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1ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France3

2Centre for Biodiversity Theory and Modelling, Theoretical and Experimental4

Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France5

3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA6

(Dated: October 21, 2024)7



2

ABSTRACT8

How can so many species coexist in natural ecosystems remains a fundamental question in ecology. Classical models9

suggest that competition for space and resources should maintain the number of coexisting species far below the10

staggering diversity commonly found in nature. To overcome this paradox, theoretical studies have long highlighted11

a number of mechanisms that can favour species coexistence, from the distribution of interaction strengths between12

species to the shape of population growth functions. In particular, a family of mathematical models finds that, when13

sublinear population growth (SG) rates are coupled with competition between species, species diversity can stabilize14

community dynamics. This could suggest that SG may explain the stable coexistence of many species in natural15

ecosystems. Here we clarify why SG models do not solve the paradox of species coexistence. This is because, in the16

SG model, coexistence emerges from an unrealistic property, in which population per-capita growth rates tend to17

infinity at low abundance, preventing species from ever going extinct due to competitive exclusion. Infinite growth at18

low abundance can be regularized by assuming a minimal abundance threshold, below which a species goes extinct19

or follows non-infinite growth curves. When this is done, the SG model recovers the classical result: increasing the20

diversity of the species pool leads to competitive exclusion and species extinctions.21

I. INTRODUCTION22

Naturalists in the 19th century had already realized that species competition, encapsulated in the notion of the23

survival of the fittest, was at odds with the species diversity observed in natural ecosystems. Since species compete for24

space and resources, one would not expect to find the high levels of diversity that are observed in ecosystems such as25

coral reefs or tropical forests [1–3]. Later, Robert May proposed that large, randomly interacting communities become26

linearly unstable if their diversity overcomes a predictable threshold [4]. The approach considers a community at an27

equilibrium state with all species coexisting, and assumes that the Jacobian matrix that encodes population dynamics28

close to the equilibrium state –the so-called community matrix– can be approximated by a random matrix. Eugene29

Wigner had previously shown that the dominant eigenvalue of a random matrix becomes positive as the matrix size,30

and therefore the number of species, increases [5]. This implies that a community with more species will have a higher31

chance of being unstable to perturbations (see Box and [4]).32

May’s result studies the stability of a community assuming the existence of an equilibrium state with all species33

present, but cannot inform about whether the loss of linear stability is related to the extinction of some species or34
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the unbounded growth of others (see Box and [6, 7]). More recent studies have explored the dynamics of ecological35

communities under the Generalized Lotka-Volterra (GLV) model. By providing an explicit description for how species36

populations grow or decrease, the GLV model can then predict the conditions that drive species to extinction. In this37

model, the abundance of a given species Ni in the presence of S other species follows (see e.g. [8])38

dNi

dt
= riNi

1− Ni

Ki
−

S∑
j ̸=i

AijNj

 . (1)

Here ri is the intrinsic growth rate of species i, Ki is its carrying capacity, and the interaction matrix Aij encodes39

the effect of species j on the growth rate of species i. Consistent with May’s results, a fundamental property of40

this model is that, as the initial diversity S increases, both the proportion of coexisting species and the stability of41

the remaining community tend to decrease [9–12]. This theoretical prediction contrasts with the remarkable species42

richness observed in some natural ecosystems.43

Various amendments to this result have been proposed in the literature. Among others, natural communities are not44

random: the distribution of interaction strengths [13–15] or the structure of ecological networks [16–18] can increase45

the probability that many species coexist. Such mechanisms allow communities to support a higher number of species46

than what would be expected if interactions strengths were random. However, they do not invert the shape of the47

dependency: the greater the initial species diversity, the more challenging species coexistence becomes. (see Box).48

In parallel with the question of species diversity in ecosystems, by the late 1980s, researchers working on the origins49

of life proposed that prebiotic replicators could have evolved under so-called parabolic growth [19, 20]. This means50

that the abundance Ni of a self-replicating entity would follow sublinear growth (SG) dynamics of the form51

dNi

dt
= riN

k
i , (2)

with 0 < k < 1, as opposed to the classical picture of exponential growth (k = 1). The sublinear growth exponent52

indicates the presence of replication constraints, related to the fact that entities such as oligonucleotides are often53

found associated in a non-replicative duplex, and can only replicate in its dissociated form [21, 22]. Later, Szathmáry54

and colleagues found that competition among these self-replicating entities did not drive them to extinction; instead,55

they coexisted stably, leading to a scenario of survival of all [23, 24].56

Moving 20 years forward and into community ecology, a theoretical model studied the outcomes of coupling linear57

growth rates with super-linear death rates emerging from crowding effects [25], with the form58

dNi

dt
= riNi − diN

1+k
i , (3)
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with k > 0. Similar to the dynamics of parabolic replicators, the authors found that competition between these59

species did not lead to competitive exclusion. In their own words, which will be particularly interesting for the60

discussion presented here, the “model seems to imply unconditional coexistence is possible. However, the population61

per-capita mortality rates vanish for small population densities. Hence, the observed coexistence may be artificial and62

‘unbiological’” [25]. Models where growth rates scale sublinearly with population abundance have also been applied63

not only as variations of the GLV model of many interacting species [26], but also to describe eco-evoluationary64

dynamics [27] or tumor growth [28, 29].65

A recent study has also used a SG model to study the dynamics of ecological communities of interacting species [30].66

The work finds that a SG rate coupled with bilinear competition between species can lead to a positive relationship67

in which diversity increases the linear stability of a community at equilibrium [30]. In other words, under SG, more68

diverse communities would be more resilient to small perturbations in species abundances. In terms of coexistence,69

the SG model leads to a survival of all, suggesting that SG can prevent species from going extinct due to competitive70

exclusion. If this were the case, the model would offer a direct explanation for how many species can coexist despite71

competition [2, 3].72

Yet, how does coexistence and survival of all emerge in this family of SG models? Here we clarify that species73

coexistence in a SG model emerges from an unrealistic assumption, by which population per-capita growth rates74

become infinite at low abundance, preventing species extinctions due to competitive exclusion. A more common75

assumption, as discussed below and in [30], is that population growth rates remain bounded or even become negative76

at low abundances [31–33]. A limit-case scenario is that of the well-established Allee effect, that assumes negative77

population growth at low abundance. Opposite to the divergingly large population per-capita growth rates of the SG78

model, the Allee effect establishes a minimal species abundance, below which factors like group protection or mate79

encounters become insufficient for successful population growth [30, 32, 34].80

Before exploring the dynamics of the SG model, it is important to recall that linear stability and species coexistence81

are two different properties (see Box). The diversity-stability relation investigates whether a system with more initial82

species becomes more or less stable to perturbations. The diversity-coexistence relation investigates whether a system83

with more initial species has a smaller or larger probability to see all species surviving together [3]. In the Generalized84

Lotka-Volterra (GLV) model defined by Eq. 1, for example, increasing species diversity leads to two consecutive85

results [12]. First, it disrupts community coexistence by pushing some species to extinction [10, 12]. Second, it86

destabilizes species abundances, leading to chaotic fluctuations and multiple stable states [11, 12, 35]. This means87
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that, in the GLV model, the two relations go hand in hand: diversity disrupts both species coexistence and linear88

stability [12]. In other models, however, the two mechanisms need not be equivalent: an increase in initial diversity89

could drive a community towards a more stable state (increased stability) where some species have nevertheless gone90

extinct (decreased coexistence).91

Here we study a SG model in which species grow with a sublinear exponent, die at a linear rate and compete92

bilinearly with other species (see e.g. [23, 24, 30]),93

dNi

dt
= riN

k
i − diNi −Ni

S∑
j ̸=i

AijNj . (4)

In this model, ri is the population growth rate of species i, di its death rate and Aij again describes the competitive94

effects of species j on species i. A possible scaling exponent of k ≈ 3/4 has been recently estimated from macro-95

ecological data of biomass-productivity relations [30, 36]. A fundamental assumption of this model is that, while96

growth rates are sublinear with species abundances (Nk
i ), death and competition terms are linear and bilinear97

respectively (−diNi, −NiAijNj). Open questions remain regarding the factors that could explain the discrepancy98

between the exponents of intra- and inter-specific interactions, or else if sublinear exponents smaller than 1 could also99

be at play in inter-specific interactions [37–42]. Following the results of [41], below we discuss the implications of100

relaxing this critical assumption so that growth, death and competition are all sublinear with species abundances.101

In the present work, we clarify how increasing the initial number of species affects linear stability and species102

coexistence in the SG model. First, we present a key particularity of the model, by which population per-capita growth103

rates diverge at low abundance, preventing species from going extinct (Section II). Second, we discuss the consequences104

of divergent growth on species coexistence (Section III). Third, we highlight that when divergent population growth105

dynamics are regularized to avoid infinite per-capita growth rates, increasing diversity leads to competitive exclusion106

in the SG model, hereby reducing species coexistence (Section IV).107

II. DIVERGENT GROWTH AT LOW ABUNDANCES108

A particularity of the SG model defined by Eq. 4 is that population per-capita growth rates diverge at low species109

abundance. This means that when the number of individuals of a given species Ni is low (due, for example, to the110

pressure exerted by competition with other species), their growth rate becomes extremely large, thus automatically111

preventing the extinction of the species. By dividing total population growth in Eq. 4 by the number of individuals,112

one obtains the per-capita growth rate of species i113
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Box 1: Diversity, stability and coexistence in ecological models

Diversity: Diversity in ecology can be measured at different scales. In community ecology diversity typically refers to

the number of different species in a community. Communities are often modeled as the result of an assembly process

of species migrating from a regional pool [43]. In this context, the final diversity of a community is then usually lower

than the initial diversity of the species pool due to species extinctions occurring during the assembly process.

Stability: Ecological stability encompasses various meanings and can be assessed through different measures [44–48].

Most often, stability refers to the capacity of an ecosystem to maintain its unperturbed state (resistance [49]) or go

back to it (resilience [50]) following a perturbation. In theoretical works, community stability is often equated to linear

stability. A community state is linearly stable if the real part of the dominant eigenvalue of its Jacobian is negative,

so that abundances of all species will relax back into their steady state after a small perturbation. Linear stability

can then be a mechanism of maintenance of species coexistence, by ensuring that a coexistence state is recovered after

a perturbation [51, 52]. Linear stability, however, is not a direct proxy for species coexistence: for example, a state

with a single surviving competitor (competitive exclusion) or one with no surviving species (trivial equilibrium) can

nevertheless be linearly stable. Also, loss of linear stability does not necessarily imply a loss of coexistence: linear

stability can be lost due to emerging fluctuations or exponential growth [53].

Coexistence: Two or more species are said to coexist if they persist at a positive abundance in the presence of the

others. A main force at play against coexistence is competitive exclusion, which drives weaker competitive species to

extinction [1, 3, 52]. A community state in which all of the initial S species coexist is often called feasible [54–56].

Coexistence does not require linear stability: species can persist together although not being at a steady state (e.g.

fluctuating abundances), as often observed empirical communities [53, 57].

1

Ni

dNi

dt
=

ri

N1−k
i

− di −
S∑

j ̸=i

AijNj . (5)

As species abundances become small, the per-capita perception of competition (the last term in the right hand side114

of Eq. 5) decreases linearly. Conversely, the per-capita growth rate (the first term in the right hand side) becomes115

infinitely large if k < 1 (Fig. 1). This leads us to a main ingredient of the SG model: Increasing the number of116

competitors pushes species towards lower abundances. At low abundance, however, competition becomes smaller117

while growth becomes extremely large. This has the effect of making the coexistence state more and more stable, so118
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FIG. 1. Population per-capita growth rates in ecological models. In the SG model, the population per-capita growth

rate Ṅi/Ni (dark line, Eq. 5) diverges at low abundances. Increasing the number of initial species in the SG model drives

species to low abundances because of increased competition. Yet, at low abundance, per-capita growth rates becomes extremely

large and species can never go extinct due to competition. In the logistic model instead (dashed line), the per-capita growth

rate is ri(1 −Ni/Ki), which is finite at low abundance.

that one could think that initial species diversity favors the coexistence of all species [30] (see Appendix).119

If species cannot go extinct in the SG model, competitive exclusion is impossible by definition. As we discuss in120

detail below, coexistence is then guaranteed by this unrealistic property. Furthermore, the lack of extinctions implies121

that the model cannot capture other fundamental effects in ecology, such as invasion-extinction processes [58] nor122

community assembly [59]: any new competitor that is added in a community will decrease the abundance of other123

species, but will maintain itself and not push any species to extinction. All species that are added in the community124

will coexist stably.125

III. CONSEQUENCES OF DIVERGENT GROWTH ON SPECIES COEXISTENCE126

Following the SG model defined by Eq. 4, we study how many species survive (Fig. 2 left) and how many simulations127

end up in a stable state (Fig. 2 center) when the initial species diversity (S) increases. When all species survive128

at positive abundances and the final state is stable, the resulting system is said to harbor stable feasibility (Fig.2129

right). In the GLV model (Eq. 1), coexistence and stability follow the same trend [12]. Increasing initial diversity130

first leads to some species going extinct (Fig. 2A), and then leads to the remaining species losing stability (Fig. 2B,131
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Initial species diversity (S) Initial species diversity (S) Initial species diversity (S)
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Generalized Lotka-Volterra interactions

Sublinear growth (divergent growth at low abundance) 

Sublinear growth (species extinction at low abundance)
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FIG. 2. Extinctions, stability and stable feasibility under increasing initial diversity. Here we plot how the initial

species diversity (S) modulates the fraction of surviving species at the end of simulations (left), the fraction of stable states

(with negative dominant eigenvalue, center) and the probability that a community is both stable and feasible, meaning that

all S species coexist (right). We plot the GLV model (A-C) and SG model (D-F) using the parameters of [30], and the SG

model with a minimal abundance of Nm = 2 below which species go extinct (G-I) (see Appendix). The observation is that

diversity increases stability in the SG model, yet diversity has no effect on coexistence, because species can never go extinct

[30]. If we allow species to go extinct when their abundance goes below Ni < Nm = 2 (G-I), the SG model maintains the trend

by which diversity begets linear stability (E,H). Yet, in terms of species coexistence, the model recovers a similar trend as the

GLV model: increasing initial diversity leads to competitive exclusion, extinctions and loss of feasibility (G,I).
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see Appendix). The combination of both processes implies that increasing species diversity decreases the likelihood132

of seeing a feasible stable state (Fig. 2C).133

In the SG model, instead, increasing initial diversity never drives species to extinctions, as competitive exclusion is134

artificially impaired by divergent growth. This means that coexistence is not affected by diversity (Fig. 2D), because135

of the expected survival of all effect [23]. Conversely, increasing diversity stabilizes growth and fluctuations. In effect,136

for systems with a small number of initial species, species grow indefinitely. As diversity increases, competition can137

control growth dynamics and thus stabilizes the community (Fig. 2E, see Appendix). This new result is the opposite138

of the negative diversity-stability trend of the GLV model.139

The likelihood of finding stable coexistence increases with diversity in the SG model. Yet, this is because initial140

species diversity increases stability, but has no effect on coexistence (Fig. 2F, Fig. 3A in [30]). This is because in the141

SG model, all species are always present at positive abundance, independently of the initial diversity or competitive142

strength of the community. As for the case of models with super-linear death rates [25], unconditional coexistence is143

likely to be an artificial property of the model.144

In sum, the main consequence of divergent per-capita growth rates is that species cannot go extinct. The key145

underlying mechanism is that increasing species diversity lowers the average species abundances indefinitely, without146

ever reaching Ni = 0. Increasing initial species diversity therefore increases the linear stability of the system (see147

Appendix and fig. 2E), but species are pushed towards increasingly lower abundances without ever going extinct148

(Fig. 2D). Below we unpack how diversity modulates species coexistence if species can effectively go extinct when149

their abundance falls below a certain threshold.150

IV. RECONCILING THE MODEL WITH REALISTIC ASSUMPTIONS151

We now modify the dynamics to avoid infinite growth at low abundance, while keeping the SG model and the152

empirical estimates of sublinear scaling in place (Eq. 4, k = 3/4). As discussed in [30], one way of doing that is to153

admit a biomass threshold Bm below which a species go extinct (see Appendix and [30]). In our model, this translates154

into assuming a minimal number of individuals Nm below which a species becomes extinct. A typical value could be155

Nm = 1 for asexual replicators, or a larger Nm ≥ 2 for species needing a mate for reproduction (see Appendix and156

[32]).157

In Figure 2 bottom, we plot the same analysis as above but with an extinction threshold for all species at Ni < Nm =158

2, below which a species is assumed to become extinct (see Appendix). Under this scenario, when diversity increases,159
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species start to go extinct due to competitive exclusion (Fig. 2G). In this more realistic version of the SG model that160

avoids infinite population per-capita growth rates, species diversity and competition impair species coexistence. The161

trend by which diversity can stabilize dynamics remains in place (Fig. 2H), providing an interesting mechanism of162

community self-regulation. Yet, when coexistence of all species and stability are merged to measure stable feasibility,163

we can see that the SG model rarely finds a stable, species-rich community (Fig. 2I): either dynamics are unstable164

at low diversity, or species go extinct at high diversity. As expected, the fraction of extinct species depends on the165

location of the extinction threshold. Assuming more or less strict thresholds, either in terms of minimal biomass or166

abundance of individuals, implies a stronger or weaker impact of competitive exclusion (see Appendix).167

The same result emerges from applying other mechanisms that limit the diverging growth rate in the SG model.168

This can be done without imposing species extinctions, e.g. by assuming that population growth rates are linear or169

constant instead of divergent below a certain threshold (see S5.2 of [30]).170

As discussed when introducing the model, the survival of all effect in the SG model also depends on a deeper171

assumption: growth rates scale sublinearly with abundance (Nk
i ), while death and the perceived impacts of competition172

are linear (−diNi) and bilinear (−NiAijNj). Previous research showed that survival of all effects can also happen173

when growth rates are linear (Ni), but death rates are super-linear (−diN
1+k
i ) [25, 60]. Consistently, as recently174

shown in [41], unconditional coexistence without species extinctions emerges whenever the scaling of growth rate with175

species abundance is smaller than the perception of death and competition. Following [30, 41], one could assume a176

variation of the original SG model where all exponents are different from 1,177

dNi

dt
= riN

k
i − diN

a+b
i −Na

i

S∑
j ̸=i

AijN
b
j . (6)

Now a and b capture how intra- and interspecific interactions impact the growth of xi. This variation of the SG model178

recovers the SG model above if k = 3/4 and a = b = 1, and the GLV model if k = a = b = 1. However, one could179

also assume that both population growth (k) and interspecies interactions scale sublinearly with species abundance180

(k, a, b < 1). In this scenario, as soon as k = a, one recovers a similar behavior as in the GLV model: increasing181

diversity impairs species coexistence (Fig. 2 top, see [41] for a thorough discussion). This is because, in such systems,182

having more species coexist amounts to solving a linear problem with increasingly more constraints, which rapidly183

becomes impossible.184

It remains unclear whether we can assume that the scaling exponents of growth and interactions are different (k ̸= a).185

For example, [39] provides a recent empirical observation of tree-tree interactions also scaling sublinearly with biomass,186

while [33, 37, 38, 40, 42, 61] discuss different scenarios of sublinear predator-prey and consumer-resource interactions.187
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Cellular replication in solid tumors provides another interesting example of growth and competition exponents being188

possibly equivalent: one can consider that growth happens at the surface of the tumor where nutrients are available189

[62]. Resource competition with other cells or the attack of immune cells, which hardly penetrate the tumor, is also190

a surface process [63]. In that case, both growth (k) and interactions (a, b) would be sublinear with total tumor191

biomass, as only the populations at the surface interact, and coexistence would not be guaranteed [41].192

To conclude, increasing the realism of the SG model, e.g. by introducing a minimal abundance threshold below193

which a species goes extinct or assuming equivalent density dependent exponents, results in the same paradox as in194

previous models: increasing the number of competing species decreases the likelihood of their coexistence.195

V. LOOKING AHEAD196

In the present work, we have discussed how diversity modulates stability and species coexistence in the SG model.197

Our intention has been to unpack in simple terms recent results on the SG model [30] and relate them to earlier work198

of prebiotic replicators [20, 23] and non-linear density-dependent effects [25].199

On the one hand, diversity and competition can stabilize population growth in the SG model, uncovering a novel200

potential mechanism of community-level regulation of fluctuations [30, 41]. This is a new and important result for201

theoretical community ecology: it opens the door towards a more nuanced understanding of how population growth,202

interspecies interactions and community stability might be intertwined in natural ecosystems.203

On the other hand, however, the absence of species extinctions in the SG model implies that competitive exclusion204

is impossible by definition. Hence, coexistence in the SG model emerges artificially and the model might fail at205

describing key ecological processes such as extinction-invasion dynamics and community assembly. The SG model206

can be reconciled with species extinctions by assuming non-infinite population growth at low species abundance. Yet,207

when this is done, we recover the expected trend previously found in the GLV model: increasing species diversity208

leads to species extinctions and competitive exclusion.209

The behaviors of SG models under mutualistic, predatory and consumer-resource interactions remain open research210

questions [33, 42, 61]. For the case of mutualism, as it happens in the GLV model, species are likely to undergo211

exponential growth in the SG model unless the benefits of mutualism follow a saturating function (see e.g. [64]).212

For predator-prey interactions, recent results have studied whether SG of prey [65] or else sublinear inter-specific213

predation rates [61] could explain observations of predator-to-prey biomass scalings. In models of consumer-resource214

interactions, recent results propose that sublinear consumption rates could provide a bypass from one resource-one215
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consumer limitations, so that multiple species could stably survive on a single resource [30]. Future studies should216

accurately analyze how these results are affected by the divergent behavior and absence of species extinctions in SG217

models.218

Because species and ecosystems are increasingly endangered and their habitats and populations are under threat,219

a fundamental task of ecological models is to help us understand and predict the conditions by which species can220

coexist without going extinct. Is coexistence a matter of satisfying abiotic and biotic constraints, so that the more221

species, the more constraints there are to satisfy? If so, high diversity of natural ecosystems would imply, as Robert222

May put it, the existence of ‘devious strategies’ in nature that allow species to stably coexist. But it could also be223

that biodiversity itself favours species coexistence, as it is clear that some species allow others to persist, directly224

or indirectly. The SG model suggests that the former ’coexistence as constraints’ perspective might only emerge225

from the mathematical specificity of assuming linearity in both population growth and interspecies competition. By226

relaxing the assumption of linearity of population growth curves, the SG model proposes that competition amongst227

species is no longer a constraint for coexistence. This, however, might not be so simple; we have clarified here how228

the surprising behaviour of the SG model comes from an artificial singularity at low species abundance, whereas229

the effects of sublinear growth at high species abundance remain to be studied. Overall, understanding the impacts230

of non-linear density dependent effects on species coexistence, as well as their relation with the many coexistence231

mechanisms proposed in the literature, will contribute to our fundamental understanding of community ecology.232

Appendix233

Rescaling from biomass to individuals: One recently proposed version of the SG model is written in terms of species

biomass, Bi, instead of the number of individuals [30]. By using macro-ecological biomass data, the authors in [30] propose an

estimate of k = 3/4 and the subsequent SG model

dBi

dt
= riB

k
i B

1−k
0 − diBi −Bi

S∑
j ̸=i

AijBj ,

It is interesting to rescale the model from biomass Bi to the number of individuals Ni, as presented in our work. To do so, one

can assume a typical biomass of an individual of species i to be B0,i, which can be equivalent to the typical biomass at which

growth is ri (see below). Then, the number of individuals is Ni = Bi/B0,i, and to rescale the equation we divide in both sides

by B0,i

dNi

dt
= riB

1−k
0 Bk−1

0,i

(
Bi

B0

)k

− di
Bi

B0,i
− Bi

B0,i

S∑
j ̸=i

AijB0,j
Bj

B0,j
,
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and one reaches Eq. (4) by rescaling competitive strengths by typical abundances Ãij = AijB0,j and assuming all species have234

the same typical biomass B0,i = B0 ∀i. The tildes to discern between abundance and biomass interaction matrices are later235

discarded throughout the main text.236

237

Typical biomass B0 and minimal abundance for replication Nm: The term B0 in the equation above locates the typical238

biomass at which growth per unit of biomass equals the characteristic growth rate. If Bi = B0, G(Bi = B0) = riB
k
i B

1−k
0 = riB0,239

and in terms of growth per unit of biomass, one can write G(Bi = B0)/Bi = ri. If we define B0 to be the typical biomass of240

an individual, this term is then the per-capita growth rate of species i (Eq. 5). This can be used to define a minimal biomass241

threshold: if the highest growth rate observed in a species is ri, then one would need that growth below a given Bm is no242

longer sublinear (see e.g. supplementary materials of [30], section S5.2). By imposing non-divergent growth or even extinction243

below Bm, one recovers the condition by which excessive diversity disrupts species coexistence. Interestingly, if B0 is the244

typical biomass of an individual of a given species, imposing a minimal biomass for growth is equivalent to assuming that a245

species cannot growth if Ni, the number of individuals, is below a certain threshold. For non-sexual replicators, the extinction246

threshold of Nm = 1 is equivalent to imposing a threshold biomass at Bm = B0, equal to the characteristic biomass of an247

individual. For sexual replicators, the minimal abundance to overcome extinction is likely to be considerably higher [32].248

249

The effect of varying the extinction threshold Nm: As shown in [30] and discussed in main text, imposing a minimal250

abundance below which a species goes extinct corrects the effects emerging from diverging population per-capita growth rate251

at low abundance. This specific mechanism equates to imposing a strong Allee effect on all species [32]. As expected, the252

likelihood that species coexist or else start to go extinct depends on the location of the threshold. As seen in figure 3, increasing253

the minimal abundance from Nm = 2 to Nm = 4 or decreasing it to Nm = 1 reduces the likelihood of stable feasibility as254

species become extinct earlier. This corresponds to increasing the minimal biomass threshold from Bm = 2B0 = 0.03 to255

Bm = 4B0 = 0.06 or decreasing it to Bm = B0 = 0.015 in the biomass parametrization of [30] (see below).256

257

Parameter choices: The figures are based on replicating the studies in [30]. Because dynamics in [30] are expressed in258

terms of biomass, the rescaling proposed above can be done by assuming that one individual has typical biomass of B0 = 0.015,259

and hence the threshold of two individuals for survival is equivalent to Bm = 2B0 = 0.03. This is necessary to translate260

the parametrization of [30] into a species abundance model based on Ni. In figure 1, we use r = 1, d = 0 for the sublinear261

per-capita growth rate function and r = 1 and K = 20 for the logistic per-capita growth rate function, without species262

interactions (single-species population growth, Aij = 0 ∀ i ̸= j). The parameters are taken only for illustrative purposes so263

that the two growth functions are comparable. In figure 2 we replicate the parameters used in Figure 3A of [30]: r = 1, d = 0,264

k = 3/4, and take K = 1. The parameters of the interaction matrix are sampled from a normal distribution with µ = 0.2 and265



14

A

Initial species diversity (S) Initial species diversity (S) Initial species diversity (S)

Fraction of surviving species Fraction of stable states Fraction of feasible stable statesB C

f F

f Sf SS

Sublinear growth with varying extinction thresholds

Nm=1

Nm=2

Nm=4

FIG. 3. (Appendix Figure) Increasing the extinction threshold reduces the likelihood of coexistence.Here we

replicate figure 2.I regarding how diversity modulates the fraction of surviving species (A), the fraction of linearly stable states

(B) and the fraction feasible stable states (C). We now impose three different thresholds of species extinction, at Nm = 1

(orange), Nm = 2 (green) and Nm = 4 (black). As expected, increasing the threshold decreases the likelihood of species

coexistence, as species go extinct at higher abundance.

σ = 0.1, equivalent to µ = 0.01 and σ = 0.005 in [30] once renormalized by carrying capacity, and ensure that all interaction266

terms are positive to avoid cooperative interactions. The expected diversity threshold of the GLV model is S ≈ 128, computed267

from σc =
√

2/S(1 + µ) [10, 11, 35]. In figure 2 bottom we add a minimal abundance of Nm = 2, below which the abundance268

of a species is set to zero. This is equivalent to setting Bm = 2B0 = 0.03 in [30], so that we are assuming that a single269

individual has a biomass of B0 = 0.015. Equivalent qualitative results as those of figure 2 are obtained when species do not270

directly become extinct below threshold, but only reduce their growth rate to avoid infinitely large values (not shown, but see271

supplementary section S5.2 of [30]).272

273

Simulating the dynamics: Simulations in figure 2 are implemented by solving model (4) with a Runge-Kutta method of274

order 5(4) [66] via the solve ivp function of the scipy.integrate library, and we replicate the numerical methods described in275

[35, 67] to assess stability and surviving species. For each integer species value (x-axis), we generate 100 different interaction276

matrices A. For each, we generate random positive initial conditions with Ni(t = 0) ∈ [0, 33] and run the dynamics for 1000277

timesteps. After those, we compute the average number of species with strictly positive abundance over the 100 simulations278

(panel A), the fraction of simulations where all species abundances remain equivalent after 100 additional timesteps and the279

dominant eigenvalue of this state is negative (panel B) and the fraction of simulations in which the final state is stable and all280

species coexist at strictly positive abundance (panel C). The codes to generate figure 2 as well as additional codes to explore281

properties of the SG model are available at: https://anonymous.4open.science/r/Unpacking-Sublinear-Growth-0918282
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283

Linear stability and species extinctions: The particular behavior of the SG model at low abundance and its impact on

stability and the lack of species extinctions can be understood by studying the Jacobian of the system. In the absence of an

extinction threshold, the fixed state of the system fulfills

dNi

dt
= riN

k
i − diNi −Ni

S∑
j ̸=i

AijNj = 0,

so that, because Ni will never get to zero, the fixed state abundances N∗
i can be found by dividing by Ni and solving the

following expression

ri(N
∗
i )k−1 − di −

S∑
j ̸=i

AijN
∗
j = 0.

What is the stability of this state? The diagonal elements of the Jacobian matrix evaluated at N∗ follow

Jii =
∂

∂Ni

dNi

dt
= kriN

k−1
i − di −

S∑
j ̸=i

AijNj |N=N∗

and applying the expression for the stable state,

Jii = − (1 − k)ri
(N∗

i )1−k
.

The off-diagonal elements of the Jacobian are

Jij =
∂

∂Nj

dNi

dt
= −N∗

i Aij .

The complete Jacobian matrix writes

J =


− (1−k)r1

(N∗
1 )1−k · · · −N∗

1A1S

...
. . .

...

−N∗
SAS1 · · · − (1−k)rS

(N∗
S
)1−k

 .

Increasing the number of species decreases their biomass due to competition. In that context, the off-diagonal terms emerging284

from interspecies competition become small. Yet, the diagonal terms, representing self-regulation, become divergingly negative285

towards minus infinity, pushing the eigenvalues towards more and more negative values. This is how stronger competition can286

lead to a more stable state: increasing S makes the coexistence state divergingly stable.287

Conversely, one can study the stability of the state with some species extinct (Ni = 0). In this state, the diagonal terms288

of the new Jacobian diverge towards positive infinity, making competitive exclusion unstable for any parameter setting (and,289

in fact, impossible to attain by the dynamics). This is equivalent to showing that any absent species can always invade in290

the community: because invasion growth rates – the diagonal elements of the new Jacobian – diverge at low abundance, rare291

invaders will always be able to invade while at the same time not driving other species to extinction.292
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47 V. Domı́nguez-Garćıa, V. Dakos, and S. Kéfi, Proceedings of the National Academy of Sciences 116, 25714 (2019).354

48 F. Pennekamp, M. Pontarp, A. Tabi, F. Altermatt, R. Alther, Y. Choffat, E. A. Fronhofer, P. Ganesanandamoorthy,355

A. Garnier, J. I. Griffiths, et al., Nature 563, 109 (2018).356

49 C. S. Holling, Engineering within ecological constraints 31, 32 (1996).357

50 S. L. Pimm, Nature 307, 321 (1984).358

51 E. Johnson and A. Hastings, arXiv preprint arXiv:2201.07926 (2022).359
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