A. Meisen, Degradation alkanolamine blends by carbon dioxide, Can. J. Chem. Eng, vol.74, issue.6, pp.960-966, 1996.

S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee et al., Characterization of metal corrosion by aqueous amino acid salts for the capture of CO 2, Kor. J. Chem. Eng, vol.27, issue.5, pp.1576-1580, 2010.

D. M. Alessandro, B. Smit, and J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed, vol.49, pp.6058-6082, 2010.

T. C. Merkel, H. Lin, X. Wei, and R. Backer, Power plant post-combustion carbon dioxide capture: an opportunity for membranes, J. Membr. Sci, vol.359, pp.126-139, 2010.

. Eudime, , 2012.

. Chapter, , p.158

C. Jones, CO 2 Capture from dilute gases as a component of modern global carbon management, Annu Rev Chem Biomol, vol.2, pp.31-52, 2011.

P. J. Carvalho, V. H. Alvarez, J. J. Machado, J. Pauly, J. K. Daridon et al., High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide ionic liquids, J. Supercrit Fluids, vol.48, pp.99-107, 2009.

D. M. D'alessandro, B. Smit, and J. R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed, vol.49, pp.6058-6082, 2010.

J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello et al., Guide to CO 2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res, vol.48, pp.2739-2751, 2009.

C. K. Han, M. S. Ahn, C. H. Lee, J. K. Rhee, H. D. Kim et al., Current status and challenges of the ammonia-based CO 2 capture technologies toward commercialization, Int. J. Green Gas Con, vol.14, pp.270-281, 2013.

J. G. Lu, A. C. Hua, Z. W. Xu, J. T. Li, S. Y. Liu et al., CO 2 capture by membrane absorption coupling process: experiments and coupling process evaluation, J. Membr. Sci, vol.431, pp.9-18, 2013.

J. Wang, J. , M. Li, and W. H. Yan, The engineering application of CO 2 capture by chemical absorption in China, Adv Mater Res, pp.2457-2462, 2012.

G. Astarita, A. Savage, and A. Bisio, Gas Treating with Chemical Solvents, 1984.

A. Gabelman and S. T. Huang, Hollow fiber membrane contactors, J. Membr. Sci, vol.159, pp.61-106, 1996.

P. H. Feron and C. A. Hendriks, CO 2 capture process principles and costs, Oil Gas Sci. Technol, vol.60, p.459, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017217

D. Biello, Can captured carbon save coal?, Sci. Am. Earth, vol.3, p.59, 2009.

D. W. Bailey and P. H. Feron, Post-combustion decarbonisation processes, Oil Gas Sci. Technol, vol.60, p.474, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017211

D. W. Bailey and P. H. Feron, Post-combustion decarbonisation processes, Oil Gas Sci. Technol, vol.60, p.474, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017211

K. R. Seddon, Ionic Liquids for Clean Technology, J. Chem. Technol. Biotechnol

L. I. Eide and D. W. Bailey, Precombustion decarbonisation processes, Oil Gas Sci. Technol, vol.60, p.484, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017215

J. A. Moulijn, M. Makkee, and A. E. Van-diepen, Chemical Process Technology, 2013.

D. Jansena and A. Ramirez, Performance requirements for CO 2 capture technologies

, How realistic are capture cost targets?, Energy Procedia, vol.63, pp.45-52, 2014.

M. Ramdin, T. W. De-loos, and T. J. Vlugt, State-of-the-Art of CO 2 Capture with Ionic Liquids, Ind. Eng. Chem. Res, vol.51, p.8177, 2012.

M. Anheden, J. Yan, and G. D. Smedt, Denitrogenation (or oxyfuel concepts), Oil Gas Sci. Technol, vol.60, p.495, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017210

M. Anheden, J. Yan, and G. D. Smedt, Denitrogenation (or oxyfuel concepts), Oil Gas Sci. Technol, vol.60, p.495, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02017210

J. Ge, R. M. Cowan, C. Tu, M. L. Mcgregor, and M. C. Trachtenberg, Enzyme-based CO 2 capture for advanced life support, Life Support Biosph Sci, vol.8, pp.181-189, 2002.

L. W. Diamond and N. N. Akinfiev, Solubility of CO 2 in water from -1.5 to 100 º C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling, Fluid Phase Equilib, vol.208, pp.265-290, 2003.

J. J. Carroll, J. D. Slupsky, and A. E. Mather, The solubility of carbon dioxide in water at low pressure, J. Phys. Chem. Ref. Data, issue.20, pp.1201-1209, 1991.

R. Crovetto, Evaluation of solubility data of the system CO 2 -H 2 O from 273K to the critical point of water, J. Phys. Chem. Ref. Data, vol.20, pp.575-589, 1991.

R. D. Rogers and K. R. Seddon, Ionic liquids-solvents of the future?, Science, vol.302, pp.792-793, 2003.

N. V. Plechkova and K. R. Seddon, Application of ionic liquid in the chemical industry, Chem. Soc. Rev, vol.37, pp.123-150, 2008.

M. N. Roy, I. Banik, and D. Ekka, Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques, J. Chem Thermodyn, vol.57, pp.230-237, 2013.

L. A. Blanchard, D. Hancu, E. J. Beckman, and J. F. Brennecke, Green processing using ionic liquids and CO 2, Nature, vol.399, pp.28-29, 1999.

. Eudime, , 2012.

. Chapter, , p.160

J. E. Bara, D. E. Camper, D. L. Gin, and R. D. Noble, Room-temperature ionic liquid and composite materials: platform technologies for CO 2 capture, Acc. Chem. Res, vol.43, pp.152-159, 2010.

J. K. Anderson, J. K. Dixon, and J. F. Brennecke, Solubility of CO 2 , CH 4 , C 2 H 6 , C 2 H 4 , O 2 , and N 2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids, Acc. Chem. Res, vol.40, pp.1208-1216, 2007.

J. M. Pringle, J. Golding, and K. Baranyai, The effect of anion fluorination in ionic liquids-physical properties of a range of bis(methanesulfonyl)amide salts, New. J Chem, vol.27, pp.1504-1510, 2003.

P. C. Hillesheim, S. M. Mahurin, P. F. Fulvio, J. S. Yeary, Y. S. Oyola et al., Synthesis and characterization of thiazolium-based room temperature ionic liquids for gas separations, Ind. Eng. Chem. Res, vol.51, pp.11530-11537, 2012.

B. M. Shiflett, D. W. Drew, R. A. Cantini, R. A. , and A. Yokozeki, Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate, Energ. Fuel, p.24, 2010.

S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, Physical Properties of Ionic Liquids: Database and Evaluation, J. Phys. Chem. Ref. Data, vol.35, pp.1475-1517, 2006.

P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts, Inorg. Chem, vol.35, pp.1168-1178, 1996.

J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker et al.,

. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem, vol.3, 2001.

H. Tokuda, K. Ishii, M. A. Susan, S. Tsuzuki, K. Hayamizu et al., Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J.Phys. Chem. B, vol.110, pp.2833-2839, 2006.

P. Galletii, F. Moretti, C. Samori, and E. Tagliavini, Enzymatic acylation of levoglucosan in acetonitrile and ionic liquids, Green Chem, vol.9, pp.987-991, 2007.

C. Reichardt, Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes, Green Chem, vol.7, pp.339-351, 2005.

. Eudime, , 2012.

. Chapter, , p.161

A. J. Carmichael and K. R. Seddon, Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, J. Phys. Org. Chem, vol.13, pp.591-595, 2000.

K. R. Fletcher, I. A. Storey, A. E. Hendricks, and S. Pandey, Behavior of the solvatochromic probes Reichardt's dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF 6, Green Chem, vol.3, pp.210-215, 2001.

M. J. Muldoon, C. M. Gordon, and I. R. Dunkin, Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes, J. Chem. Soc

, Perkin Trans, vol.2, pp.433-416, 2001.

J. L. Anderson, J. Ding, T. Welton, and D. W. Armstrong, Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions, J. Am. Chem. Soc, vol.124, pp.14247-14254, 2002.

M. H. Abaham, A. M. Zissimos, J. G. Huddleston, H. D. Willauer, R. D. Rogers et al.,

. Acree, Some Novel Liquid Partitioning Systems: Water Ionic Liquids and Aqueous Biphasic Systems, vol.42, pp.413-418, 2003.

L. Ropel, L. S. Belveze, S. N. Aki, M. A. Stadtherr, and J. F. Brennecke, Octanolwater partition coefficients of imidazolium-based ionic liquids, Green Chem, vol.7, 2005.

S. N. Aki, J. F. Brennecke, and M. A. Stadtherr, How polar are room-temperature ionic liquids?, Chem. Commun, pp.413-414, 2001.

C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev, vol.94, pp.2319-2358, 1994.

S. Schrodle, G. Annat, D. R. Macfarlane, M. Forsyth, R. Buchner et al., Broadband dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide, Chem.Commun, pp.1748-1750, 2006.

A. Basso, S. Cantone, P. Linda, and C. Ebert, Stability and activity of immobilised penicillin G amidase in ionic liquidsat controlled aw, Green Chem, vol.7, pp.671-676, 2005.

S. H. Schofer, N. Kaftzik, P. Wasserscheid, and U. Kragl, Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity, Chem. Commun, pp.425-426, 2001.

. Eudime, , 2012.

. Chapter, , p.162

S. Park and R. J. Kazlauskas, Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio-and Regioselective Acylations, J. Org. Chem, vol.66, pp.8395-8401, 2001.

J. L. Kaar, A. M. Jesionowski, J. A. Berberich, R. Moulton, and A. J. Russell, Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability, J. Am. Chem. Soc, vol.125, pp.4125-4131, 2003.

P. Lozano, T. De-diego, D. Carrie, M. Vaultier, and J. L. Iborra, Over-stabilization of

, Candida antarctica lipase B by ionic liquids in ester synthesis, Biotechnol. Lett, vol.23, pp.1529-1533, 2001.

P. Lozano, T. Diego, J. P. Guegan, M. Vaultier, and J. L. Iborra, Stabilization ofchymotrypsin by ionic liquids in transesterification reactions, Biotechnol. Bioeng, vol.75, pp.563-569, 2001.

J. P. Mann, A. Mcluskey, and R. Atkin, Activity and thermal stability of lysozyme in alkylammonium formateionic liquids-influence of cation modification, Green Chem, vol.11, pp.785-792, 2009.

T. Kanatani, K. Matsumoto, and R. Hagiwara, Syntheses and Physicochemical Properties of New Ionic Liquids Based on the Hexafluorouranate Anion, Chem. Lett, vol.38, pp.714-715, 2009.

T. L. Greaves and C. J. Drummond, Physicochemical Properties of Ionic Liquids Containing N-alkylamine-Silver(I) Complex Cations or Protic N-alkylaminium Cations, Chem. Rev, vol.108, pp.206-237, 2008.

R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc, vol.124, pp.4974-4975, 2002.

Y. Fukaya, K. Hayashi, M. Wada, and H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions, Green Chem, vol.10, pp.44-46, 2008.

D. M. Anderson, , pp.57-58, 2003.

P. T. Spicer, W. B. Small, and M. L. Lynch, , pp.66014-66016, 2002.

L. A. Neves, J. G. Crespo, and I. M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, Journal of Membrane Science, vol.357, pp.160-170, 2010.

. Eudime, , 2012.

. Chapter, , p.163

L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, Molecular states of water in room temperature ionic liquids, Phys. Chem, vol.3, pp.5192-5200, 2001.

T. Koddermann, C. Wertz, A. Heintz, and R. Ludwing, The Association of Water in Ionic Liquids: A Reliable Measure of Polarity, Angew. Chem. Int. Ed, vol.45, pp.3697-3702, 2006.

A. Oehlke, K. Hofmann, and S. Spange, New aspects on polarity of 1-alkyl-3-methylimidazolium salts as measured by solvatochromic probes, New. J. Chem, vol.30, pp.533-536, 2006.

S. Park and R. J. Kazlauskas, Biocatalysis in ionic liquids -advantages beyond green technology, Curr. Opin. Biotechnol, vol.14, pp.432-437, 2003.

L. A. Blanchard, Z. Gu, and J. F. Brennecke, High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems, J. Phys. Chem. B, pp.2437-2444, 2001.

J. L. Anderson, R. Ding, A. Ellern, and D. W. Armstrong, Structure and Properties of High Stability Geminal Dicationic Ionic Liquids, J. Am. Chem. Soc, vol.127, pp.593-604, 2005.

T. Payagala, J. Huang, Z. S. Breitbach, P. S. Sharma, and D. W. Armstrong, Unsymmetrical Dicationic Ionic Liquids: Manipulation of Physicochemical Properties Using Specific Structural Architectures, Chem. Mater, vol.19, pp.5848-5850, 2007.

M. A. Susan, A. Noda, S. Mitsushima, and M. Watanabe, Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors, Chem. Commun, pp.938-939, 2003.

. Eudime, , 2012.

. Chapter, , p.164

Z. Y. Du, Z. P. Li, S. Guo, J. Zhang, L. Y. Zhu et al., Investigation of Physicochemical Properties of Lactam-Based Brønsted Acidic Ionic Liquids, J. Phys. Chem. B, vol.109, pp.19542-19546, 2005.

T. L. Greaves, A. Weerawardena, C. Fong, I. Krodkiewska, and C. J. Drummond, Protic Ionic Liquids: Solvents with Tunable Phase Behavior and Physicochemical Properties, J. Phys. Chem. B, vol.110, pp.22479-22487, 2006.

R. P. Swatloski, J. D. Holbrey, and R. D. Rogers, Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green Chem, vol.5, pp.361-363, 2003.

A. Bagno, C. Butts, C. Chiappe, F. , J. C. Lord et al., The effect of the anion on the physical properties of trihalide-based N,Ndialkylimidazolium ionic liquids, Org. Biomol. Chem, vol.3, pp.1624-1630, 2005.

Z. B. Zhou, H. Matsumoto, and K. Tatsumi, Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates, vol.11, pp.752-766, 2005.

M. S. Kelkar and E. J. Maginn, Effect of Temperature and Water Content on the Shear Viscosity of the Ionic Liquid 1-Ethyl-3-methylimidazolium

, Bis(trifluoromethanesulfonyl) imide As Studied by Atomistic Simulations, J. Phys. Chem. B, vol.111, pp.4867-4876, 2007.

R. E. Baltus, R. M. Counce, B. H. Culbertson, H. Luo, D. W. Depaoli et al.,

. Duckworth, Examination of the potential of ionic liquids for gas separations, Sep. Sci. Technol, vol.40, pp.525-541, 2005.

C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke et al., Why is CO 2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc, vol.126, pp.5300-5308, 2004.

P. J. Carvalho, V. H. Álvarez, J. J. Machado, J. Pauly, J. Daridon et al., High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, J. Supercrit. Fluids, vol.48, pp.99-107, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00610580

P. T. Nguyen, B. A. Voss, E. F. Wiesenauer, D. L. Gin, and R. D. Noble, Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO 2 /N 2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance, Ind. Eng. Chem. Res, vol.52, 2013.

D. Yang, S. Majumdar, S. Kovenklioglu, and K. K. Sirkar, Hollow fiber contained liquid membrane pervaporation system for the removal of toxic volatile organics from wastewater, J. Membr. Sci, vol.103, pp.195-210, 1995.

A. S. Kovvali and K. K. Sirkar, Stable liquid membranes recent developments and future directions, Ann. N. Y. Acad. Sci, vol.984, pp.279-288, 2003.

. Fj, A. P. Hernández-fernandez, F. De-los-ríos, J. M. Tomás-alonso, G. Palacios et al., Preparation of supported ionic liquid membranes: influence of the ionic liquid immobilization method on their operational stability, J. Membr. Sci, vol.341, pp.172-177, 2009.

. Sh, M. Barghi, D. Adibi, and . Rashtchian, All rights reserved selectivity of CO 2 and CH 4 through [bmim][PF 6 ] ionic liquid supported on an alumina membrane: investigation of temperature fluctuations effects, J. Membr. Sci, vol.362, pp.346-352, 2010.

. Dh, I. H. Kim, S. U. Beak, H. K. Hong, and . Lee, Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO 2 /N 2 separation, J. Membr. Sci, vol.372, pp.346-354, 2011.

P. Scovazzo, J. Kieft, C. Da.-finan, D. Koval, R. Dubois et al., Gas separations using non-hexafluorophosphate [PF 6 -] anion supported ionic liquid membranes, J. Membr. Sci, vol.238, pp.57-63, 2004.

P. Cserjési, N. Nemestóthy, and K. Bélafi-bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J. Membr. Sci, vol.349, pp.6-11, 2010.

E. Santos, J. Albo, and A. Irabien, Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: influence of the temperature, J. Membr. Sci, vol.452, pp.277-283, 2014.

L. C. Tomé, D. Mecerreyes, C. S. Freire, L. P. Rebelo, and I. M. Marrucho, Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO 2 separation membranes, J. Membr. Sci, vol.428, pp.260-266, 2013.

R. Couto, L. Neves, P. Simões, and I. Coelhoso, Supported Ionic Liquid Membranes and Ion-Jelly Membranes with

, Membranes, vol.5, pp.13-21, 2015.

. Eudime, , 2012.

. Chapter, , p.166

J. A. Jonsson and L. Mathiasson, Membrane-based techniques for sample enrichment, J. Chromatogr. A, vol.902, pp.205-225, 2000.

E. Miyako, T. Maruyama, N. Kamiya, and M. Goto, Highly Enantioselective Separation Using a Supported Liquid Membrane Encapsulating Surfactant Enzyme Complex, J. Am. Chem. Soc, vol.126, pp.8622-8623, 2004.

J. A. Jonsson and L. Mathiasson, Liquid membrane extraction in analytical sample preparation: I. Principles, Trends Anal. Chem, vol.18, pp.318-325, 1999.

L. C. Branco, J. G. Crespo, and C. A. Afonso, Highly Selective Transport of Organic Compounds by Using Supported Liquid Membranes Based on Ionic Liquids

, Chem. Int. Ed, vol.41, pp.2771-2773, 2002.

L. C. Branco, J. G. Crespo, and C. A. Afonso, Studies on the Selective Transport of Organic Compounds by Using Ionic Liquids as Novel Supported Liquid Membranes, Chem. Eur. J, vol.8, pp.3865-3871, 2002.

E. Miyako, T. Maruyama, N. Kamiya, and M. Goto, Enzyme-facilitated enantioselective transport of (S)-ibuprofen through a supported liquid membrane based on ionic liquids, Chem. Commun, pp.2926-2927, 2003.

E. Miyako, T. Maruyama, N. Kamiya, and M. Goto, Use of ionic liquids in a lipasefacilitated supported liquid membrane, Biotechnol. Lett, vol.25, pp.805-808, 2003.

E. Miyako, T. Maruyama, N. Kamiya, and M. Goto, Transport of organic acids through a supported liquid membrane driven by lipase-catalyzed reactions, J. Biosci. Bioeng, vol.96, pp.370-374, 2003.

F. J. Hernandez-fernandez, A. P. Delos-rõos, F. T. Alonso, and G. Võllora, Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane, J. Chem. Technol. Biotechnol, vol.84, pp.337-342, 2009.

A. P. Delos-rõos, F. J. Hernandez-fernandez, F. T. Alonso, D. R. Gomez, and G. ,

. Võllora, On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes, J. Membr. Sci, vol.307, pp.233-238, 2008.

M. Mulder, Basic Principles of Membrane Technology, 2003.

. Eudime, , 2012.

. Chapter,

I. M. Coelhoso, T. F. Moura, J. Crespo, and M. J. Carrondo, Transport mechanisms in liquid membranes with ion exchange carriers, J. Membr. Sci, vol.108, pp.231-244, 1995.

F. F. Krull, C. Fritzmann, and T. Melin, Liquid membranes for gas/vapor separations, J. Membr. Sci, vol.325, pp.509-519, 2008.

L. J. Lozano, C. Godínez, A. P. De-los-ríos, F. J. Hernández-fernández, S. Sánchez-segado et al., Recent advances in supported ionic liquid membrane technology, J. Membr. Sci, vol.376, pp.1-14, 2011.

P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. Dubois et al., Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes, J. Membr. Sci, vol.238, pp.57-63, 2004.

P. Luis, L. A. Neves, C. A. Afonso, I. M. Coelhoso, J. G. Crespo et al., Facilitated transport of CO 2 and SO 2 through supported ionic liquid membranes (SILMs), Desalination, vol.245, pp.485-493, 2009.

J. Ilconich, C. Myers, H. Pennline, and D. Luebke, Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO 2 /He separation at temperatures up to 125 C, J. Membr. Sci, vol.298, pp.41-47, 2007.

P. Scovazzo, D. Havard, M. Mcshea, S. Mixon, and D. Morgan, Long-term, continuous mixed-gas dry fed CO 2 /CH 4 and CO 2 /N 2 separation performance and selectivities for room temperature ionic liquid membranes, J. Membr. Sci, vol.327, pp.41-48, 2009.

S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama et al., CO 2 separation facilitated by task-specific ionic liquids using a supported liquid membrane, J. Membr. Sci, vol.314, pp.1-4, 2008.

P. Cserjési, N. Nemestóthy, and K. Bélafi-bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J. Membr. Sci, vol.349, pp.6-11, 2010.

P. Cserjési, N. Nemestóthy, A. Vass, Z. Csanádi, and K. Bélafi-bakó, Study on gas separation by supported liquid membranes applying novel ionic liquids, vol.245, pp.743-747, 2009.

H. Zhao, Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids, J. Mol. Catal. B: Enzym, vol.37, p.16, 2005.

. Eudime, , 2012.

. Chapter, , p.168

S. K. Kawatra, T. C. Eisele, and J. J. Simmons, Capture and sequestration of carbon dioxide in flue gases, 2011.

R. M. Lau, M. J. Sorgedrager, G. Carrea, F. Van-rantwijk, F. Secundo et al., Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity, Green Chem, vol.6, pp.483-487, 2004.

R. A. Sheldon, L. R. Madeira, M. J. Sorgedrager, F. Van-rantwijk, and K. R. Seddon, Biocatalysis in ionic liquids, Green Chem, vol.4, pp.147-151, 2002.

M. Moniruzzamana, K. Nakashima, N. Kamiya, and M. Goto, Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J, vol.48, pp.295-314, 2010.

P. Luis, L. A. Neves, C. A. Afonso, I. M. Coelhoso, J. G. Crespo et al., Facilitated transport of CO 2 and SO 2 through supported ionic liquid membranes (SILMs), Desalination, vol.245, pp.485-493, 2009.

M. G. Freire, Mutual Solubilities of Water and the

, Hydrophobic Ionic Liquids, J. Phys. Chem. B2008, vol.112, pp.1604-1610

C. Capasso, V. De-luca, V. Carginale, R. Cannio, and M. Rossi, Biochemical properties of a novel and highly thermostable bacterial -carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1, J. Enzyme Inhib. Med. Chem, vol.27, pp.892-897, 2012.

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2009.

L. M. Robeson, The upper bound revisited, J. Membr. Sci, vol.320, pp.390-400, 2008.

B. W. Rowe, L. M. Robeson, B. D. Freeman, and D. R. Paul, J. Membr. Sci, p.360, 2010.

J. T. Houghton, Climate Change, The Scientific Basis, 2001.

J. J. Mc-carthy, O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, Climate Change 2001: Impacts, Adaptation, and Vulnerability, 2001.

S. Pacala and R. Socolow, Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science, pp.968-972, 2004.

T. Graham, On the law of the diffusion of gases, J. Membr. Sci, vol.100, p.17, 1995.

T. Graham, Notice of the singular inflation of a bladder, J. Membr. Sci, vol.100, p.9, 1995.

R. W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res, vol.41, p.1393, 2002.

W. J. Koros, Gas separation membranes: needs for combined materials science and processing approaches, Macromol. Symp, vol.188, p.13, 2002.

G. Maier, Gas separation with polymer membranes, Angew. Chem. Int. Ed, vol.37, p.2960, 1998.

S. A. Stern, Polymers for gas separations: the next decade, J. Membr. Sci, vol.94, p.1, 1994.

D. R. Paul and Y. P. , Polymeric Gas Separation Membranes, 1994.

W. J. Koros and G. K. Fleming, Membrane-based gas separation, J. Membr. Sci, vol.83, p.1, 1993.

B. D. Freeman and I. Pinnau, Polymeric materials for gas separations, ACS Symp. Ser, vol.733, p.1, 1999.

M. Langsam, Polyimides for gas separation, Plastics Eng, vol.36, p.697, 1996.

W. J. Koros and R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies, J. Membr. Sci, vol.175, p.181, 2000.

N. N. Li, A. G. Fane, W. S. Ho, and T. Matsuura, Advanced membrane technology and applications, 2008.

V. Stannett, The transport of gases in synthetic polymeric membranes an historic Perspective, J. Membr. Sci, vol.3, p.115, 1978.

M. Smaihi, T. Jermoumi, J. Marignan, and R. D. Noble, Organic inorganic gas separation membranes: Preparation and characterization, J. Membr. Sci, vol.116, p.220, 1996.

G. Dong, H. Li, and V. Chen, Challenges and opportunities for mixed matrix membranes for gas separation, J. Mater. Chem. A, vol.1, p.4630, 2013.

P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Technol, vol.81, p.264, 2011.

A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO 2 Separation, J. Membr. Sci, vol.359, p.125, 2010.

R. Mahajan, D. Q. Vu, and W. J. Koros, Mixed matrix membrane materials: An answer to the challenges faced by membrane based gas separations today?, J. Chin. Inst. Chem. Eng, vol.33, p.86, 2002.

. Eudime, , 2012.

. Chapter, , p.208

W. J. Koros, G. K. Fleming, S. M. Jordan, T. H. Kim, and H. H. Hoehn, Polymeric membrane materials for solution diffusion based permeation separations, Prog. Polym. Sci, vol.13, p.401, 1988.

L. M. Robeson, Polymer membranes for gas separation, Curr. Opin. Solid State Mater. Sci, vol.4, pp.549-552, 1999.

, Energy information administration, US department of energy, International energy outlook, 2013.

S. A. Rackley, Carbon Capture and Storage, 2010.

E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, CO 2 capture by a task specific ionic Liquid, J. Am. Chem. Soc, vol.124, p.927, 2002.

S. Ma'mun, V. Y. Dindore, and H. F. Svendsen, Kinetics of the reaction of carbon dioxide with aqueous solutions of 2, Ind. Eng. Chem. Prod. Res. Dev, vol.46, issue.2, pp.385-394, 2006.

R. W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Prod. Res. Dev, vol.41, pp.1393-1411, 2002.

K. Ghosal and B. D. Freeman, Gas separation using polymer membranes: An overview, Polym. Adv. Technol, vol.5, p.697, 1994.

R. J. Gardner, R. A. Crane, and J. F. Hannan, Hollow fiber permeator for separating gases, Chem. Eng. Prog, vol.73, p.78, 1977.

W. J. Koros and G. K. Fleming, Membrane-based gas separation, J. Membr. Sci, vol.83, p.1, 1993.

M. Mulder, Basic principles of membrane technology, 1996.

A. Mushtaq, H. Mukhtar, A. M. Shariff, and H. Mannan, A Review: Development of Polymeric Blend Membrane for Removal of CO 2 from Natural Gas, IJET-IJENS, vol.13, pp.53-60, 2013.

K. Scott, Membrane separation technology, Scientific & Technical Information, 1990.

H. Strathmann, Membrane separation processes: Current relevance and future opportunities, AIChE J, vol.47, p.1077, 2001.

R. W. Spillman and M. B. Sherwin, Gas separation membranes: The first decade, Chemtech, vol.20, p.378, 1990.

W. J. Koros, Gas separation in membrane separation systems: Recent developments and future directions, pp.189-241, 1991.

J. Duvala, B. Folkersa, M. H. Muldera, G. Desgrandchamps, and C. A. Smolders, Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents, J. Member. Sci, vol.80, pp.189-198, 1993.

R. Abedini and A. Nezhadmoghadam, APPLICATION OF MEMBRANE IN GAS SEPARATION PROCESSES: ITS SUITABILITY AND MECHANISMS, Pet. Coal, vol.52, pp.69-80, 2010.

A. F. Ismail, P. S. Goh, S. M. Sanip, and M. Aziz, Transport and separation properties of carbon nanotube-mixed matrix membrane, Sep. Purif. Technol, vol.70, pp.12-26, 2009.

. Eudime, , 2012.

. Chapter, , p.209

J. S. Chiou and D. R. Paul, Effects of CO 2 exposure on gas transport properties of glassy Polymers, J. Membr. Sci, vol.32, p.205, 1987.

S. Kulprathipanja, R. W. Neuzil, and N. N. Li, Separation of gases by means of mixed matrix membranes, 1992.

A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, Production of super selective polysulfone hollow fiber membranes for gas separation, Polymer, vol.40, p.6506, 1999.

Y. Zhang, J. Sunarso, S. Liu, and R. Wang, Current status and development of membranes for CO 2 /CH 4 separation: A review, Int. J. Greenhouse Gas Control, vol.12, pp.84-107, 2013.

Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, The strategies of molecular architecture and modification of polyimide based membranes for CO 2 removal from natural gas-A review, Prog. Polym. Sci, vol.34, pp.561-580, 2009.

R. W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res, vol.41, pp.1393-1411, 2002.

G. Dong, H. Li, and V. Chen, Challenges and opportunities for mixed matrix membranes for gas separation, J. Mater. Chem. A, vol.1, pp.4610-4630, 2013.

L. M. Robeson, Correlation of separation factor versus permeability for polymeric Membranes, J. Membr. Sci, vol.62, p.185, 1991.

L. M. Robeson, The upper bound revisited, J. Membr. Sci, vol.320, p.400, 2008.

H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas et al., Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, vol.318, p.258, 2007.

A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO 2 Separation, J. Membr. Sci, vol.359, p.125, 2010.

A. Bos, I. G. Pünt, M. Wessling, and H. Strathmann, Plasticization-resistant glassy polyimide membranes for CO 2 /CO 4 separations, Sep. Purif. Technol, vol.14, pp.27-39, 1998.

A. Y. Houde, B. Krishnakumar, S. G. Charati, and S. A. Stern, Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures, J. Appl. Polym. Sci, vol.62, pp.2181-2192, 1996.

M. D. Donohue, B. S. Minhas, and S. Y. Lee, Permeation behavior of carbon dioxide methane mixtures in cellulose acetate membranes, J. Membr. Sci, vol.42, p.214, 1989.

W. J. Schell, C. D. Houston, W. L. Hopper, and G. Cond, , 1983.

A. F. Ismail and W. Lorna, Penetrant induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep. Purif. Technol, vol.27, p.194, 2002.

C. Zhou, T. S. Chung, R. Wang, Y. Liu, and S. H. Goh, The accelerated CO 2 plasticization of ultra thin polyimide films and the effect of surface chemical cross linking on plasticization and physical aging, J. Membr. Sci, vol.225, p.134, 2003.

C. Cao, T. S. Chung, Y. Liu, R. Wang, and K. P. Pramoda, Chemical cross linking modification of 6FDA 2,6 DAT hollow fiber membranes for natural gas separation, J. Membr. Sci, vol.216, p.268, 2003.

A. M. Hillock and W. J. Koros, Cross Linkable Polyimide Membrane for Natural Gas Purification and Carbon Dioxide Plasticization Reduction, Macromolecules, vol.40, p.587, 2007.

J. Fang, H. Kita, and K. I. Okamoto, Gas permeation properties of hyperbranched polyimide membranes, J. Membr. Sci, vol.182, p.256, 2001.

H. Kita, T. Inada, K. Tanaka, and K. I. Okamoto, Effect of photocrosslinking on permeability and selectivity of gases through benzophenone containing polyimide, J. Membr. Sci, vol.87, p.147, 1994.

G. C. Kapantaidakis, S. P. Kaldis, X. S. Dabou, and G. P. Sakellaropoulos, Gas permeation through PSF PI miscible blend membranes, J. Membr. Sci, vol.110, p.247, 1996.

A. Bos, I. Punt, H. Strathmann, and M. Wessling, Suppression of gas separation membrane plasticization by homogeneous polymer blending, AlChE J, vol.47, p.1093, 2001.

T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. (Oxford), vol.32, p.507, 2007.

L. A. Neves, J. G. Crespo, and I. M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, J. Membr. Sci, vol.357, pp.160-170, 2010.

L. A. Neves, C. Afonso, I. M. Coelhoso, and J. G. Crespo, Integrated CO 2 capture and enzymatic bioconversion in supported ionic liquid membranes, Sep. Purif. Technol, vol.97, pp.34-41, 2012.

E. L. Cussler, Diffusion, Mass Transfer in Fluid Systems, 2009.

B. W. Rowe, L. M. Robeson, B. D. Freeman, and D. R. Paul, J. Membr. Sci, vol.360, pp.58-69, 2010.

. Mnps-enzyme, , vol.25

. Mnps-enzyme, , vol.5

. Mnps-enzyme,

. Mnps-enzyme, , vol.5

. Mnps-enzyme, , vol.82

. Mnps-enzyme,

. Mnps-enzyme,

. Mnps-enzyme, , 1230.

. Damp-ga-enzyme, , 1000.

K. K. Sirkar, P. V. Shanbhag, and A. S. Kovvali, Membrane in a reactor: a functional perspective, Ind. Eng.Chem.Res, vol.38, pp.3715-3737, 1999.

J. Yuan, J. Zhang, X. Zang, J. Shen, and S. Lin, Improvement of blood compatibility on cellulose membrane surface by grafting betaines, Colloids Surf. B, pp.147-155, 2003.

V. G. Gavalas and N. A. Chaniotakis, Lactate bio sensor based on the adsorption of polyelectrolyte stabilized lactate oxidase in to porous conductive carbon, Mikrochim. Acta, vol.136, pp.211-215, 2001.

L. Giorno and E. Drioli, Biocatalytic membrane reactors: applications and perspectives, Trends Biotechnol, vol.18, pp.339-349, 2000.

V. C. Gekas, Artificial membranes as carriers for the immobilization of biocatalysts, Enzym.Microb.Technol, vol.8, pp.450-460, 1986.

N. F. Liu, H. Awanis, L. Yutie, M. R. Mogharehabed, and K. Li, Progress in the production and modification of PVDF membranes, J.Membr.Sci, vol.375, pp.1-27, 2011.

F. Liu, N. Hashim, Y. Liu, M. R. Moghareh-abed, and K. Li, Progress in the production and modification of PVDF membranes, J.Membr.Sci, vol.375, pp.1-27, 2011.

P. Jochems, Y. Satyawali, L. Diels, and W. Dejonghe, Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs), GreenChem, vol.13, p.1609, 2011.

G. Kang and Y. -m.-cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes-a review, J. Membr. Sci, vol.463, pp.145-165, 2014.

G. J. Chen, C. H. Kuo, C. I. Chen, C. C. Yu, C. J. Shieh et al., Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilizer activity andstability, J. Biosci. Bioeng, vol.113, pp.166-172, 2012.

S. Gupta, A. Bhattacharya, and C. N. Murthy, Tune to immobilized lipases on polymer membranes: techniques, factors and prospects, Biocatal. Agric. Biotechnol, vol.2, pp.171-190, 2013.

L. P. Zhu, J. Z. Yu, Y. Y. Xu, Z. Y. Xi, and B. K. Zhu, Surface modification of PVDF porous membranes viapoly (DOPA) coating and heparin immobilization

. Eudime, , 2012.

. Chapter,

C. H. Kuo, G. J. Chen, Y. K. Twu, Y. C. Liu, and C. J. Shieh, Optimum Lipase immobilized on diamine-grafted PVDF membrane and its characterization, Ind. Eng

, Chem. Res, vol.51, pp.5141-5147, 2012.

G. J. Ross, J. F. Watts, M. P. Hill, and P. Morrissey, Surface modification of poly (vinylidene fluoride) by alkaline treatment1.The degradation mechanism, Polymer, pp.1685-1696, 2000.

E. Ghanem and F. M. Raushel, Detoxification of organophosphate nerve agents by bacterial phosphotriesterase, Toxicol. Appl. Pharmacol. Review, vol.207, pp.459-470, 2005.

D. J. Ecobichon, Casarett and Doull's Toxicology: The Basic Science of Poisons, pp.763-810, 2001.

F. M. Raushel and H. M. Holden, Phosphotriesterase: an enzyme in search for its natural substrate, Adv. Enzymol. Relat. Areas Mol. Biol, vol.74, pp.51-93, 2000.

D. P. Dumas, S. R. Caldwell, J. R. Wild, and F. M. Raushel, Purification and properties of the phosphotriesterase from Pseudomonas diminuta, J. Biol. Chem, vol.264, pp.19659-19665, 1989.

D. P. Dumas, J. R. Wild, and F. M. Raushel, Expression of Pseudomonas phosphotriesterase activity in the Fall Armyworm confers resistance to insecticides, Experientia, vol.46, pp.729-731, 1990.

A. D. Griffiths and D. S. Tawfik, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization, EMBO J, vol.22, pp.24-35, 2003.

G. Schrader, Organische phosphor-verbindungen als neuartige insektizide (auszug), Angew. Chem, vol.62, pp.471-473, 1950.

D. P. Dumas, H. D. Durst, W. G. Landis, F. M. Raushel, and J. R. Wild, Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta, Arch. Biochem. Biophys, vol.277, pp.155-159, 1990.

J. E. Kolakowski, J. J. Defrank, S. P. Harvey, L. L. Szafraniec, W. T. Beaudry et al., Enzymatic hydrolysis of the chemical warfare agent VX and its neurotoxic analogues by organophosphorus hydrolase, Biocatal. Biotransform, vol.15, pp.297-312, 1997.

L. Holm and C. Sander, An evolutionary treasure: unification of a broad set of amidohydrolases related to urease, Proteins, vol.28, pp.72-78, 1997.

. Eudime, , 2012.

. Chapter, , p.253

E. Jabri, M. B. Carr, R. P. Hausinger, and P. A. Karplus, The crystal structure of urease from Klibsiella aerogenes, Science, vol.268, pp.998-1004, 1995.

J. B. Thoden, G. N. Phillips, T. M. Neal, F. M. Raushel, and H. M. Holden, Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center, Biochemistry, vol.40, pp.6989-6997, 2001.

M. M. Benning, J. M. Kuo, F. M. Raushel, and H. M. Holden, Three dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents, Biochemistry, vol.33, pp.15001-15007, 1994.

M. Benning, H. Shim, F. M. Raushel, and H. M. Holden, High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta, Biochemistry, vol.40, pp.2712-2722, 2001.

G. A. Omburo, J. M. Kuo, L. S. Mullins, and F. M. Raushel, Characterization of the zinc binding site of bacterial phosphotriesterase, J. Biol. Chem, vol.267, pp.13278-13283, 1992.

J. L. Vanhooke, M. M. Benning, F. M. Raushel, and H. M. Holden, Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate, Biochemistry, vol.35, pp.6020-6025, 1996.

L. Cao, Immobilised enzymes: science or art?, Curr. Opin. Chem. Biol, vol.9, 2005.

C. G. Netto, H. E. Toma, and L. H. Andrade, Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes, J. Mol. Catal.B: Enzym, pp.71-92, 2013.

E. Duguet, S. Vasseur, S. Mornet, and J. Devoisselle, Magnetic nanoparticles and their applications in medicine, Nanomedicine (Lond), vol.1, issue.2, pp.157-168, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090680

M. H. Kumar, N. Mathews, P. P. Boix, K. Nonomura, S. Powar et al., Decoupling light absorption and charge transport properties in near IR-sensitized Fe 2 O 3 regenerative cells, Energy Environ. Sci, vol.6, 2013.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu et al.,

H. G. Kwak, H. N. Park, M. Chang, J. Hwang, J. Park et al., Simple synthesis of functionalized superparamagnetic magnetite/silicacore/shell nanoparticles EUDIME (2012-2015) high-performance biocatalysts, Small, vol.4, pp.143-152, 2008.

T. Hoare, J. Santamaria, G. F. Goya, S. Irusta, D. Lin et al., Amagnetically triggered composite membrane for on-demand drug delivery, Nano Lett, vol.9, pp.3651-3657, 2009.

K. Boodhoo and A. Harvey, Process intensification: an overview of principles and practice, Process Intensification For Green Chemistry, 2013.

E. Drioli and L. Giorno, Catalytic membrane reactors for retention and recycling of coenzyme, Biocatalytic Membrane Reactors, pp.139-152, 1999.

M. C. Franssen, P. Steunenberg, E. L. Scott, H. Zuilhof, and J. P. Sanders, Immobilized enzymes in bio renewable production, Chem. Soc. Rev, vol.42, pp.6491-6533, 2013.

P. Lutze, D. K. Babi, J. M. Woodley, and R. Gani, Phenomena based methodology for process synthesis incorporating process intensification, Ind. Eng. Chem. Res, vol.52, pp.7127-7144, 2013.

Z. Xiao-ming and I. W. Wainer, On-line determination of lipase activity and enantioselectivity using an immobilized enzyme reactor coupled to a chiral stationary phase, Tetrahedron Lett, vol.34, pp.4731-4734, 1993.

K. Abe, M. Goto, and F. Nakashio, Novel optical resolution of phenylalanine race mate utilizing enzyme reaction and membrane extraction, Sep. Sci. Technol, vol.32, pp.1921-1935, 1997.

A. Machsun, M. Gozan, M. Nasikin, S. Setyahadi, and Y. Yoo, Membrane microreactor in biocatalytic trans esterification of triolein for biodiesel production, Biotechnol. Bioprocess Eng, vol.15, pp.911-916, 2010.

R. Mazzei, E. Drioli, and L. Giorno, Enzyme membrane reactor with heterogenizedglucosidase to obtain phytotherapic compound: optimization study, J. Memb. Sci, pp.121-129, 2012.

D. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh et al., Biofunctionalized magnetic-vortex micro discs for targeted cancer-cell destruction, Nat. Mater, vol.9, pp.165-171, 2010.

. Eudime, , 2012.

. Chapter,

P. Daraei, S. S. Madaeni, N. Ghaemi, M. A. Khadivi, B. Astinchap et al., Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: study of magnetic field induced casting, Sep. Purif. Technol, vol.109, 2013.

T. Bae and J. R. Long, CO 2 /N 2 separations with mixed-matrix membranes containing Mg 2 (dobdc) nanocrystals, Energy Environ. Sci, vol.6, pp.3565-3569, 2013.

I. T. Kim, A. Tannenbaum, and R. Tannenbaum, Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices, Carbon, pp.54-61, 2011.

M. A. Correa-duarte, M. Grzelczak, V. Salgueiriño-maceira, M. Giersig, L. M. Lizmarzán et al., Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles, J. Phys. Chem. B, vol.109, pp.19060-19063, 2005.

R. Bouskila, R. Mcaloney, S. Mack, D. D. Awschalom, M. C. Goh et al., One-dimensional alignment of nanoparticles via magnetic sorting, Appl. Phys. Lett, vol.96, p.163103, 2010.

A. Y. Gebreyohannes, M. Bilad, T. Verbiest, C. M. Courtin, E. Dornez et al., Nanoscale tuning of enzyme localization for enhanced reactor performance in a novel magnetic-responsive biocatalytic membrane reactor, J. Membr. Sci, vol.487, pp.209-220, 2015.

G. Vitola, R. Mazzei, E. Fontananova, and L. Giorno, PVDF membrane biofunctionalization by chemical grafting, J. Membr. Sci, vol.476, pp.483-489, 2015.

G. J. Ross, J. F. Watts, M. P. Hill, and P. Morrissey, Surface modification of poly (vinylidene fluoride) by alkaline treatment: The degradation mechanism, Polymer, vol.41, pp.1685-1696, 2000.

S. W. Sun, Y. C. Lin, Y. C. Weng, and M. J. Chen, Efficiency improvements on ninhydrin method for amino acid quantification, J. Food Compos. Anal