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ABSTRACT
While acquiring age information is crucial for efficient stock management and biodiversity conservation, traditional aging meth-
ods fail to offer a universal, non-invasive, and precise way of estimating a wild animal's age. DNA methylation from tissue DNA 
(tDNA) was recently proposed as a method to overcome these issues and showed more accurate results than telomere-length-
based age assessments. Here, we used environmental DNA (eDNA) for the first time as a template for age estimation, focusing on 
the larval phase (10–24 days post-hatch) of cultured Dicentrarchus labrax (seabass), a species of major economic and conservation 
interest. Using third-generation sequencing, we were able to directly detect various modification types (e.g., cytosine and aden-
osine methylation in all contexts) across the whole genome using amplification-free nanopore sequencing. However, aging sites 
were only present in the mitogenome, which could be a specific feature of eDNA methylation or the consequence of better DNA 
protection within mitochondria. By considering qualitative and quantitative information about aging sites according to an ob-
jective model selection framework, our epigenetic clock reached a cross-validated accuracy of 2.6 days (Median Absolute Error). 
Such performances are higher than those of previous clocks, notably for adult seabass even when scaling MAE to the age range, 
which could be linked to a more dynamic epigenome during early life stages. Overall, our pilot study proposes new methods to 
determine the potential of eDNA for simultaneous age and biodiversity assessments, although robust validation of our prelimi-
nary results along with methodological developments are needed before field applications can be envisaged.

1   |   Introduction

Among the biological variables characterizing a population of 
wild animals, the age of individuals is one of the most relevant 
to acquire (Le Clercq et al. 2023; Piferrer and Anastasiadi 2023). 
Indeed, age assessments are carried out for a wide variety of 
purposes; for example, assessments of age-class structures over 
multiple years are becoming crucial for the management of 

exploited populations and the conservation of threatened species 
(Piferrer and Anastasiadi 2023). Age-based information, such as 
the duration of life stages (e.g., dispersal phase and reproduc-
tive maturity) or growth and mortality rates, is fundamental to 
parametrize both demographic (Iannelli and Milner 2017) and 
dispersal models (Swearer, Treml, and Shima 2019). These mod-
els allow conservation efforts to be prioritized toward the most 
vulnerable zones (e.g., major “source” areas, nursery zones) 
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and stages (e.g., early juveniles and most fecund adults; Beger 
et al. 2022). Various complementary methods have been devel-
oped to assess the age of wild individuals based on size, mark-
recapture approaches (Amstrup, McDonald, and Manly 2005), or 
predictably evolving biochemical/morphological features (e.g., 
sclerochronology, pigments, and hormones; Zhang et al. 2024). 
However, they all have drawbacks in terms of resolution, univer-
sality (most are group-specific), feasibility, efficiency, or cost (Le 
Clercq et al. 2023). To address these challenges, several genetic-
based methods have been proposed recently, such as telomere 
length (Haussmann and Vleck 2002). Cooke and Smith (1986) 
initially identified telomere length as a genetic feature that 
evolves with age in humans, and it has been used since 2002 to 
age more than 100 species (Le Clercq et al. 2023). However, a 
relationship between epigenetics and age was discovered more 
recently by Horvath (2013). Such a relationship has already been 
characterized for nearly 100 species, and epigenetics now ap-
pears to be more promising than telomere length for estimating 
age, in terms of resolution (Le Clercq et al. 2023).

Among the epigenetic mechanisms that control gene expression 
without actual changes to DNA sequences (e.g., histone/chro-
matin modification and non-coding RNA), the potential of DNA 
methylation for constructing epigenetic clocks has been the most 
extensively studied to date (Booth and Brunet  2016; Trautner 
et  al.  2017). DNA methylation is a reversible dynamic process 
that involves binding a methyl group or its oxidative derivatives 
(e.g., hydroxymethyl, formyl, or carboxyl group) to all four types 
of nucleotides (Carell et  al.  2018; O'Brown and Greer  2016). 
Unlike epigenetic drift and environmental regulation, which 
are sources of variability between individuals' epigenomes, 
DNA methylation consistently evolves with age across indi-
viduals and even tissues (Tangili et al. 2023), although the un-
derlying mechanisms are not yet well understood (Piferrer and 
Anastasiadi 2023). Certain differentially methylated sites across 
ages (referred to as “aging sites” hereafter) even share common 
characteristics among species (Klughammer et al. 2023), which 
has made it possible to fit universal epigenetic clocks for 185 
mammal species (Lu et al. 2023; Robeck et al. 2021) and four fish 
species separated by up to 433 million years (Mayne et al. 2020, 
2021). Methylated nucleotides were first detected through DNA 
modifications using antibodies, restriction enzymes, and bisul-
fite treatment (restricted to cytosine methylation; Anastasiadi 
and Piferrer  2023). The direct detection of methylated bases 
without altering DNA is now possible using third-generation se-
quencing, as methyl groups produce distinct electrical patterns 
(Nanopore; Wescoe, Schreiber, and Akeson 2014) or speed pat-
terns (PacBio; Flusberg et al. 2010). This approach also offers the 
potential to reliably discriminate among various methylation 
types: 4mC, 5mC, 5hmC, and 6 mA currently (Liu et al. 2021).

In parallel to the epigenetic and third-generation sequencing 
breakthroughs in recent years, environmental DNA (eDNA) de-
tection has revolutionized the assessment of biodiversity (Beng 
and Corlett  2020; Díaz-Ferguson and Moyer  2014; Polanco 
et al. 2021). Detecting transient DNA traces of animals in water, 
sediments, or digestive systems is now an affordable and non-
destructive method that has been applied to swiftly and sim-
ply monitor communities' biodiversity (Beng and Corlett 2020; 
Rishan, Kline, and Rahman 2023). Notably, eDNA has various 
advantages for population genetic structure assessments, which 

are as crucial to demographic/dispersal models as age (Adams 
et al. 2019; Rishan, Kline, and Rahman 2023; Yao et al. 2022). 
While eDNA sampling is becoming more efficient and stan-
dardized, a major limitation is that it is not capable of obtaining 
individual-scale information, such as sex, age, and condition 
(e.g., hormones and isotopes), or individual counts (Adams 
et al. 2019; Beng and Corlett 2020). eDNA epigenetics assessed 
from full-length sequences present in the environment, using 
third-generation sequencing instead of short metabarcoding re-
gions, has the potential to overcome some of these challenges 
(Yao et al. 2022). Its ability to discriminate among the four life 
stages of the freshwater snail Lymnaea stagnalis has already 
been demonstrated (Zhao, van Bodegom, and Trimbos 2022).

Age is particularly important for stock assessments of bony fishes 
(Actinopterygii; Punt, Allen Akselrud, and Cronin-Fine 2017), 
as over 50% of fish meat still comes from wild stocks (> 2200 
species; Boyd, McNevin, and Davis 2022). This sets these fishes 
apart from most other heavily exploited taxa, emphasizing the 
need for proper management to prevent collapse in the face of the 
growing demand (Boyd, McNevin, and Davis 2022). Counting 
daily (in early life stages) or seasonal increments of otoliths (ear 
stones) is the standard age assessment method for fishes, and 
it has been estimated that several millions of otoliths are aged 
each year (Campana and Thorrold 2001). However, this method 
involves killing the fish, does not work for all fish species, suf-
fers from various methodological biases, and is highly time-
consuming (Piferrer and Anastasiadi  2023). These drawbacks 
have prompted several attempts to improve this process through 
automated annotation and/or spectroscopy (Benson et al. 2023), 
as well as the use of radiocarbon/radiometry aging for a maxi-
mum resolution of about 1 year in adults (Piddocke et al. 2015). 
Despite the importance of developing new aging methods for 
fish species, only a few studies (Anastasiadi et al. 2018) on epi-
genetic clocks have been conducted with fish (e.g., Anastasiadi 
and Piferrer 2020), in contrast to 100 studies for wild mammals 
(Le Clercq et al. 2023). Considering wild fish species in partic-
ular, two studies showed that epigenetic clocks had uncertainty 
ranges comparable to those observed with otolith and radiocar-
bon aging, which are commonly used as calibration methods 
(Mayne et al. 2023; Weber et al. 2022). Epigenetic clocks might 
even be more accurate than other methods for early life stages, 
as they are characterized by a higher rate of methylation change 
(Bertucci et al. 2021). This is suggested by the higher accuracy 
of epigenetic clocks fitted to juveniles compared with those for 
adult fish (Anastasiadi and Piferrer 2020; Mayne et al. 2023).

In this study, we used eDNA to fit an epigenetic clock, taking ad-
vantage of two promising features of nanopore sequencing that 
have not yet been applied for the detection of animals through 
eDNA and aging: amplification-free sequencing and detection 
of multiple methylation types at the single-nucleotide scale. 
We focused on the larvae of seabass (Dicentrarchus labrax), as 
it was the first fish species for which an epigenetic clock was 
fitted based on tDNA (Anastasiadi and Piferrer 2020), and the 
environmental influence on methylation dynamics in early life 
stages is particularly well studied for this species (Anastasiadi, 
Díaz, and Piferrer 2017; Valdivieso, Sánchez-Baizán, et al. 2023; 
Valdivieso, Anastasiadi, et  al.  2023). Obtaining information 
about the age structure of wild seabass populations is of major 
conservation importance because stocks have greatly declined 
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in recent years (de Pontual et  al.  2023), and it is a species of 
major economic interest (sixth most farmed marine bony fish 
in the world; 244 kT fished in 2020; FAO 2022). Studying fish 
larvae is of crucial importance because it is the most vulnera-
ble stage, and survival during this stage determines population 
replenishment while ensuring population connectivity for most 
demersal fish species (Fontoura et al. 2022). Culturing D. labrax 
allowed us to study larvae within a controlled environment, to 
reduce the number of technical challenges for this preliminary 
study (Yao et al. 2022). Apart from the overall aim of determin-
ing whether accurate epigenetic clocks can be fitted from eDNA, 
we pursued three research questions: (1) Are methylation-based 
age assessments effective for early life stages? (2) What is the 
potential of nanopore sequencing for detecting methylated pat-
terns, and (3) Are there statistical methods available that would 
increase the efficiency of epigenetic clock fitting?

2   |   Materials and Methods

2.1   |   eDNA Sampling

We carried out our experiments on a pool of seabass larvae 
(Dicentrarchus labrax) cultured in the aquaculture facility of the 
OREME (Mediterranean Coastal Environment Station) obser-
vatory (Sète, France). After an initial growth phase of a pool of 
larvae born on the same day in a nearby fish hatchery (Fermes 
Marines du Soleil, Balaruc-les-Bains), larvae were delivered to 
the OREME at 5 days post-hatch (DPH). Subsequently, their 
density in the aquaculture tank was assessed daily. We collected 
eDNA from 7 DPH (18/11/2022) to 28 DPH (09/12/2022) every 
2 or 3 days for a total of 10 sampling days (Figure 1). However, 
due to a technical issue, the sampling could not be conducted at 
21 DPH (02/12/2022), resulting in a total of nine different ages 
(7–28 DPH).

To limit human contamination of the samples, we conducted 
each experiment in a dedicated aquaculture zone, where it was 
mandatory to wear latex gloves, surgical masks, laboratory coats, 
and hair nets. The first phase of the experimental procedure in-
volved decontaminating all sampling materials and tanks with 
bleach (10%), then rinsing them with distilled water. We then 
used a 2 L beaker to transfer 16 L of seawater containing seabass 
larvae from the aquaculture tank to a bleached tank with a tap 
fitted near its base, which was topped with a suction strainer. 
We released about 13 L of seawater through the tap before refill-
ing the tank with filtered seawater, which had been pumped at 
sea and filtered through a 1 μM mechanical filter. We repeated 
this operation three times to ensure that most seawater from the 
aquaculture tank had been eliminated. Then, using a 1 L beaker, 
we transferred 4 L of filtered seawater containing larvae into 
three 5 L canisters (replicates), whose screwed caps were sealed 
using parafilm. As a control measure to monitor potential DNA 
contamination of the samples, we filled another canister closed 
similarly and filled only with 1 μM filtered seawater from the 
aquaculture station. We left it in the same conditions than the 
replicates (i.e., positioned next to them; Figure 1).

After 30 min, we filtered a volume of 2–3 L from each canister 
through a Sylphium eDNA 0.45 μM dual filter capsule using an 
Athena peristaltic pump (Proactive Environmental Products 

LLC, Bradenton, Florida, USA; nominal flow of 1.1 L min−1) 
and disposable sterile tubing for each filter capsule. The filtered 
volume was only 1.3 L for one replicate at 7 DPH, as the filter 
clogged too quickly, and it was increased from 2 to 3 L after 12 
DPH, due to lower larval densities. The filtering was performed 
sequentially by a single person, which means that larvae had 
0.5–1.5 h to shed eDNA (duration noted for each filter). At the 
end of each filtration, we emptied the water inside the filter cap-
sules and then filled the capsules with 5 mL of Longmire lysis 
buffer solution.

2.2   |   eDNA Extraction

We extracted DNA from all filter capsules within 2 weeks after 
the end of the experiment. One replicate at 7, 10, and 26 DPH 
could not be processed because the filter tip was broken during 
transport and all liquid leaked out. We carried out the eDNA 
extractions in facilities dedicated to this purpose, following a 
protocol adapted from Pont et al. (2018). Modifications were as 
follows: We retrieved 2 mL of buffer for the extraction; when re-
moving the supernatant, we left 0.6 mL of liquid at the bottom 
and then mixed it with 1.32 mL of absolute ethanol and 60 μL 
of 3 M sodium acetate; and we performed the final elution step 
with 2 × 50 μL SE buffer. We measured DNA concentrations with 
the Qubit high sensitivity dsDNA kit (Thermo Fisher Scientific, 
Bremen, Germany) following the manufacturer's instructions. 
We detected no contamination during extraction, as blanks for 
each round of extraction presented a DNA concentration below 
the Qubit detection limit (< 0.0005 ng μL−1). Finally, we stored 
the filter extracts at −20°C until further processing.

2.3   |   eDNA Preparation and Sequencing

We pooled the extracts from the three sample replicate filters in 
1.5 mL Eppendorf tubes to increase the amount of total DNA for 
sequencing. In cases where one sample was unavailable due to 
leaked filters, only two were pooled, resulting in a total of nine 
pooled samples (P1–P9) and nine negative controls (C1–C9) or-
dered by age (7–28 DPH). Following the pooling procedure, the 
total DNA in most pooled samples remained below the required 
400 ng per sample for Oxford Nanopore Technologies (ONT) se-
quencing (Table S1 in Data S1). However, three pooled samples 
met the sequencing criteria (Table S2 in Data S1).

Following advice provided by Oxford Nanopore Technologies 
in the case of low DNA input, we fragmented the DNA mol-
ecules to ensure that a sufficient number of molecules would 
pass through the nanopores and that none would be blocked. 
We concentrated each sample to 50 μL by heated evaporation 
(2 h, 30°C) using a Concentrator 5301 (Vaudaux-Eppendorf, 
Schönenbuch, Switzerland). We added 15 zirconium oxide 
beads (1.4 mm; Precellys P000927-LYSK0-A, Bertin-
Instruments, Montigny-le-Bretonneux, France) to each tube, 
placed the tubes in a MM 301 homogenizer (Retsch, Haan, 
Germany), and agitated them twice for 10 s at 30 Hz, inverting 
tube positions between the two runs to ensure symmetrical 
treatment of all samples. We recovered as much supernatant 
as possible (typically ~45 μL, i.e., 90%) and centrifuged it for 
1 min at 21,300 × g to pellet proteins. Again, we kept only the 
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supernatant for the next steps, discarding the protein pel-
lets. DNA contents measured using the Qubit high sensitivity 
dsDNA kit (Thermo Fisher Scientific) revealed that only two 
pooled samples contained the amount of total DNA required 
for ONT library preparation (Table S2 in Data S1).

We then concentrated the samples to 11 μL, using the same heated 
evaporation method as above (45 min, 30°C). Subsequently, we 
prepared the library using the Native Barcoding Kit 24V14 (SQK-
NBD114.24, Oxford Nanopore Technologies, Oxford, United 
Kingdom) according to the ligation sequencing gDNA native 
barcoding v14 protocol from ONT, using a short fragment buf-
fer during adapter ligation and cleanup and adding BSA (Bovine 
Serum Albumine) during flow cell flushing. P8 and P9 were in-
advertently mixed during library preparation, prohibiting differ-
entiation between the last two experimental stages (26–28 DPH). 
We analyzed the final library on an TapeStation 4150 (Agilent, 
Santa Clara, United States) using Genomic DNA ScreenTape, 
which showed a peak fragment length of 7 kb (94.19% of frag-
ments were between 3058 and 23,454 bp). We loaded and ran 
the library on an R10.4.1 flow cell (FLO-MIN114, ONT) on a 
MinION Mk1B (MIN-101B, ONT) sequencer (Figure 1).

2.4   |   Basecalling and Methylation Calling

We basecalled the sequencing files not filtered by their qual-
ity score using the latest and most accurate basecalling model 
of ONT (dna_r10.4.1_e8.2_400bps_sup@v4.2.0) available to 
date in the open-source basecaller for Oxford Nanopore reads, 
Dorado. We demultiplexed the file generated using the guppy_
barcoder program and subsequently aggregated all generated 
outputs per barcode and converted the aggregate to a single 
FASTA file, keeping track of read names and barcodes.

We detected seabass reads among all the other sequenced reads 
using a 90% threshold of minimum similarity in VSEARCH 
(Rognes et al.  2016) to a reference seabass whole genome. We 
downloaded this genome from NCBI (RefSeq: GCF_905237075.1, 
Tine et al. 2014), which was chunked in 1 kb fragments to speed 
up the assignation on a CPU server and obtain the most assigned 
reads (Figure S14 in Data S7). We selected this similarity thresh-
old because it corresponds to the optimal gap to delineate genera 
for many mitochondrial genes (Ruiz et al., in prep), enabling the 
identification of all Dicentrarchus reads while accounting for 
potential basecalling errors. We verified the absence of the only 

FIGURE 1    |    Experimental workflow, from environmental DNA (eDNA) sampling in the aquaculture facility (top row) to eDNA sequencing in 
the laboratory (middle row) and subsequent bioinformatic analyses for epigenetic clock fitting (bottom row). Dicentrarchus labrax (seabass) larvae 
were kept in filtered seawater for 0.5–1.5 h to maximize the proportion of seabass eDNA retrieved in 0.45 μm Sylphium filters for each experimental 
stage (i.e., 7, 10, 12, 14, 17, 19, 24, 26, and 28 days post-hatch). Due to the small amount of eDNA extracted for most samples, replicates (R) were 
pooled together, and further sheared to increase sequencing yield using the latest multiplexing chemistries (NBK-24V14), flow cells (R10.4.1), and 
basecalling algorithms (DORADO: Dna_r10.4.1_e8.2_400bps_sup@v4.2.0) currently available from Oxford Nanopore Technologies. Methylation 
calling for seabass reads only was performed using three submodels of the Dorado basecalling algorithm, and aging sites were further detected from 
MODBAM2BED summaries for each modification type. Four variables describing aging sites and their respective methylation level across ages were 
used to fit epigenetic clocks using a new method coupling grouped penalized regularizations with objective optimal model selection criteria (minimal 
error rate) across model parameter values and bootstrap iterations.

 20457758, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70645 by C

ochrane France, W
iley O

nline L
ibrary on [14/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 16

other species in this genus (D. punctatus) using various assigna-
tion methods (Data S2 and S3). Additionally, we replicated anal-
yses using larger (10 kb) reference fragments (i.e., 9000 shared 
nucleotides instead of 900). This resulted in the identification of 
about two times fewer aging sites, due to the smaller number of 
seabass reads detected (Figure S15 in Data S7).

After these cleaning steps, we performed the methylation call-
ing on seabass reads using the submodels 5mC, 5mCG_5hmCG 
(CG meaning in the CpG context only), and 6 mA integrated in 
the Dorado program. We mapped the output of the methylation 
calling both on the reference mitogenome (RefSeq: NC_026074) 
and on the full reference genome (containing this mitogenome) 
using the aligner program from Dorado, as well as the sort and 
index programs from SAMtools (Danecek et al. 2021). We then 
used the modbam2bed program from ONT to generate methyl-
ation summaries based on the mappings across the whole ref-
erence genome for each type of modification (i.e., modC, 5mC, 
5hmC, modA, and 6 mA) detected separately by each submodel 
(eight combinations).

From these analyses, we obtained the methylation summary for 
each mapped site (e.g., modification type, reliability score, cov-
erage, and methylation level), and we summarized this informa-
tion for each barcode using R version 4.1.1 (Data S5). As samples 
collected at 7 DPH (i.e., too few reads in barcode 1) and 26/28 
DPH (i.e., mixed Barcodes 8 and 9) were not suitable for further 
analyses, we used R to identify aging sites as differentially meth-
ylated sites (i.e., at least one unequal methylation level) across 
the Barcodes 2–7 (10–24 DPH).

2.5   |   Mapping Analysis

For each type of mapping (i.e., mitogenome or full genome), 
we summarized the correspondence between the reference ge-
nome and seabass reads, potentially reflecting natural intraspe-
cific variations or basecalling errors, using the “read accuracy” 
and “read identity” concepts introduced with third-generation 
sequencing. We applied a modified version (i.e., no implemen-
tation of read identity and a different formula for read accu-
racy) of an R function (import_bam_file) provided by Gleeson 
et al. (2022) to convert the file from the methylation calling into 
the concise alignment format CIGAR, from which we computed 
both metrics. First, we calculated the read accuracy, which cor-
responds to the ratio of the number of matches to the alignment 
length. Second, we computed the read identity as the ratio of the 
number of matches to the number of bases aligned (i.e., not con-
sidering gaps). This definition was the most useful in our case 
because we did not expect any nucleotide insertion or deletion 
caused by basecalling errors (Data S4).

2.6   |   Epigenetic Clocks

We fitted epigenetic clocks using penalized regularizations 
(lasso, ridge, or elastic-net regressions) that individually shrank 
the weight of each aging site since their number was much 
greater than the number of ages in this study. To determine if 
factors other than methylation levels had to be taken into ac-
count when using grouped penalized regularizations, we 

preliminarily used a permutational multivariate analysis of 
variance (PERMANOVA) and a Mantel test to check for any sig-
nificant links between methylation levels and variables charac-
terizing aging sites (Data S6). Based on these tests, we decided 
to fit epigenetic clocks taking into account all four variables 
characterizing the tested aging sites: (1) the gene obtained using 
a custom R function from the GenBank file of the reference mi-
togenome (NC indicating “non-coding” for non-annotated sec-
tions), (2) the modification type (5mC, 5hmC, Other modC, and 
6 mA), (3) the mean coverage across experimental stages, and (4) 
the reliability score, taking into account the chances of confu-
sion with another modification type for each read, which would 
ultimately affect the modification frequency.

First, we objectively chose the best values of the penalty factor 
α by testing each value between 0 and 1 by increments of 0.01 
to fit both ridge regression (α = 0) and lasso regression (α = 1), 
as well as elastic-net regression for all values of α in between 
0 and 1. Second, we objectively determined the optimal num-
ber of folds for the cross-validation, although in our case with 
only six different ages we could only use a number of three 
(also not split into training/testing datasets). Third, due to large 
variability between models fitted on the same values, and to 
ensure convergence toward a stable optimal model (Figure S4 
in Data  S3), we employed bootstrapping (10 parallelized iter-
ations) to fit epigenetic clocks for all combinations of penalty 
factors and numbers of folds. Fourth, along with modification 
frequency, we considered all possible combinations of the four 
factors mentioned above (Figure 5), by pasting the considered 
features so that sites with the same label were grouped together 
for regularization. Finally, we selected the best models, defined 
as those with the lowest median absolute error (MAE) during 
the cross-validation, as well as the lowest MAE during the final 
prediction, using the full training dataset as input. We stan-
dardized these two metrics by giving them the same weight and 
then summed them to select the best model, that is, the one with 
the lowest overall score (Data S6). We created two R functions 
based on the “glmnet” (Friedman, Hastie, and Tibshirani 2010) 
and “grpnet” (Helwig  2023) R packages to change fitting/se-
lection criteria and make profit of a trained model to predict 
new ages from a testing matrix (see commented functions on 
Github: https://​github.​com/​ruize​liot/​eDNA_​epige​netic_​aging_​
seaba​ss_​2024).

We fitted epigenetic clocks both on the full dataset and on data-
sets containing only methylated adenosines (6 mA) or only 
methylated cytosines, which could be 5mC, 5hmC, or modC that 
were not characterized as 5mC or 5hmC by both models (named 
“Other modC”). We removed sites characterized as 5mC by the 
5mC submodel and as 5hmC by the 5mCG_5hmCG submodel 
(six in total).

3   |   Results

3.1   |   Nanopore Sequencing of Seabass 
Larvae eDNA

The amount of eDNA extracted averaged 303 ng per sample, 
but the mean coefficient of variation between experimental 
stages (87%), and even between replicates (69%) was very high. 
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A robust linear regression revealed that the estimated biomass 
of larvae per canister was the best predictor of the extraction 
yield, compared with the duration of eDNA shedding, the vol-
ume filtered, or the larval age (t(19) = −4.754, p < 0.001, rs = 0.28; 
Figure S1 in Data S1). The DNA input was lower than the rec-
ommended 400 ng for ONT library preparation, both for control 
samples (μ = 99, σ = 89 ng) and for most pooled testing triplicates 
(μ = 260, σ = 333 ng), notably due to a great loss during shearing 
(μ = 77%). Nevertheless, we were able to obtain a total of 1.8 mil-
lion reads, with an average length of 1.35 (σ = 1.85 kb). Neither 
the total number of reads (t(16) = 0.230, p = 0.82) nor the number 
of reads (t(16) = −0.192, p = 0.85) presenting a similarity ≥ 90% 
to the 1 kb chunked reference seabass genome (“seabass reads”) 
were significantly linked to the DNA input weight (Figure  S2 
and Table S3 in Data S1).

Seabass reads were found in all control and test samples 
(Table S3 in Data S1), but their mean proportion of the total num-
ber of reads per sample was much higher for test samples (μ = 6, 
σ = 5%) than for control samples (μ = 1, σ = 2%). Complementary 
blasts of all fast basecalled seabass reads (Q-scores > 8) to all D. 
labrax reads in the NCBI nucleotide database confirmed that 
there was slight contamination with seabass nuclear DNA of at 
least five control samples (Data S2). However, after comparing 
assignations with similarities ≥ 90% of superior basecalled reads 
in control samples to the reference full genome and mitogenome 
(Data S3), we chose to neglect this contamination with eDNA 
from seabasses of unknown age, since 99.9% of control contam-
ination occurred in discarded experimental stages and for nu-
clear DNA.

The two approaches using the whole NCBI nucleotide database 
or reference complete mitogenomes (i.e., RefSeq database from 
NCBI) as targets during the assignation of fast and superior ba-
secalled reads, respectively, were also adopted to identify non-
seabass reads. Human DNA contamination was successfully 
minimized during sampling (e.g., 0.1% of total eukaryotes' mi-
togenomic reads). However, our protocol—carried out in a non-
sterile environment using 1 μM filtered seawater—was hampered 
by airborne and waterborne contamination from microorganisms 
(i.e., > 30% of bacteria and > 23% of fungi), as 94% of the reads ob-
tained in test samples with amplification-free nanopore sequenc-
ing were not assigned to D. labrax (Data S2 and S3).

Although a correct quantification of the read accuracy was 
not possible since we did not know the genomes of our specific 
seabass population, the read identity showed that there was at 
least < 0.7% (median) of basecalling errors both for all fragments 
(Figure  2) and for mitogenomic fragments only (Figure  S6 in 
Data S4). Longer reads had a significantly lower read identity, 
and the other significantly correlated variables in a robust re-
gression were those characterizing the alignment quality with 
the reference genome (Figure S7 in Data S4).

3.2   |   Detected Aging Site Types

Taking into account the reliability score, we detected a methyl 
group on 0.8% of the mapped cytosines or adenosines, which 
yielded a mean per test sample of interest (10–24 DPH) of 99,187 
modA sites and 154,772 modC sites (Figure S8 in Data S5). By 

FIGURE 2    |    Density functions of the read accuracy (red) and the read identity (blue) per sample, computed from mappings of Dicentrarchus labrax 
(seabass) reads identified with VSEARCH on the reference D. labrax whole genome. Unlike read accuracy, read identity does not take into account 
alignment gaps, which makes it a more suitable performance metric for this study because basecalling errors should not cause additional insertions 
and deletions (see Data S2).
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comparing outputs from the 5mC and 5mCG_5hmCG submod-
els, we estimated that about 84% of modC sites were in a CpG 
context, and 5.6% of these CpG sites were hydroxymethylated 
(5hmC could only be detected in a CpG context at the time of 
analysis). Another fraction (not quantified) of modC sites in 
CpG contexts only (5mCG_5hmCG) was categorized as neither 
5mC nor 5hmC.

Unlike methylated sites, there were more modA than modC 
aging sites (ratio from 0.64 to 1.55) for a total of 493 aging sites, 
and the proportion of 5mC over all modC sites also decreased 
from 97.7% to 89.6% compare to all methylated sites (Figures 3B 
and S8 in Data S5). We only detected aging sites on the mitoge-
nome which represents less than 0.06% of the mapped cytosines 
and adenosines (Figure 3A). Indeed, mitogenomic mapped sites 
and aging sites had a mean coverage of 3.00× instead of 1.01× 
if all mapped sites were considered, which had a large signifi-
cant effect in a non-parametric analysis of variance (ANOVA; 
F(1,36) = 44.55, p < 0.001, �2p = 0.60) compared with the modifi-
cation type and the type of sites (i.e., candidate or aging sites), 
which were not significant (Data S5). Aging sites also seemed 
to have a non-random distribution in the mitogenome because 
they were found only on certain genes, and even certain gene 
portions, despite having a similar coverage across ages for 
most other genes (Figure 3A). They mainly occurred on codon-
organized genes (i.e., 73% of aging sites; Figure  3C), such as 
NADH dehydrogenase subunits 1 and 5 (ND1 and ND5) genes 
and the cytochrome c oxidase subunit I (COX1) gene (ND2 to 
a lesser extent). Nevertheless, the average density of aging sites 
per gene (7.5% vs. 14.7% of gene length) was two times higher 
on the nine much smaller tRNA genes and even on two sup-
posedly non-coding sections (Figures S10 and S11 in Data S5). 
Aging sites were generally methylated for a single experimen-
tal stage (no sites were methylated throughout the entire ex-
periment), and most methylation levels of 100% occurred at 
10 DPH, without clear methylation patterns per gene or mod-
ification type (Figure  4). However, the methylation level was 
significantly linked to both qualitative (gene and modification 
type) and quantitative factors (coverage and reliability score; 
Figure S12 in Data S6), either per experimental stage (Mantel 
Test, p < 0.001 for all variables) or averaged across the experi-
ment (PERMANOVA, p < 0.05 for all single variables except the 
type only significant in interaction with genes: p = 0.02), even 
though standardized effect sizes (�p2 = 0.11) were categorized 
as small for all variables except the gene (Data S6).

3.3   |   Efficient Prediction of Larvae Ages

To take into account all these factors, along with methylation 
levels, for seabass age prediction, we developed a method to fit 
an objective epigenetic clock based on grouped penalized regu-
larizations (i.e., lasso, ridge, or elastic-net regressions) system-
atically tested for minimum error rate across penalty factors (α) 
and bootstrap iterations. Indeed, we detected complex relation-
ships between α values and the resulting model performance, 
which greatly varied between bootstrap iterations (Supplement 
6). Using 10 bootstrap iterations, we were able to reach stable 
optimal performances of epigenetic clocks fitted across all possi-
ble combinations of additional factors and across the three data-
sets (Figure 5). Overall, most optimal α values were close to 0, 

yielding a large number of non-neutralized “selected” sites, even 
though the link between α and the number of selected sites was 
not straightforward because the sites' coefficients were set to be 
very close to, but not at, 0 (Figure 5). The minimum MAE during 
cross-validation was very similar (around 4 days) among group-
ings for clocks fitted on the modC dataset, while it varied greatly 
(between 2.6 and 5 days) for the two other datasets (Figure 5).

MAE was much lower after training when no groups were 
used (around 0.1 days), while this metric was between 0.5 and 
1 day for most other clocks. The best epigenetic clocks selected 
for the modC and modA datasets were therefore fitted with-
out groupings (Figure  5). Conversely, epigenetic clocks fit-
ted on the full dataset that accounted for the gene, the mean 
reliability score, and to a lesser extent the mean coverage had 
the best results in terms of cross-validated MAE (Figure  5). 
Indeed, we obtained a cross-validated MAE reaching 2.61 days 
in this case, compared with 3.94 and 3.43 days for the smallest 
modC and modA datasets, respectively. Despite such a result, 
the MAE after training was slightly lower for the full dataset 
(0.43 days), even if the overall correspondence between known 
and predicted values was high (R2 = 0.99, Pearson correlation 
coefficient = 1; Figure  6A). To characterize the importance of 
each gene in the age prediction, we summed the absolute coeffi-
cients of their respective sites instead of just accounting for the 
number of selected sites per gene, which was more linked to the 
penalty factor chosen (Figure 6B). Generally, the most import-
ant genes for each clock were those with the largest number of 
aging sites with high methylation levels per dataset (especially 
for the modC best clock with α = 0), even though the tRNA-Trp 
gene had a very high importance—despite having only nine 
sites—compared with codon-organized genes (especially the 
ND2 gene; Figure 6B). Indeed, seven aging sites on the tRNA-
Trp gene were 6 mA, and most had a methylation level of 0% at 
10–14 DPH, followed by an average increase of 8.5% at 17 DPH, 
before reaching 100% at 19 DPH and 24 DPH for three and two 
sites, respectively (Figure 4B). Overall, mitogenome methylation 
seems sufficient for the accurate age prediction of the seabass 
larvae studied here.

4   |   Discussion

Our study shows that eDNA can be used to fit epigenetic clocks, 
but also that their accuracy might be equivalent to, or even better 
than, most other clocks previously established. We obtained the 
highest correlation (Figure 6) of all methylation-based (μ = 0.92, 
95% CI [0.89; 0.94]) and telomere-based (μ = 0.31, 95% CI [0.25; 
0.37]) clocks listed in the review by Le Clercq et al. (2023). The 
cross-validated median absolute error (MAE) obtained in our 
analysis with the best clock (2.61 days) considering all aging 
sites exceeded previously obtained cross-validated MAE val-
ues for non-model animals (μ = 1.28 years; Tangili et al. 2023). 
However, the MAE scaled to the age range was twice as high 
(i.e., 0.19 vs. μ = 0.08) due to the very short age range considered 
here. The improvement in cross-validated MAE between the 
clock previously established for D. labrax with DNA tissue using 
a classic workflow (140 days; Anastasiadi and Piferrer 2020) and 
our clock based on nanopore sequencing of eDNA highlights 
their respective potentials in the field of eDNA epigenetics. The 
detection of aging sites only on the mitochondria suggests that 
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FIGURE 3    |    (A) Coverage and position of aging sites on the reference Dicentrarchus labrax mitogenome. The position of a dot on the inner ring 
corresponds to the mean methylation level across the samples from 10 to 24 days post-hatch (DPH) used to fit epigenetic clocks, from 0% (closest to 
the center) to 50% (farthest from the center). (B and C) Sum of aging sites detected per modification type (B) and per mitochondrial region (C). The 
colors of the dots (A) and stacked bars (B and C) correspond to the methylation types: 5mC (orange), 5hmC (green), other modC (purple), and 6 mA 
(blue). Moving outwards in (A), the next ring represents the summed coverage per mapped position, from 11× (dark red) to 27× (dark green). In the 
following ring, sites covered for all ages of interest (10–24 DPH) for which it was possible to search for differentially methylated sites across ages (i.e., 
aging sites) are represented in blue, while their counterparts are shown in gray. The outer ring corresponds to the different genes and non-coding 
regions (NC) of the reference D. labrax mitogenome, colored by gene type as indicated in the legend. This figure can be viewed interactively on: 
https://​eliot​ruiz.​shiny​apps.​io/​eDNA_​methy​lation_​RUIZ_​ET_​AL_​2023/​.
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FIGURE 4    |    Heatmaps of the methylation level per sample (columns) of all modified cytosine (A: 5mC, 5hmC, and other modC) and all modified 
adenosine (B: 6 mA) aging sites detected (rows). Aging sites presenting a similar methylation pattern across ages were clustered together (dendrogram), 
and the genes on which they are located are represented by different colors next to the dendrogram.

FIGURE 5    |    Summary metrics for each optimal epigenetic clock per grouping combination (rows: From no grouping to all position features 
pasted together as groups) and per training dataset (colors: All aging sites, or only modified cytosine [modC] or modified adenosine [modA] aging 
sites). Each dot corresponds to the epigenetic clock with the lowest minimum median absolute error (MAE) during cross-validation and during the 
final prediction of known ages using the full dataset among all that were fitted per α increment from 0 to 1 (conditioning the number of sites with a 
coefficient different from 0, that is, selected sites) and per bootstrap iteration from 1 to 10. Among all optimal epigenetic clocks (dots), the best one 
(triangle) for each type of training dataset was selected using the same double MAE criterion as described above.
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eDNA release might be an alternative demethylation mecha-
nism (Zhao, van Bodegom, and Trimbos 2022). Our study paves 
the way for further developments of eDNA epigenetic method-
ologies, which is promising for conservation and management 
applications (Yao et al. 2022).

The higher accuracy of this new epigenetic clock for larval 
D. labrax compared with those for juveniles and adults of the 
same species, both in term of MAE (2.6 days vs. 2.1 years) and 
scaled MAE (0.19 vs. 0.21; Anastasiadi and Piferrer 2020), sup-
ports the hypothesis that early life stages allow more accurate 
epigenetic clocks to be fitted than older stages. A substantial 
reduction in cross-validated MAE between juvenile and adult 
clocks has already been observed in studies about fishes involv-
ing various life stages of D. labrax (Δ = 182 days; Anastasiadi and 
Piferrer  2020) and Macquaria ambigua (Δ = 644 days; Mayne 
et al. 2023), the latter being the most accurate clock to date other 
than ours (MAE = 3.5 days; scaled MAE = 0.004). The great po-
tential for aging young fishes with dedicated clocks is corrobo-
rated by various studies that detected a faster rate of methylation 
change (Bertucci et al. 2021) and a greater dependence on the 

environment for early life stages (Suarez-Bregua et al. 2020; Wu 
et al. 2018), which is particularly important for seabass larvae 
(Anastasiadi, Díaz, and Piferrer 2017; Valdivieso, Anastasiadi, 
et al. 2023). The very rapid change in methylation levels per site 
which apparently does not follow the gradual trend toward hy-
permethylation with aging generally observed in fishes (Bertucci 
et al. 2021) and other animals, corresponds, however, to patterns 
observed in all four studies on methylation changes during the 
larval phase of fishes (Wu et al. 2018; Suarez-Bregua et al. 2020; 
Suarez-Bregua et  al.  2021), including D. labrax (Anastasiadi, 
Díaz, and Piferrer 2017). Under the rearing conditions we used 
to grow seabass larvae, developmental changes between 10 and 
24 DPH are indeed numerous, involving notably exogeneous 
feeding and fin development starting at 8 DPH, as well as glass 
bladder apparition and branchial respiration from 10 DPH. In 
general, the larval phase seems to constitute a plastic period 
during which larvae from the same population sharing a very 
similar genome might encounter very different environmental 
conditions, and therefore adapt their gene expression to the local 
conditions. This is illustrated by regulations of sex (Anastasiadi 
et al. 2018; Valdivieso, Anastasiadi, et al. 2023) and growth rates 

FIGURE 6    |    (A) Linear regression of predicted versus known ages per sample using the best epigenetic clock (triangles in Figure 6) per training 
dataset, shown with the corresponding parameters and summary metrics. (B) Proportion of summed absolute coefficients of all aging sites (n) per 
gene out of the total, per best epigenetic clock (i.e., relative importance of genes), as well as the number of sites with a coefficient different from 0 (i.e., 
selected sites) per gene.
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depending on the rearing temperature (Anastasiadi, Díaz, and 
Piferrer  2017; Burgerhout et  al.  2017; Campos et  al.  2013) in 
various species, including D. labrax. Both ecological and mor-
phological metamorphosis, which might be decoupled in some 
demersal fish families (Richards and Lindeman  1987), have 
also been shown to be associated with methylation changes for 
metamorphic (Anastasiadi, Díaz, and Piferrer  2017; Suarez-
Bregua et al. 2020; Wu et al. 2018) and physiological remodeling 
(e.g., osmoregulation; Blondeau-Bidet et  al.  2023; Covelo-Soto, 
Saura, and Morán  2015; Liu et  al.  2022; Trautner et  al.  2017). 
These epigenetic regulations not only enable the differentiation 
of life stages without the use of an epigenetic clock (Trautner 
et al. 2017), but also facilitate predictions of sex with great ac-
curacy (~90%) if it is environmentally mediated (Anastasiadi 
et al. 2018; Valdivieso, Anastasiadi, et al. 2023). Environmental 
DNA epigenetics appears to be a promising tool to gather infor-
mation for management purposes on key biological parameters 
for individuals present near the sampling area, instead of rely-
ing on expensive yearly ichthyoplankton surveys (e.g., van der 
Lingen and Huggett 2003).

Compared with previous approaches employed to detect meth-
ylated nucleotides, which involved microarrays or bisulfite 
sequencing in epigenetic clock studies (Tangili et  al.  2023), 
nanopore sequencing has various advantages that might ex-
plain the low error rate of our clock. First, with this method it 
is possible to search for aging sites in a non-targeted way, as 
it does not involve amplifying/enriching a specific region of 
DNA, and the method performs better at detecting CpG sites 
than the equivalent bisulfite-based technique (i.e., WGBS; Liu 
et  al.  2023). Second, it does not require any DNA modifica-
tion, which can generate errors, and it enables the retrieval of 
long reads that are easier to map to a reference genome (Laine 
et al. 2023; Schatz 2017). Third, it allows detection of cytosine 
methylation in all contexts, while simultaneously detecting 
5hmC and 6 mA modifications, unlike previous methods. In our 
case, this increased the number of methylated nucleotides (all: 
254 K; CpG only = 123 K) and the number of aging sites detected 
by more than half (Figures 3B and S8D in Data S5). These two 
less-studied modification types might even be informative since 
they are both thought to be involved in the aging process (Shi 
et al. 2017; Xie et al. 2023). They made up a larger proportion 
of aging sites versus 5mC sites compared with the equivalent 
proportion for methylated sites (35% vs. 52%; Figure  3B), and 
the adenosine-based clock had a lower MAE than the cytosine-
based clock (3.43 vs. 3.94 days; Figure 6). The main criticisms of 
nanopore sequencing focus on its sequencing accuracy, but this 
has improved over the past few years, and we achieved < 0.7% 
in our study using the latest materials available (R10.4.1 + V14).

The high accuracy of our clock is due to our newly developed 
methodology, which fits optimal epigenetic clocks based on ob-
jective selection criteria, taking advantage of various qualitative 
and quantitative variables characterizing aging sites obtained 
with nanopore sequencing (Figure  1). Most epigenetic clocks 
utilize penalized regression to prevent overfitting, as the num-
ber of aging sites is often greater than the number of samples 
(Anastasiadi and Piferrer 2023), which requires manually tun-
ing (e.g., α = 0.5; in fishes: Bertucci et al. 2021; Mayne et al. 2020) 
the parameter determining the amount of shrinkage (α). The 
use of a systematic and bootstrapped approach to objectively 

determines parameters reduced the stochasticity of perfor-
mances for equal model parameters (Figure  S13 in Data  S6), 
but our results question the repeatability of performances be-
tween previous studies that have not yet been tested (Piferrer 
and Anastasiadi 2023). In our study, grouping aging sites that 
shared similar features before fitting an epigenetic clock made it 
possible to reduce error rates through the objective choice of the 
best groupings in the global model (i.e., gene and uncertainty-
associated variables; Figure  5). However, this approach is not 
necessarily the best for smaller subsets sharing similar modifi-
cation types (Figure 6). Aside from nanopore sequencing, this 
approach could be generalized to account for any qualitative 
(e.g., tissue and CpG context) or quantitative (e.g., replicates and 
alignment/mapping scores) features, depending on the methyl-
ation assessment methodology, and could be applied to further 
explore if neighboring methylated sites influence each other in 
terms of characteristics (Laine et al. 2023). The main limitation 
of our method is that it only predicts age from evolving meth-
ylated patterns as an animal ages, without any insight into the 
underlying biological processes; informed deep neural networks 
could be a solution to this problem (Prosz et al. 2024). Another 
limitation specific to this exploratory study is the absence of an 
independent validation dataset, which forced us to predict new 
values from the same training dataset (Figure 6A). This likely 
led to a significant underestimation of the model's true perfor-
mance (i.e., R2 and final MAE). As solely using cross-validation 
is common in machine learning studies and considered as safe 
(King, Orhobor, and Taylor 2021; Levman et al. 2023), we advo-
cate, in line with Tangili et al. (2023), that only cross-validated 
MAE obtained after testing on ⅓ of the initial dataset the model 
trained on the other ⅔ should be considered as reliable.

The exclusive presence of aging sites on mitochondrial DNA 
(mtDNA) is in contrast to the many methylated sites detected on 
nuclear DNA (nuDNA), and mtDNA generally makes up 0.1%–
1% of extracted tDNA (Ramón-Laca, Gallego, and Nichols 2023). 
This pattern might be explained by the observed coverage bias 
(Figure S9 in Data S5), in that it is more difficult to obtain suffi-
cient coverage (nuDNA: 1×; mtDNA: 3×) to detect differentially 
methylated sites for all ages considered in nuDNA, possibly 
because mtDNA and methylated groups are more stable in-
side the mitochondria due to a “double-protection” as well as a 
short size (Deiner et  al.  2017; Jo, Takao, and Minamoto  2022; 
Jensen et  al.  2021). So far, aging sites detected on the whole 
genome (WGBS) have either been found exclusively within 
nuDNA (Qiu et  al.  2022; Raddatz et  al.  2021; Sun et  al.  2021) 
or have been removed during processing (Meer et  al.  2018). 
Mitochondrial methylation is controversial (Chatterjee, Das, 
and Chakrabarti 2022), but some evidence indicates a predom-
inance of 6 mA methylation over 5mC methylation (the inverse 
of the pattern in nuDNA; Hao et al. 2020). Cytosine modifica-
tions have typically been used to fit epigenetic clocks, but they 
might be scarce or even absent from the mtDNA of some taxa 
(Shao, Han, and Zhou 2023; Sharma, Pasala, and Prakash 2019; 
Sturm et al. 2023). Decreased 5hmC levels but not 5mC levels 
(Dzitoyeva, Chen, and Manev  2012) have also been observed 
for nuclear 5mC sites (Suarez-Bregua et al. 2021), while higher 
6 mA levels within mtDNA have been linked to aging (Sturm 
et al. 2023). Both 5mC and 6 mA are distributed throughout most 
of the mtDNA, but we observed apparent non-random aging site 
distribution patterns (Figure 3A) that do not necessarily match 
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zones with the highest density and methylation levels for 5mC 
in the fish Oreochromis niloticus (e.g., D-loop; Nedoluzhko 
et al. 2021). However, some mtDNA sections containing aging 
sites (i.e., 12S, 16S, tRNA-Leu1, ND1, ND2, and COI) have al-
ready been associated with age-related diseases in humans 
(Bellizzi  2017; Ding et  al.  2023). Considering multiple modifi-
cation types appears promising for epigenetic aging, given that 
a greater number of aging sites correlates with better accuracy 
(Tangili et al. 2023). In addition, the count of aging sites (493) 
detected here exceeds the number used to fit most previous 
epigenetic clocks for wild animals (Tangili et  al.  2023), even 
though mtDNA represents only 0.003% of the D. labrax genome. 
Targeting the mitogenome in future eDNA epigenetic studies 
using nanopore sequencing might enable the retrieval of long 
reads that degrade slowly in the mitochondria (e.g., fragments 
> 10 kb despite shearing; Figure S5 in Data S3; Yao et al. 2022; 
Jensen et  al.  2021). This approach could be used for bias-free 
mapping (e.g., NMUTs, which are mtDNA-like fragments from 
nuDNA) or even de novo mitogenome assembly if sufficient cov-
erage is attained (Franco-Sierra and Díaz-Nieto 2020). As most 
metabarcodes are located on mtDNA, it could be possible to si-
multaneously identify species using a multi-marker approach, 
while estimating age and condition from eDNA epigenetics, or 
even genetic population structure by comparing samples from 
various zones (Ramón-Laca, Gallego, and Nichols 2023).

5   |   Limitations and Perspectives

The main limitations of this study are its low number of suc-
cessful time points (i.e., only 6 due to technical issues), the short 
age range considered (10–24 DPH) and the absence of an inde-
pendent validation dataset. Considering this, we do not aim to 
provide a reference epigenetic clock, but we instead propose a 
set of new tools to explore a new promising research question 
efficiently. Additionally, an advantage of using eDNA is that this 
approach resulted in pooling DNA from hundreds of individuals 
in each vial, meaning that the 376 mtDNA seabass reads used 
to fit epigenetic clocks likely originated from different individu-
als. Such number of individuals exceeds the minimum optimal 
sample size of 134 individuals advised by Mayne, Berry, and 
Jarman (2021) for tDNA. To more thoroughly validate the po-
tential of eDNA epigenetics as a new age assessment method, 
further work should focus on various species/stages using larger 
filtration volumes (e.g., 60 L). Researchers should also aim to 
predict the age of individuals from different populations/spe-
cies/environments as a way to assess the universality of their 
clock. A major challenge of amplification-free eDNA sequenc-
ing will be to obtain sufficient eDNA for detecting aging sites 
(i.e., sufficiently high coverage; Laine et al. 2023) from marine 
waters, which typically contain much lower densities of organ-
isms than aquaculture tanks, even though abundances might 
be very high for many commercial species (e.g., pelagic school-
ers). To that end, it might be better to filter larger volumes of 
water and/or use enrichment methods instead of pooling repli-
cates and shearing samples, notably since nanopore sequencing 
provides satisfying results even at 6.25% of their recommended 
input (Heavens et  al.  2021). Targeted methylation-sensitive 
polymerase chain reaction (PCR) toward previously identified 
aging regions could be used for very small DNA inputs, but the 

method still does not offer a single-nucleotide resolution (Mayne 
et al.  2020; Qi et al. 2021; Sturm et al. 2023). Enrichment ap-
pears more attractive in other cases, as it would make it possi-
ble to enrich circular DNA (exonuclease; Ramón-Laca, Gallego, 
and Nichols 2023) or organelles (differential centrifugation; Jo 
et al. 2019) for targeting mtDNA, if their integrity is preserved. It 
would additionally enable depletion of bacterial DNA (Feehery 
et  al.  2013), which is less methylated than animal DNA and 
was the main source of contamination in our case (Figure S3 in 
Data S2). Recently, ONT introduced a new method called adap-
tive sampling to enrich target DNA during sequencing, which 
already showed promising results enriching environmental 
mtDNA using sets a full reference mitogenomes from all mam-
malians (Frank et al. 2024) or all expected species of parasites 
and hosts (Kipp et al. 2023).

Another major challenge will be to test if reference epigenetic 
clocks used later for eDNA epigenetics can be obtained from 
tDNA of wild individuals, as many species are complicated to 
maintain in captivity during all life stages, and as captivity might 
cause methylation changes even if there is no evidence that they 
affect epigenetic clocks (Tangili et al. 2023). This might not be 
straightforward, as Zhao, van Bodegom, and Trimbos (2022) ob-
served different methylation patterns between eDNA and tDNA 
for the same ages. However, at least the tissue, sex, and potential 
error in training age (if estimated) do not seem to have a large 
effect on epigenetic clocks (Le Clercq et al. 2023; Mayne, Berry, 
and Jarman 2023; Tangili et al. 2023). Finally, epigenetic markers 
other than DNA methylation that affect the expression of genes, 
such as non-coding RNA or various chromatin features now de-
tectable with nanopore sequencing (Yue et al. 2022), could also 
be used for age assessments. In particular, as for eDNA, envi-
ronmental RNA (eRNA) could be useful for identifying species, 
age, sex ratio, condition, and stress (Stevens and Parsley 2023). 
eRNA's ability to discriminate life stages of various amphib-
ian species—both in captivity and in the wild—was recently 
demonstrated (Parsley and Goldberg 2023). This suggests that, 
when used in conjunction, eRNA and eDNA epigenetics could 
have an even greater potential for population management and 
species conservation. After overcoming technical challenges, 
eDNA/eRNA surveys might become very efficient methods for 
rapid, synoptic, and non-invasive screening of a whole ecosys-
tem's health and biodiversity on the basis of multiple variables, 
since eDNA sampling is generally much easier than the sam-
pling of individual organisms.
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