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1  |  INTRODUC TION

In 2005, a risk of global disease emergence in freshwater fish was 
identified in Europe and associated with the presence of the fungal-
like pathogen Sphaerothecum destruens (Rosette Agent) (Combe & 
Gozlan,  2018; Gozlan et al.,  2005). Sphaerothecum destruens is a 
unicellular, intracellular obligate and generalist parasite (Andreou 
et al., 2011; Arkush et al., 2003) that exhibits high levels of virulence 
(i.e. host mortality rates) in a wide variety of freshwater and ma-
rine fish species (including at least 18 cyprinids and salmonids spe-
cies) in the wild and in aquaculture facilities and has been found in a 
wide range of climates such as the mountainous Tcheremoch River 
in Ukraine to the desert wadi Felrhir in Algeria (reviewed in Combe 
& Gozlan,  2018). For example, in 1984 S.  destruens was responsi-
ble for high mortalities observed in Chinook salmon (Oncorhynchus 
tshawytscha) in seawater net pens in Washington state, USA (Harrell 
et al., 1986). Since then, it has been responsible for two mortality 
events of brown and rainbow trout in farms and experimental facil-
ities in western France (Boitard et al., 2017) and the total extinction 
(up to 80%–90% of mortality) of native fish populations in a catch-
ment area in southeast Turkey (Ercan et al., 2015). Importantly, the 
presence of this fungal-like parasite in such a variety of freshwater 
ecosystems is enhanced by the highly invasive nature of its healthy 

(i.e. asymptomatic) carrier the topmouth gudgeon, Pseudorasbora 
parva (reviewed in Gozlan, 2011).

The intracellular and fungal-like nature of S. destruens combined 
with low parasite loads in healthy carriers makes it extremely dif-
ficult to detect in infected hosts and therefore introduces a bias 
when we estimate the disease's true prevalence in a population. 
Furthermore, the use of slightly different primer sets to target and 
amplify its DNA from complex environmental matrices (e.g. water 
and fish tissues) results in an underestimation of its prevalence 
among invasive fish populations (Combe et al.,  2022) and signifi-
cant variations in prevalence levels between different studies (see 
Combe et al., 2022; Ercan et al., 2015; Gozlan et al., 2005; Spikmans 
et al., 2013). After 15 years of research resulting in 28 publications 
and despite the high risk of disease emergence worldwide associ-
ated with irreversible impacts on fish biodiversity and the economy 
of the aquaculture sector, the scientific community still questions 
the reliability, sensitivity and efficiency of 3 different PCR primer 
sets commonly used to detect its DNA in healthy carriers and in-
fected native fish species. However, the first step for effective con-
trol of the emergence and spread of the rosette agent in natural 
ecosystems and aquaculture facilities is a highly specific and sensi-
tive DNA detection method that allows us to estimate the true ex-
tent of infection. Here, our aim was to provide decision-makers and 
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stakeholders with a more reliable detection tool. We suggest that 
this optimized protocol becomes the one commonly used world-
wide to obtain comparable results between studies.

2  |  MATERIAL AND METHODS

First, the DNA of five fish (P12, B127, Abl76, G100, G138) previously 
found positive by qPCR for S. destruens (Combe et al., 2022) was used 
to test the detection efficiency of previously published primer sets. In 
parallel DNA from 40 fishes collected from endemic areas in France, 
such as Corsica, the Camargue and the Indre regions, was used to 
test several primer combinations and validate the best one. In total, 
forty fish DNA samples corresponding to nine species were analysed 
(Table S1). A pure S. destruens DNA (RA-1 isolate, ATCC® 50643™) 
provided by the Laboratoire des Pyrénées et des Landes (LPL) was 
used as a positive control and DNA from parasite-free common carp 
brain cells (CCB) available at the ISEM laboratory was used as a nega-
tive control. The specificity of 10 primer combinations (Figure  1; 
Table S2) corresponds to pre-existing nested-PCR assays from Gozlan 
et al. (2005), Mendonca and Arkush (2004) and Spikmans et al. (2020) 
and targeting an 18S rRNA gene sequence was tested following the 
author's amplification protocols. Next, the nested-PCR products (PCR 
amplification products) were validated using a low-cost amplicon-
based nanopore sequencing approach. Sequencing was performed 
on an Oxford Nanopore Technologies (Oxford, UK) MinION device 
with a runtime of 12 h. Then, for each nested-PCR result, the bases 
of the raw FAST5 files with a run sequencing tag were recalled using 
the super-accurate model implemented in the ONT Guppy v5.0.7 
basecaller. The subsequent bioinformatic analysis included only reads 
between 100 and 700 bp. The size filtering step was performed by 
the guppyplex command implemented in the ARTIC pipeline (https://

github.com/artic​-netwo​rk/field​bioin​forma​tics). The filtered ampli-
con reads were mapped to the 18S sequence (GenBank accession: 
AY267345.1) of Sphaerothecum destruens isolate BML using minimap2 
v2.17 (Li,  2018). BAM files were indexed, sorted and filtered with 
SAMtools v1.10 (Li et al., 2009). BAM files were filtered using the op-
tion ‘-F' of Samtools view with the flag “4” to remove unmapped reads 
(Li et al., 2009). The resulting filtered BAM files were used as input to 
Medaka v1.0.3 (https://github.com/nanop​orete​ch/medaka) to build 
a consensus for each sample. A multi-sequence alignment step was 
performed between the samples and the reference sequence using 
MAFFT (Katoh et al., 2019). After analysing the results, an optimized 
PCR assay was sought. The most conserved region was identified 
and a new primer set was designed with Primer3Plus (Untergasser 
et al., 2007). The performance of the new set was evaluated by run-
ning an in silico PCR on the last release of the SILVA databases (Quast 
et al., 2012) using TestPrime 1.0 (Klindworth et al., 2013). Thus, a new 
nested-PCR assay (Figure 1; Table S2) was developed and tested (for 
the detailed protocol, see https://www.proto​cols.io/priva​te/D04B5​
C6A90​9711E​C84BC​0A58A​9FEAC02).

3  |  RESULTS

All the published primer combinations tested in this study gener-
ated multiple band profiles indicating possible nonspecific co-
amplifications (Figure S1). Sequencing analyses of the PCR amplicons 
confirmed the hypothesis of the lack of specificity of the primers. 
For each combination tested, only 0.00069% to 5.45% (Table 1) of 
the reads mapped to the 18S ribosomal sequence of S. destruens. In 
comparison, 1.57%, 76%, and 99.72% of the positive control (pure 
RA-1 isolate) reads were mapped to the targeted 18S sequence using 
the published primer combinations.

F I G U R E  1  Primer combinations tested in this study. The sequence corresponds to Sphaerothecum destruens 18S rRNA gene. The 
origin of each PCR assay is indicated by the author's name: Goz = primers from Gozlan et al. (2005); Ark = primers from Mendonca and 
Arkush (2004); Spik = primers from Spikmans et al. (2020). Ch = newly designed primer (this study). The location on the 18S rRNA gene 
of the targeted region is represented by coloured lines and arrows: F, forward primer; R, reverse primer; 1: first PCR; 2: nested-PCR. Dark 
colours correspond to published primer combinations. The light colours correspond to the published primers and to the new combinations 
tested in this study. The pink star marks the selected combination for optimized detection of S. destruens DNA.
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Of the nested-PCR sequencing results, the F1R2 combination 
from Spikmans et al.  (2020) showed higher specificity (99.72% of 
the positive control reads were mapped to the 18S sequence of S. 
destruens). To gain more specificity, we, therefore, developed a new 
PCR assay in which we combined the F1R2 primer combination of 
Spikmans et al.  (2020) (first PCR) with the new primers (ChF2R2) 
designed in a highly conserved region of S. destruens' 18S sequence 
(nested-PCR step). This approach was tested on P12 and B127 DNA 

samples, as well as 40 other fish DNA samples and generated multi- 
and single-band profiles (Figure 2, Figure S2) without amplification in 
the pathogen-free control. Interestingly, S. destruens' specificity was 
significantly improved >10-fold compared with results obtained using 
F1R2 (Spikmans et al., 2020) for nested-PCR. More than 89% of the 
reads from the P12 and B127 samples were mapped to the 18S se-
quence of S. destruens (see Table 1). Although not identified, we can 
hypothesize that the co-amplification generating the multiband pro-
files may correspond to other regions from the unsequenced genome 
of the rosette agent. Nonetheless, a primer-fish binding can not be en-
tirely excluded even if the in silico PCR on SILVA databases (Quast 
et al.,  2012) did not show matches with fish 18S rDNA. However, 
while greatly increasing the specificity of S. destruens DNA detection 
in infected fish for diagnostic purposes, we suggest that even this new 
nested-PCR assay cannot avoid confirming the amplification of the 
18S sequence of S. destruens by a sequencing step. In addition, tun-
ing the annealing temperature using the “Gradient PCR” method can 
improve specificity. On the other hand, the isolation and sequencing 
of the entire S. destruens genome will be of paramount importance in 
the development of new markers for even more sensitive and specific 
sequencing-free parasite detection, especially for low-load samples.

4  |  CONCLUSION

By combining Nested-PCR and amplicon-based nanopore sequenc-
ing, we have developed a more specific and reliable diagnostic test 
for the disease. This method should be used as a standard detec-
tion protocol S. destruens to monitor its emergence in natural eco-
systems and aquaculture facilities. More importantly, this method is 
an essential addition to the toolbox of epidemiological approaches 
to invasion.
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