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WEIGHT SENSITIVITY IN K-STABILITY OF FANO VARIETIES

THIBAUT DELCROIX

Abstract. We prove that, for a spherical Fano threefold not in the Mori-
Mukai family 2-29, and a weight function associated with the action of the
connected center of a Levi subgroup of its automorphism group, weighted
K-polystability is equivalent to vanishing of the weighted Futaki invariant.
This is surprising since unlike the case of toric Fano manifold, there exist
non-product, special, equivariant test configurations. For the Kähler-Einstein
Fano threefold 2-29, and for well-chosen torus action on the three dimensional
quadric, we show that this property is false and exhibit explicit examples of
weighted optimal degenerations. We then generalize this to higher-dimensional
quadrics and blowups of quadrics along a codimension 2 subquadric.

1. Introduction

K-stability is the algebro-geometric notion corresponding, via the Yau-Tian-
Donaldson conjecture, to existence of canonical Kähler metrics on complex varieties.
In the case of Fano manifolds, the notion of K-stability corresponding to Kähler-
Einstein metrics has been tremendously developed following the resolution of the
Yau-Tian-Donaldson conjecture in this setting [CDS15a, CDS15b, CDS15c, Tia15],
yielding numerous new examples of manifolds with or without Kähler-Einstein met-
rics (see e.g. [IS17, Del20, ACC+23]), and applications to the study of moduli of
Fano varieties (see e.g. Xu’s survey [Xu21]). The references given in the previ-
ous sentence are only intended as illustrating landmarks, and do not reflect many
of the recent achievements, the subject being extremely active. Since many Fano
manifolds do not admit Kähler-Einstein metrics, it is desirable to have an alterna-
tive notion of canonical Kähler metric for those. Kähler-Ricci solitons, obtained as
limits of the Ricci flow on Kähler manifolds, provide natural candidates and the
study of moduli of Fano manifolds with Kähler-Ricci solitons, or with the corre-
sponding notion of weighted K-polystability has been highlighted by Chenyang Xu
as a possible future direction for the study of K-moduli.

More generally, one can consider, on a Fano manifold X equipped with a holo-
morphic action of a compact torus Tc ≃ (S1)k, the notion of weighted soliton. To
define this, consider the canonically normalized moment image ∆ of the Kähler
class c1(X) with respect to the Tc-action. Given a smooth, positive function
g : ∆ → R>0, a smooth Kähler form ω ∈ c1(X) is called a weighted soliton with
respect to the weight g (or shortly, a g-soliton) if

Ric(ω)− i∂∂̄ log g(µω) = ω

where Ric(ω) denotes the Ricci form of ω, and µω denotes the canonically normal-
ized moment map of ω with respect to the compact torus action. Early results on
such metrics, in this generality, were obtained by Mabuchi [Mab03]. In [HL23], Han
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and Li proved a version of the Yau-Tian-Donaldson conjecture for weighted solitons
in a weak sense, on singular Fano varieties, in terms of the corresponding notion
of weighted K-polystability, defined rather in terms of the action of the complexi-
fied torus T = (C∗)k. We do not recall the general definition here, but note that
it boils down to checking that, for any equivariant, special test configuration, the
weighted Donaldson-Futaki invariant is non-negative, and is zero if and only if the
test configuration is a product. If the latter equality case is not included, the va-
riety is called weighted K-semistable. The Donaldson-Futaki invariants associated
to product test configurations may further be interpreted as a weighted version of
the classical Futaki invariant [Fut83].

A Fano toric variety, that is, a Fano variety equipped with an effective regular
action of a torus of the same dimension, satisfies a particularly nice property with
respect to weighted K-stability. Namely, it is weighted K-polystable if and only if
it is weighted K-semistable, if and only if its weighted Futaki invariant vanishes.
This property follows essentially from the fact that the only equivariant special
test configurations for toric varieties are product test configurations [Don02], and
[HL23]. However the first results of this nature date back to the characterization
of existence of Kähler-Ricci solitons on Fano toric manifolds by Wang and Zhu
[WZ04].

In [Del20], we proved that a similar property is satisfied by horospherical G-
varieties. A horospherical G-variety is a variety equipped with an action of a con-
nected reductive group G such that a G-stable open set X0 ⊂ X is a homogeneous
fibre bundle over a generalized flag variety G/P , with fiber a toric variety. We
proved that for such a variety, the only G-equivariant special test configurations
are product test configurations. As a consequence, if X is a Fano horospherical
variety equipped with an action of a torus T that commutes with the action of G,
and g is a weight function for this T -action, then X is g-K-polystable if and only if
its g-Futaki invariant vanishes.

Linsheng Wang recently showed that Fano threefolds in families number 2-28
(blowup of P3 along a plane cubic curve) and 3-14 (further blowup along a point
not on the exceptional divisor) exhibit a similar property [Wan24b, MW23]. Let X
be a Fano manifold in one of these two families. Let C∗ act on X as the maximal
connected reductive subgroup of its automorphism group (in the case of family
3-14, this is actually the full connected automorphism group), and let ∆ be the
canonically normalized moment image of c1(X). Then for any weight function
g : ∆ → R>0, X is g-K-polystable if and only if its g-Futaki invariant vanishes.
These examples are of particular interest because in this case, there exists non-
product equivariant special test configurations, but they turn out to play no role
in weighted K-polystability.

The purpose of this paper is to investigate other instances of such a behavior via a
case study. We will mainly study the case of spherical Fano threefolds. Apart from
the toric examples, the spherical Fano threefolds are (in Mori-Mukai numbering
[MM81] together with a geometric description):

1-16: the quadric Q3,
2-29: the blowup of the quadric Q3 along a conic,
2-30: the blowup of the quadric Q3 at a point,
2-31: the blowup of Q3 along a line,
2-32: the variety W , a divisor in P2 × P2 of bidegree (1, 1),
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3-19: the blowup of Q3 along two points, not contained in a line in Q3,
3-20: the blowup of Q3 in the disjoint union of two lines,
3-22: the blowup of P1 × P2 along a conic in a P2 fiber,
3-24: a complete intersection of degree (1, 1, 0) and (0, 1, 1) in P1 × P2 × P2

4-7: the blowup of W along the disjoint union of a curve of degree (1, 0) and
a curve of degree (0, 1),

4-8: the blowup of P1 × P1 × P1 along a curve of degree (0, 1, 1).

To state our main results, we introduce the terminology of weight-insensitive
K-polystability: a Fano variety X (or more generally, a Q-Fano log pair (X,D))
equipped with a regular action of a torus T = (C∗)k with canonically normalized
moment image ∆ is weight-insensitive K-polystable if for any weight function g :
∆ → R>0, X is g-K-polystable if and only if its g-Futaki invariant vanishes. We
discover several new weight-insensitive K-polystable T -manifolds.

Theorem 1.1. All spherical Fano threefolds but the Fano threefold 2-29 are weight-
insensistive K-polystable with respect to the action of the connected center of a Levi
subgroup of their automorphism group.

Let us stress here that we include the data of the torus action in the defini-
tion. For the manifolds above, we do not prove that they are weight-insensitive
K-polystable with respect to the action of a maximal torus in their automorphism
group. The latter notion would likely be the most general to hope for, but in this
case we cannot use the spherical symmetry since the spherical action does not com-
mute with the maximal torus action. Furthermore, for several natural choices of
weighted solitons, it is natural to consider only the action of the center of a Levi
subgroup of the automorphism group. This is the case for Kähler-Ricci solitons,
for Mabuchi solitons, as well as for the notion of weighted solitons encoding the
existence of Sasaki-Einstein metrics on the link of the cone over the Fano variety.
Another extreme case would be to consider no torus action. In this case, weight-
insensitive K-polystability is equivalent to K-polystability.

A quick note on Mabuchi solitons: it was proved in [DH21] that Fano threefold 2-
30 does not admit Mabuchi solitons, and it was proved previously that several toric
Fano threefolds do not admit Mabuchi solitons [Yao22]. This is not in contradiction
with the property of weight-insensitive K-polystability, since in these cases the
obstruction is that the weight corresponding to Mabuchi solitons is not positive.

To disprove weight-insensitive K-polystability with respect to a maximal torus
action, it is enough to disprove it for a weight associated to a lower-dimensional
torus action (still with vanishing weighted Futaki invariant). Linsheng Wang pro-
vided in [Wan24b] a singular example which is not weight-insensitive K-polystable,
the variety obtained by optimal degeneration of some Fano threefolds in family
2-23 [MW24]. We will provide here simple smooth counterexamples by considering
appropriate C∗-actions on these.

In [Wan24a], Linsheng Wang highlights an interesting question that further ex-
tends this notion of weight-insensitivity. Namely, for a K-unstable Fano variety
X , he considers variants of the H-functional involved in unweighted optimal de-
generations, and constructs associated optimal degenerations which are weighted
K-polystable for a weight associated with the functional. He asks the question: is
this optimal degeneration independent of the choice of variant of the H-functional
(under some assumptions). More generally, one can expect the existence of weighted
optimal degenerations for arbitrary weight functions. This notion would associate
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to a weighted K-unstable variety for a certain weight g, a certain degeneration
which is weighted K-polystable for another weight g̃, related with g. This notion
is a generalization of the optimal degeneration from a (unweighted) K-unstable
variety to a variety with a (weak) Kähler-Ricci soliton, first studied in the differen-
tial geometric setting of the Hamilton-Tian conjecture [CSW18, DS20], then in the
algebro-geometric setting [BLXZ23]. This should be, in general, a two-step process.
From a g-K-unstable variety X , one first degenerates to a g̃-K-semistable variety
X0, then X0 degenerates to a g̃-K-polystable variety Y . The second step is already
carried out in full generality in [HL24, BLXZ23], where they show the existence and
uniqueness of such a Y , starting from a weighted K-semistable X0. Wang’s work
in [Wan24a] constitutes an initial advance in the first step of the process. We now
state an extension of Wang’s question: for which X equipped with a torus action
do we have that the optimal degeneration Y is independent of the chosen weight.

Wang’s question was originally presented as a conjecture in the first arXiv version
of [Wan24a], and was one motivation for the present article. Little is known so far
on the otimal degenerations of the singular example from [Wan24b] which is not
weight-insensitive K-polystable, so it was not presented as a counterexample to
this conjecture. For our new examples, we can further characterize the weighted
optimal degenerations for certain weights.

Theorem 1.2. The Kähler-Einstein Fano threefold 2-29 is not weight-insensitive
K-polystable with respect to the action of the connected center of its automorphism
group. Furthermore, the quadric threefold Q3 admits at least one non-trivial C∗-
action for which it is not weight-insensitive K-polystable. In both cases, we exhibit
an explicit weight g such that the manifold X is strictly g-K-semistable, and its
optimal degeneration is a Gorenstein toric variety not isomorphic to X.

The basic idea behind these counterexamples is that, by [Del20, Del23], the
spherical threefolds considered admit a unique G-equivariant special test config-
uration up to twist, where G = SL2(C) × C∗ in our case. Furthermore, by the
criterion from [Del20] as generalized to weighted K-polystability in [LLW22], the
central fiber of this test configuration is weighted K-semistable, and horospherical,
hence weighted K-polystable. As a consequence, the optimal degeneration can only
be induced by that test configuration.

It is actually easy to describe the special test configuration for our examples.
Consider the quadric Q3 as defined by the equation

x0x2 − x2
1 + x3x4 = 0

in P4 with homogeneous coordinates [x0 : · · · : x4]. Then the test configuration X
defined by the equation

x0x2 − x2
1 + zx3x4 = 0

in C × P4 (with coordinate z for the C factor) is a G-equivariant special non-
product test configuration, with central fiber the horospherical G-variety which is
the singular quadric defined by the equation

x0x2 − x2
1 = 0

in P4. This singular quadric is further toric and Gorenstein, corresponding to
the Fano polytope with reflexive ID 2 in the Graded Ring Database [Kas]. The
associated moment polytope is the simplex obtained as the convex hull of the four
points (−1,−1,−1), (5,−1,−1), (−1, 2,−1) et (−1,−1, 2) in R3.
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For the threefold 2-29, we construct the special test configuration by blowing up
the subvariety Z ⊂ X defined by x3 = x4 = 0 in the test configuration X for Q3.
Again, the central fiber is G-horospherical but as well toric and Gorenstein, with
reflexive ID 19 in [Kas].

Let us note that our examples are not (unweighted) K-unstable, and the weights
considered in our examples do not quite satisfy the added hypotheses in [Wan24a]
(that some primitive of the weight is log-convex). This does not seem like a major
issue to us, since we produce strictly weighted K-semistable examples, for which
the assumption on the weights is not necessary to define an optimal degeneration
in [Wan24a]. Strictly speaking though, we do not provide a counterexample to the
original conjecture in [Wan24a].

If one switches to the log Fano setting, we can provide an (unweighted) K-
unstable example. We illustrate this by considering log Fano pairs with underlying
manifold the threefold 2-29. Let X denote the manifold 2-29, and let E denote the
exceptional divisor of the blowup map X → Q3.

Theorem 1.3. For t0 =
√
10−2
3 , the pair (X, t0E) is strictly (unweighted) K-

semistable. Furthermore, there are smooth log concave weights for which (X, t0E)
is weighted K-polystable.

Finally, we observe that the above results carry through to higher dimensional
quadrics. Under the action of SOn−2(C) × SO2(C) ⊂ SOn+2(C) on the quadric
Qn−2, there is still a unique equivariant special test configuration up to twist.
The candidate optimal degeneration is in fact still the degeneration to the singular
quadric

x2
0 + · · ·+ x2

n−3 = 0

in Pn−1. This singular quadric is no longer toric in general, but it is still rank two
horospherical.

Theorem 1.4. For any n ≥ 5, the quadric Qn−2 is not weight-insensitive K-
polystable. There exist a weight for which it is strictly weighted K-semistable, and its
weighted optimal degeneration is the singular quadric with equation x2

0+· · ·+x2
n−3 =

0 in Pn−1.

More generally, a spherical Fano variety admits a unique special test configura-
tion up to twist if and only if its valuation cone is a half space. These constitute in
general natural candidates to study with respect to weighted optimal degenerations.

Acknowledgements. The author is partially funded by ANR-21-CE40-0011 JCJC
project MARGE. We thank Linsheng Wang and Tiago Duarte Guerreiro for con-
versations on [Wan24a] and on the present article.

2. Recollections on spherical varieties

2.1. Combinatorial data associated with spherical varieties. We first recall
some of the basics of the theory of spherical varieties that will be needed. We refer
to [Kno91, Bri89, DM23] for more details. Let X be a normal variety, and let G be
a connected reductive group, acting regularly on X . If a Borel subgroup of G acts
with an open orbit in X , then X is called a spherical G-variety. We assume for the
rest of this section that X is a spherical G-variety. We further choose a base point
x in the open orbit of G, we denote by H its stabilizer in G, and we choose a Borel
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subgroup B such that BH is open in G (in other words, such that B · x is open in
X).

The weight lattice of X , denoted by M , is the set of all characters m of B such
that there exists a rational function fm ∈ C(X) with b · fm = m(b)f . Since B acts
with an open orbit, such an f is uniquely determined by m up to a multiplicative
constant. We denote by X∗(B) the set of characters of B, so that M ⊂ X∗(B).
The set M is a torsion-free finite rank abelian group isomorphic to some Zr. The
integer r is called the rank of the G-variety X . We denote by N = Hom(M,Z) the
dual abelian group.

Any R-valued valuation of C(X) induces an element of N ⊗R = Hom(M,R) by
restriction to B-eigenfunctions as above. The set V of all the elements of N ⊗ R

obtained by restriction of a G-invariant valuations forms a convex polyhedral cone
in N ⊗ R called the valuation cone.

Assume that X is Q-Fano. Then there is a natural linearization of K−m
X for m

divisible enough, and from this a natural moment polytope ∆+(X) ⊂ X∗(B)⊗ R.
This is by definition the closure of the set of all λ

m
where K−m

X is a line bundle,

λ ∈ X∗(B), and there exist a section s ∈ H0(X,K−m
X ) such that for all b ∈ B,

b · s = λ(b)s for the action of G induced by the natural linearization of K−m
X .

Choose a maximal torus T ⊂ B, and let R and R+ denote the set of roots
and the set of positive roots of G with respect to these choices. Let R+

X ⊂ R+

denote the subset of positive roots α such that {α, ·} does not vanish identically on
∆+(X), where {·, ·} denotes the Killing form. Then we call Duistermaat-Heckman
polynomial of X the polynomial PDH on X∗(B)⊗ R defined by

PDH(p) =
∏

α∈R
+

X

{α, p}

{α,̟}

where ̟ = 1
2

∑

α∈R+ α.

2.2. Weighted K-stability of spherical Fano varieties. We recall first the
classification of equivariant special test configurations for spherical varieties from
[Del20]. The additional characterization of special test configurations up to twist
follows from [Del23].

Theorem 2.1 ([Del20, Del23]). Let X be a Q-Fano variety, spherical under the
action of a connected reductive group G. Then G-equivariant special test configu-
rations for X are in bijection with rational rays in the valuation cone V(X). Fur-
thermore, G-equivariant special test configurations up to twists are in bijection with
rational rays in the projection of the valuation to the quotient N⊗R

V∩−V .

Li, Li and Wang proved in [LLW22, Theorem 1.3] a criterion for weighted K-
polystability of spherical Fano varieties, a generalization of the main result of
[Del20] which dealt only explicitly with the case of Kähler-Ricci soliton weights.
We reformulate it as follows.

First, let us stress that we focus on torus actions that commute with the action
of G. It is known ([Los09], see the discussion in [Del20, section 3.1.3]) that, for

a spherical G-variety X , the connected component T of the group AutG(X) of G-
equivariant automorphisms of X is a torus. Let us assume, to simplify notations,
that the action of G is almost-faithful (that is, faithful up to a finite central sub-
group), and that the image of G in Aut(X) contains T. Then it is furthermore
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known that the moment polytope of X with respect to the action of T is the image
of ∆+ under the map

πT : X∗(B)⊗ R → X∗(T/([G,G] ∩ T ))⊗ R = X∗(T)⊗ R

the latter identification being obtained via the isogenies between T, Z(G)0 and
T/([G,G] ∩ T ).

Theorem 2.2 ([Del20] and [LLW22]). The Q-Fano spherical variety X is G-
equivariantly g-K-semistable if and only if for any ξ ∈ V,

∫

∆+

〈p− κ, ξ〉g(πT(p))PDH(p) dp ≤ 0

where κ =
∑

α∈R
+

X

α. If furthermore, equality holds if and only if ξ ∈ V ∩ −V,

then X is G-equivariantly g-K-polystable. The vanishing of the above integral for
all ξ ∈ V ∩ −V is equivalent to the vanishing of the weighted Futaki invariant.

In the above statement, dp denotes a Lebesgue measure on the affine space
κ+M⊗R. The condition does not depend on a particular choice of such a Lebesgue
measure, although it is customary to choose the Lebesgue measure normalized by
the lattice M , so that, as a sanity check, one can check consistency with the formula
for the anticanonical degree:

(−KX)n = (dimX)!

∫

∆+

PDH(p) dp

We will not choose this particular normalization in the following.

Remark 2.3. Although the variant is not written in the literature, we note that
the above statement works as well with the same proof for a klt log Fano pair
(X, tD) where X is a G-spherical Fano variety, D is a G-stable divisor, and t ∈ R.
It suffices to replace the moment polytope ∆+ in the statement by the moment
polytope of the anticanonical divisor of the pair −KX − tD.

3. Spherical Fano threefolds

3.1. Faithful spherical actions on Fano threefolds. Since toric Fano varieties
are weight-insensitive K-polystable with respect to any torus action, we focus on
non-toric spherical Fano threefolds. In Pasquier’s [Pas06] and Hofscheier’s combined
PhD theses (the latter is unavailable online), the classification of all possible faithful
spherical actions of a connected reductive group on a Fano threefolds was essentially
achieved. These results were reproved and generalized in [DM23]. From these we
gather:

Theorem 3.1. [Pas06, DM23] In Mori-Mukai numbering [MM81], Fano threefolds
number 1-16, 2-29, 2-30, 2-31, 2-32, 3-19, 3-20, 3-22, 3-24, 4-7 and 4-8 are the only
non-toric, spherical Fano threefolds. All but 1-16 and 2-32 admit only one faithful
spherical action up to equivariant isomorphism, induced by an almost-faithful action
of SL2 ×Gm. For 1-16 there are two different faithful spherical actions of rank two
induced by SL2 ×Gm-actions, there are also rank one and rank zero spherical actions
that we will not consider here. For 2-32 the only other faithful spherical action is
the rank zero action of its automorphism group. We summarize the correspondence
with the identifiers from [DM23] in Table 1, for rank two faithful spherical actions.
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Mori-Mukai 1-16 1-16 2-29 2-30 2-31 2-32

Delcroix-Montagard 3-2-4 3-2-18 3-2-19 3-2-21 3-2-6 3-2-5

Mori-Mukai 3-19 3-20 3-22 3-24 4-7 4-8

Delcroix-Montagard 3-2-23 3-2-9 3-2-17 3-2-8 3-2-11 3-2-3

Table 1. Faithful SL2 ×Gm-spherical actions on Fano threefolds

3.2. Weighted K-stability. The goal of this subsection is to prove Theorem 1.1.
The result is known for toric manifolds. It is also true for the quadric Q3: its
automorphism group is semisimple, so its connected center is trivial. Since Q3 is
K-polystable, it is weight-insensitive K-polystable with respect to the trivial torus
action. We will see later that it is not always true for non-trivial C∗-actions.

In view of Theorem 2.2, it suffices to know the valuation cone and the moment
polytope ∆+ ⊂ X∗(B)⊗ R of a spherical variety to determine when it is weighted
K-polystable. The combinatorial data given in [DM23] is enough to determine these
as explained in [DM23, Section 2.8]. In order to identify the optimal degeneration,
we will further indicate the lattice M ⊂ X∗(B) for each example (or rather, we will
indicate the points in the intersection of the translated lattice κ+M with ∆+).

Here we are working with G = SL2 ×Gm. Fix a maximal torus T ⊂ B, and
let α ∈ X∗(B) be the unique positive root. Let χ be a primitive generator of
X∗(T/([G,G] ∩ T )). The moment polytopes for all the (almost-)faithful spherical
actions of G on non-toric Fano threefolds are depicted in Figure 1.

The spherical root in each case is the positive primitive multiple of α in M , so
that the valuation cone is V = {ν ∈ N ⊗ R | ν(α) ≤ 0}, and V ∩ −V = Rχ∗ in the
dual basis (α∗, χ∗). The Duistermaat-Heckman will not depend on the considered
threefolds because in all cases we will have R+ = R+

X = {α}. We thus have

PDH(x
α

2
+ yχ) =

x

4

Furthermore, in all cases, we have

κ = α

We identify X∗(B) ⊗ R with R2 by using the coordinates (x, y) in the basis
(α2 , χ). A weight g is then identified with a function of y, and the criterion for
weighted K-polystability reads (up to the choice of the Lebesgue measure) as the
two conditions

∫

∆+

yg(y)x dxdy = 0

and
∫

∆+

(x − 2)g(y)x dxdy > 0

We may consider the above expressions as signed measures evaluated at g by setting

ν(g) =

∫

∆+

yg(y)x dxdy µ(g) =

∫

∆+

(x− 2)g(y)x dxdy

We compute the measures µ and ν for all cases and gather the results in Table 2.
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Figure 1. Moment polytopes of non-toric SL2 ×C∗-spherical Fano threefolds

Let us quickly explain the details of the computation in the example of 3-2-3:
we have

ν(g) =

∫

∆+

yg(y)x dxdy

=

∫ 0

y=−1

g(y)y

∫ 4

x=0

x dx dy+

∫ 1

y=0

g(y)y

∫ 4−2y

x=0

x dx dy

=

∫ 0

y=−1

g(y)8y dy+

∫ 1

y=0

g(y)2y(2− y)2 dy
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Threefold Signed measures

3-2-3 µ
dy

= 16
3 1[−1,0] +

4
3 (1 − 2y)(2− y)21[0,1]

ν
dy

= 8y1[−1,0] + 2y(2− y)21[0,1]

3-2-4 µ
dy

= 1
3y

2(y + 3)1[−3,0] +
−1
3 y2(y − 3)1[0,3]

ν
dy

= 1
2y(3− y)(y + 3)1[−3,3]

3-2-5 µ
dy

= 2
3 (y + 2)31[−2,0] +

−2
3 (y − 2)31[0,2]

ν
dy

= 4y(2 + y)1[−2,0] + 4y(2− y)1[0,2]

3-2-6 µ
dy

= 2
3 (y + 2)31[−2,−1] +

1
3y

2(y + 3)1[−1,0] +
−1
3 y2(y − 3)1[0,3]

ν
dy

= 4y(2 + y)1[−2,−1] +
1
2y(3− y)(y + 3)1[−1,3]

3-2-8 µ
dy

= 2
3 (y + 2)31[−1,0] +

−2
3 (y − 2)31[0,2]

ν
dy

= 4y(2 + y)1[−1,0] + 4y(2− y)1[0,2]

3-2-9 µ
dy

= 2
3 (y + 2)31[−2,−1] +

1
3y

2(y + 3)1[−1,0] +
−1
3 y2(y − 3)1[0,1] +

−2
3 (y − 2)31[1,2]

ν
dy

= 4y(2 + y)1[−2,−1] +
1
2y(3− y)(y + 3)1[−1,1] + 4y(2− y)1[1,2]

3-2-11 µ
dy

= 2
3 (y + 2)31[−1,0] +

−2
3 (y − 2)31[0,1]

ν
dy

= 4y(2 + y)1[−1,0] + 4y(2− y)1[0,1]

3-2-17 µ
dy

= 361[−1,0] +
4
3 (3 − 2y)2(3 − 4y)1[0,1]

ν
dy

= 18y1[−1,0] + 2y(3− 2y)21[0,1]

3-2-18 µ
dy

= 4
3 (y + 3)2(2y + 3)1[−3,0] +

4
3 (y − 3)2(3− 2y)1[0,3]

ν
dy

= 2y(3 + y)21[−3,0] + 2y(3− y)21[0,3]

3-2-19 µ
dy

= 4
3 (y + 3)2(2y + 3)1[−3,−1] +

16
3 1[−1,1] +

4
3 (y − 3)2(3− 2y)1[1,3]

ν
dy

= 2y(3 + y)21[−3,−1] + 8y1[−1,1] + 2y(3− y)21[1,3]

3-2-21 µ
dy

= 4
3 (y + 3)2(2y + 3)1[−1,0] +

4
3 (y − 3)2(3− 2y)1[0,3]

ν
dy

= 2y(3 + y)21[−1,0] + 2y(3− y)21[0,3]

3-2-23 µ
dy

= 4
3 (y + 3)2(2y + 3)1[−1,0] +

4
3 (y − 3)2(3− 2y)1[0,1]

ν
dy

= 2y(3 + y)21[−1,0] + 2y(3− y)21[0,1]

Table 2. The signed measures µ and ν

and

µ(g) =

∫

∆+

(x− 2)g(y)x dxdy

=

∫ 0

y=−1

g(y)

∫ 4

x=0

x(x− 2) dx dy+

∫ 1

y=0

g(y)

∫ 4−2y

x=0

x(x − 2) dx dy

=

∫ 0

y=−1

g(y)
16

3
dy+

∫ 1

y=0

g(y)
4

3
(y − 2)2(1− 2y) dy

In these terms, we easily observe that weight-insensitive K-polystability is im-
plied by the (stronger) condition that µ is a positive measure with support ∆T.
This condition is satisfied for spherical threefolds number 3-2-4, 3-2-5, 3-2-6, 3-2-8,
3-2-9, 3-2-11, and 3-2-23.
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It is not actually necessary for µ to be a positive measure. For the remaining
weight insensitive K-polystable cases, we will rather prove that µ+λν is a positive
measure with support ∆T for some well-chosen λ ∈ R. This is enough to guarantee
weight-insensitive K-polystability since for this notion we only consider weights g
such that ν(g) = 0.

For 3-2-3, we have the positive measure

µ+
2

3
ν =

(

16

3
(1 + y)1[−1,0] +

4

3
(2− y)2(1− y)1[0,1]

)

dy

For 3-2-17, we have

µ+ 2ν =

(

36(1 + y)1[−1,0] +
4

3
(3− 2y)2(4− y)1[0,1]

)

dy

And for 3-2-21,

µ+
2

3
ν =

(

4(y + 3)2(y + 1)1[−1,0] +
4

3
(3 − y)31[0,3]

)

dy

This finishes the proof of Theorem 1.1.
Note that we have found a non-trivial C∗-action on the quadric Q3 such that Q3

is weight-insensitive K-polystable with respect to this action. In the next section,
we prove that it is not true for another choice of C∗-action.

3.3. The quadric threefold and its toric optimal degeneration. We now
focus on the spherical action 3-2-18 on the Fano threefold 1-16, the quadric Q3. In
this section, we set X = Q3, and G = SL2 ×C∗ acting on X via the spherical action
3-2-18.

3.3.1. Unstable and semistable weights. Consider a weight g : [−3, 3] → R>0 which
is even. Then it is obvious from the symmetry of the signed measure ν under the
reflection y 7→ −y that ν(g) = 0. If X were weight-insensitive K-polystable, then
for any such weight, we would have µ(g) > 0. Let us build an example where this
is false.

Let a ∈ R be a parameter, and consider the family of weights ga : y 7→ cosh(ay)
indexed by a. It is immediate that the function a 7→ µ(ga) is continuous, and
we have µ(g0) > 0 since Q3 admits a Kähler-Einstein metric. Actually, one may
compute an exact expression:

µ(ga) =
−16

a4
(

6a2 + a sinh(3a)− 2 cosh(3a) + 2
)

and the fastest growing summand yields an equivalent as a → +∞:

µ(ga) ∼ −
16e3a

a3

As a consequence, µ(ga) is negative for large values of a. From intermediate value
theorem, there is a value a0 such that µ(ga0

) = 0 and we can give an approximate
value: a0 ≃ 1.81037.

We have shown that for the weight ga, X is strictly weighted K-unstable if a
is large enough, X is strictly weighted K-semistable if a = a0, and X is weighted
K-polystable for values of a close to 0.
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3.3.2. The toric degeneration. By Theorem 2.1, and the fact that the valuation
cone of X is a half plane, there is a unique G-equivariant special test configuration
for X up to twist. We denote its central fiber by Y . As explained in [Del20] Y has
the same moment polytope ∆+ as X under the action of G, its valuation cone is
the full plane M ⊗ R, and its weight lattice is still M . By Theorem 2.2, we obtain
that, if X is strictly g-K-semistable for a weight g, then Y is g-K-polystable. By
uniqueness of such a degeneration, we have identified the optimal degeneration of
X with respect to the weight ga0

from the previous subsection. Note that since
the optimal degeneration is obtained in a single step from a K-semistable to a K-
polystable, there is no need for the assumption of log convexity in Linsheng Wang’s
paper [Wan24a].

Let us now say a bit more about the variety Y . A lot can be said from the theory
of spherical varieties, we explain a bit here. By Pasquier [Pas08], since we know
the moment polytope ∆+ and weight lattice M with respect to the action of G, we
can fully identify Y as a rank two G-horospherical variety. Furthermore, Y admits
an almost-faithful action of SL2 ×G2

m via the action of (G × Aut0G(Y ))/Z(G), so
in particular it admits an almost-faithful action of a three-dimensional torus. We
deduce directly from this that Y is a toric Q-Fano variety with degree 54. It
follows rather straighforwardly from Brion’s criterion for a divisor on a spherical
variety to be Cartier [Bri89] that Y is Gorenstein. By Pasquier [Pas17], we can
also deduce for example that Y does not have terminal singularities. Additionally,
from the horospherical description, we can readily see that the Fano index of Y
is three, equal to its dimension. It then follows from [AD14, Theorem 1.1] that
Y is a singular quadric which is consistent. From the classification of Gorenstein
Fano threefolds [KS97, KS98] as encoded in the Graded Ring Database [Kas], there
would be a single candidate for Y : the Gorenstein toric variety with reflexive ID 2.

In a more down to earth approach, it suffices to exhibit an explicit non-product
G-equivariant special test configuration forX , to obtain an explicit description of Y .
As explained in the introduction, this explicit test configuration is the hypersurface
X ⊂ P4 × C defined by the equation

x0x2 − x2
1 + zx3x4 = 0

where [x0 : · · · : x4] denote homogeneous coordinates on P4, and z denotes the
variable in C. The central fiber is thus the singular quadric defined by the equation
x0x2 − x2

1 = 0 in P4, which indeed is the Gorenstein toric variety with reflexive ID
2, with respect to the action of (C∗)3 defined by

(t1, t2, t3) · [x0 : · · · : x4] = [t21x0 : t1x1 : x2 : t2x3 : t3x4]

3.4. The Fano threefold 2-19 and its toric optimal degeneration. We now
focus on the spherical action 3-2-19 on the Fano threefold 2-29. In this section X
denotes the Fano threefold 2-29.

3.4.1. Unstable and semistable weights. Consider a weight g : [−3, 3] → R>0 which
is even. Again, it is obvious from the symmetry of the signed measure ν under the
reflection y 7→ −y that ν(g) = 0. If 2-29 were weight-insensitive K-polystable, then
for any such weight, we would have µ(g) > 0. Let us build an example where this
is false.

Let a ∈ R be a parameter, and consider again the family of weights ga : y 7→
cosh(ay) indexed by a. It is immediate that the function a 7→ µ(ga) is continuous,
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and we have µ(g0) > 0 since 2-29 admits a Kähler-Einstein metric. The exact
expression is now:

µ(ga) =
32

a4
(

− cosh(a) + cosh(3a)− 2a sinh(a)− a sinh(a) cosh(2a)− a2 cosh(a)
)

and the fastest growing summand yields an equivalent as a → +∞:

µ(ga) ∼ −
32e3a

a3

As a consequence, µ(ga) is negative for large values of a. From intermediate value
theorem, there is a value a0 such that µ(ga0

) = 0 and we can give an approximate
value: a0 ≃ 1.3176.

We have shown that for the weight ga, X is strictly weighted K-unstable if a
is large enough, X is strictly weighted K-semistable if a = a0, and X is weighted
K-polystable for values of a close to 0.

3.4.2. The toric degeneration. The same explanations as for the quadric Q3 show
that there is a unique G = SL2 ×Gm-equivariant special degeneration of X up
to twist. Again, its central fiber Y is a Gorenstein, non-terminal, toric, ga0

-K-
polystable variety. Again, to identify Y , it is enough to exhibit an explicit non-
product special equivariant test configuration. For this we start from the test
configuration X for Q3 defined above. We blow up the linear section Z ⊂ X
defined by x3 = x4 = 0, whose intersection with each fiber is the non-singular
one dimensional G-stable sub-quadric. The resulting blowup X̃ is a non-product
special test configuration for X , whose central fiber is the blowup of the singular
quadric above along the non-singular one-dimensional G-stable sub-quadric. From
the toric point of view, we identify this central fiber as the Gorenstein toric variety
with reflexive ID 19 in the Graded Ring Database [Kas].

We have finished the proof of Theorem 1.2.

3.5. A strictly K-semistable log Fano pair which is weighted K-polystable.

We now consider the log Fano pairs (X, tE) where X is the Fano manifold 2-29,
and E is the exceptional divisor with respect to the blowup map X → Q3. With
the same conventions as in the previous sections, the moment polytope of this pair
is the polytope with set of vertices {±(0, 3),±(4 − 2t, 1 + t)}. For example, for
t = 1/2, this is:

0

χ

α

•

•

•

•

•

•

•

•

•

∆+(X, 12E)

As before, g-weighted K-stability of (X, tE) is encoded by two signed measures
νt and µt, with the conditions νt(g) = 0 and µt(g) > 0 corresponding to g-K-
polystability. From symmetry, we have νt(g) = 0 as soon as g is even, as for the
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manifold X itself. For even g, we have

µt(g) =
8

3

(

(2− t)2(1 − 2t)

∫ 1+t

0

g(y)dy +

∫ 3

1+t

g(y)(3− y)2(3− 2y)dy

)

so in particular,

µt(1) = −
4

3
(t− 2)2(3t2 + 4t− 2)

We deduce that, for t = t0 :=
√
10−2
3 , we have µt0(1) = 0. In other words, the log

Fano pair (X, t0E) is strictly K-semistable.
The optimal degeneration of this log Fano pair (in the classical sense), is by the

same arguments as before the pair (Y, tD), where Y is the Gorenstein toric threefold
with reflexive ID 19, and D is the exceptional divisor in the blowup map from Y
to the singular quadric which is the Gorenstein toric threefold with reflexive ID 2.

Consider now the weight g defined by g(y) = 1
cosh(y) . From numerical computa-

tions, one can easily check that µt0(g) > 0, so that the pair (X, t0E) is weighted
K-polystable with respect to this weight.

Alternatively, to get rid of numerical computations, observe that the signed
measure µt0 is positive around zero. An obvious even function g such that µt0(g) > 0
is given by g = 1[−ǫ,ǫ] where ǫ > 0 is small enough. Now observe that this non-
smooth function may be arbitrarily well approximated by a smooth, even, positive,
log concave function, this yields other examples of log concave weights for which the
pair (X, t0E) is weighted K-polystable. We have finished the proof of Theorem 1.3.

4. Higher dimensional examples

We now quickly consider some higher dimensional examples, which are still spher-
ical varieties of rank two, with a half plane as valuation cone. Let X be such a
G-variety. From the same considerations as in the previous section, X admits a
unique non-product G-equivariant special test configuration up to twist. The cen-
tral fiber Y of this test configuration is a rank two horospherical variety. It will no
longer, in general, be a toric variety. If X is strictly weighted K-semistable for a
given weight g, then Y will be weighted K-polystable for this weight, thus it will
be the weighted optimal degeneration of X .

We consider the higher dimensional quadric Qn−2 with respect to the action of
SOn−2(C)×SO2(C) ⊂ SOn(C), as studied in [Del22, Section 4]. The combinatorial
data needed to carry out the computations is available in this paper, we recall it in
the following, adjusting the coordinates slightly so that the choices are consistent
with those in the previous section (when n = 5). In these coordinates (x, y) (the
x coordinate is dilated by four with respect to the one used in [Del22], and the y
coordinate is dilated by two), the moment polytope ∆+ for the quadric Qn−2 is the
triangle defined by the inequalities x ≥ 0, x ≤ 2n− 4 + 2t and x ≤ 2n− 4− 2t.
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0 κ

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

∆+(Q4)

The Duistermaat-Heckman polynomial is (a multiple of) xn−4, the point κ is the
point with coordinates (2n− 8, 0), and the valuation cone is the negative half plane
defined by κ in N ⊗ R = (M ⊗ R)∗. A weight for the action of SO2(C) ≃ C∗ may,
again, be considered as a function of the second variable y. If such a weight g is
even, then by symmetry the vanishing of the weighted Futaki invariant is automatic,
and the weighted K-polystability condition is encoded by the positivity condition

0 <

∫

∆+

(x− (2n− 8))g(y)xn−4dxdy

= 2

∫ n−2

0

g(y)

(
∫ 2n−4−2y

0

(x− (2n− 8))xn−4dx

)

dy

=
4

(n− 2)(n− 3)

∫ n−2

0

g(y)(2n− 4− 2y)n−3(n− 2− (n− 3)y)dy

In the last expression, the affine function n−2−(n−3)y is positive for 0 ≤ y < n−2
n−3

and negative for n−2
n−3 < y ≤ n − 2. As a consequence, for any weight g that

approximates well enough the function 1[n−2

n−3
,n−2], the quadric Qn−2 is weighted

K-unstable. Since Qn−2 admits Kähler-Einstein metrics hence is K-polystable, we
deduce that there exists weights for which Qn−2 is strictly weighted K-semistable,
for which the optimal degeneration is given by the unique horospherical degenera-
tion.

Again, for Qn−2 it is easy to exhibit explicitly a non-product, SOn−2(C) ×
SO2(C)-equivariant special test configuration, as the hypersurface defined by

x2
0 + · · ·+ x2

n−3 + z(x2
n−2 + x2

n−1) = 0

in Pn−1 × C. The central fiber is the singular quadric defined by the equation
x2
0 + · · ·+ x2

n−3 = 0 in Pn−1. We have thus proved Theorem 1.4.
Considering the blowup of Qn−2 along the SOn−2(C)×SO2(C)-stable subquadric

Qn−4 of dimension n − 4 would again yield another Fano example which is not
weight-insensitive K-polystable. We leave the details to the interested reader.
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