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Metamodel for thermal field : application to GTA welding 

Z. BOUTALEB*, I. BENDAOUD, S. ROUQUETTE, F. SOULIÉ 

LMGC, Univ. Montpellier, CNRS, Montpellier, France 

Abstract. The thermal cycles in arc welding are crucial as they determine the metallurgy, residual stresses, 

and distortions of welded parts. Thermal simulations are often used as a preliminary stage, with two main 

methods: either a multiphysics approach or an equivalent heat source approach. The latter is used to reduce 

computation times. This study aims at predicting the thermal field using a metamodel approach and 

experimental data. A non-intrusive, contactless sensor is used for monitoring the weld pool contour. This 

contour is defined as the reference experimental data. A compact camera integrated into the welding setup 

acquires weld pool images for contour detection during GTAW operation. A numerical design of 

experiments is conducted by varying heat source parameters in purely conductive thermal finite element 

analysis. The resulting dataset is used for machine learning training. An optimization approach employs a 

polynomial regression model to estimate the heat source from the weld pool contour, while algorithms like 

K-Nearest Neighbors (K-NN) predict the thermal field from estimated heat source. By employing this data-

driven approach, we expect a significant reduction in computational time to obtain the thermal field from 

the melt pool contour.  
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1 Introduction 

Arc welding is a widely used technique for joining 

metallic materials. An electric arc is created between an 

electrode, fusible or not, and the metallic parts to join in 

order to produce a local melting of the parts edges in 

contact. The heat generated from the arc is transferred to 

the parts through their surfaces. A melt pool forms when 

the metal reaches its melting point. The melted metal 

pool is shielded against oxidation with an inert gas or 

mixture of inert and active gas. Fluid movements 

develop within the weld pool and redistribute the heat 

everywhere in the pool. The weld pool growth until the 

heat balance is achieved. Once the welding torch moves 

away, the melted metal solidifies what ensures the 

material continuity. The welding process under 

investigation is the Gas Tungsten Arc Welding (GTAW) 

which is widely used for joining metallic parts. GTAW 

process is commonly used in industries such as power 

plants, petrochemicals, food-processing ... 

 

Critical defects such as cracking can occur, primarily 

due to stresses that develop from the welding thermal 

cycle. Structural defects that arise during welding 

require a focused research effort on improving structural 

integrity. Structural integrity of welded assemblies 

relies mainly on the final micro-structures in the heat 

affected and melted zones and the residual stresses [1,2].  

 

Thermal is central in fusion welding process as the 

thermal history determines the final stress and 

metallurgical states of the finished part. Thermal fields 

can be obtained using multiphysics [3] or equivalent 

heat source approaches [4]. The latter simplifies the 

process by focusing on thermal diffusion phenomena, 

requiring estimation of heat source parameters. 

 

Like most engineering processes, the arc welding 

process depends on various operating parameters, 

including voltage, current, travelling speed, and other 

less critical parameters such as gas composition and 

flow, contact tip distance, and torch angle. Studying or 

optimizing these parameters through numerical 

simulations requires substantial computational 

resources and time [5,6]. For each set of operating 

parameters, numerical simulations need the estimation 

of unknown parameters, which requires multiple 

parametric simulations to converge to experimental data 

observations. Optimizing these parameters to enhance 

reliability using numerical methods involves 

formulating a cost function or a functional from the 

numerical representation of the process physical reality. 

This optimization demands multiple numerical 

evaluations before achieving a specific criterion. Given 

the large number of numerical evaluations, using 

classical models like finite element analysis would 

result in impractically long computational times. 

Therefore, surrogate modeling is a valuable technique. 

Surrogate modeling involves creating a mathematical 

model for which previous numerical simulations serve 

as the training dataset. Once the training step is 

completed, the data-driven surrogate can predict 

quantities of interest much faster [7]. 

 

In this work, we present a methodology using image 

sensing and signals information about operating 

parameters (current and voltage) to predict the thermal 

field. The methodology involves solving an inverse 

problem as a preliminary step for modeling parameter 

estimation; then, given these estimated parameters, the 

thermal field is predicted. 



2 Method 

2.1 Experimental setup and data acquisition 

Experimental set-up of TIG welding has been designed 

to monitor the welding pool shape morphology, to 

observe fluid flow at its surface, and possibly 

solidification mechanism. The setup includes a welding 

generator, 316L stainless alloy 1.5mm sheet, clamping 

support mounted on slides and camera equipment as 

illustrated in figure 1. The weld is performed using a 

static TIG welding generator with a tungsten electrode 

of 2.4mm diameter and sharpened with 30° angle. A 

316L sheet of size 150x70x1.5mm3 is clamped on a 

mobile support mounted on slides. The motion of the 

support is driven by motors, which are regulated with an 

Arduino UNO board to ensure accurate translation. A 

camera is positioned to monitor the weld pool’s bottom 

surface. 

 

 
Fig. 1. Schematic representation of the experimental setup 

(fig. from [8]-modified). 

During the welding operation, a shielding gas is emitted 

from the TIG torch to protect the weld pool from 

oxidation at the top surface. Welding process parameters 

are monitored by measuring the current I and the arc 

voltage U. 

 

Arc voltage and current are almost constant, their 

respective averaged values are given by 8.58V and 

81.7A. Energy delivered by the generator within time is 

calculated as the product of the arc voltage and current 

which correspond to 700.9W. Welding speed during 

experiment was maintained constant at 2.3mm/s. 

 

As the electric arc generates heat, a portion of that heat 

is absorbed at the top surface of the plate. As the heat 

absorbed accumulates in the local region, metal reaches 

its melting point which implies that weld pool appears. 

The thickness of the plate favorizes the full penetration 

of the weld pool, allowing the observation of the molten 

pool from underneath surface. To ensure clarity of the 

molten pool's fluid surface, argon chamber enclosure 

purges oxygen to prevent oxidation. The laser is pointed 

towards the melt pool underneath surface to illuminate 

that region. 

 

The camera is pointed towards underneath surface to 

monitor the molten pool dimensions. With laser 

illumination, the contrast between the solid region and 

the molten region is easy to distinguish. The frontier 

separating the solid and liquid phases of the metal 

determines the dimension of the molten pool. To 

automate the procedure of molten pool contour 

identifications, algorithms have been developed in 

precedent studies. Initially, a Template Matching filter 

is applied to enhance the grey levels of the targeted 

pixels. This is followed by a Canny filter, designed for 

edge detection by tracing lines following the gradient of 

light intensity. Lastly, the Alpha Shapes algorithm is 

used to delineate the probable contour of the weld pool 

[8]. 

 

 
Fig. 2. Weld pool imaging results, contour identification and 

centroid-rays description. 

 

A contour in an image represents a set of pixels arranged 

in a Cartesian grid. This contour delineates the boundary 

between solid and liquid metal phases as shown in figure 

2. Comparing two distinct contours, whether from 

experimental data or numerical simulations, presents 

limitation. Typically, the comparison involves 

calculating differences; however, the pixel counts 

describing each contour often vary, which complicates 

direct comparisons. Currently, no straightforward 

criteria exist for evaluating these differences. To address 

this limitation, we propose using a centroid-rays based 

description. First, we determine the centroid of the weld 

pool. From this point, we draw rays extending through 

the contour at various angles. We start at the welding 

direction and increment the angle by 5 degrees in a 

counterclockwise direction, continuing until reaching 

180 degrees as seen in figure 2. This method allows for 

a more standardized comparison of contours. 

2.2 Thermal modelling 

The thermal modelling is limited to half 316L metal 

sheet as presented in figure 3. 



 
Fig. 3. Geometric modeling domain, boundary conditions. 

Thermophysical properties of 316L stainless steel alloy 

are temperature dependent. 

 

An enthalpic formulation is used to compute the 

temperature field. The equation of conservation of 

energy is :  
𝜕𝐻

𝜕𝑡
− div(𝜆(𝑇)∇𝑇) = 0 ∀(𝑥, 𝑦, 𝑧) ∈ Ω ∀𝑡 ∈ [0, 𝑡𝑓] 

with enthalpy 𝐻(𝑇) = ∫ 𝜌𝐶𝑝(𝑢)𝑑𝑢
𝑇

𝑇0
 interpreted as the 

heat energy of a material at a given temperature, 𝜌 is the 

mass density, 𝐶𝑝 is the specific heat. 

Considering the symmetry of the metal sheet, half of the 

domain is studied. On the symmetry surface 𝛤sym, 

adiabatic heat exchange is imposed. On the surfaces 

regions in contact with air, convective and radiative 

boundary conditions are imposed. On the clamped 

surfaces, the thermal contact is modelled similarly to a 

convective boundary condition with higher convective 

coefficient comparing with the convective coefficient 

with air. 

The heat input is modeled as a double elliptical 

equivalent heat source represented in Figure 4. The 

energy density is distributed into two semi-elliptical 

regions, following a normal distribution. 

 
Fig. 4. Equivalent heat source representation with the 

mathematical description: 
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𝑞𝑓 is the front heat source function distribution and 𝑞𝑟 

the rear function distribution. With η the efficiency 

taking account of energy loses. This mathematical 

representation considers the effective heat absorption, 

where the equivalent heat source is influenced by 

process parameters such as voltage U, current I, and 

welding speed V. 

 

Given these modeling considerations, unknown 

parameters require estimation for good representation of 

physical reality. The unknown parameters include the 

efficiency η, geometrical dimensions of the equivalent 

heat source (𝑎𝑓,α, β), and the thermal conductivity 

multiplier cc within the melted region. 

2.3 Thermal field prediction methodology  

The global methodology for thermal field reconstruction 

given welding parameters and knowing observed 

welding pool is presented in this section. The 

methodology is derived into two main steps, the first 

step is the estimation of the unknown heat source 

parameters, the second step consists in reconstructing 

the thermal field considering the estimated unknown 

parameters. The following diagram in figure 5 shows the 

global methodology.  

 
Fig. 5. Diagram methodology. Unknown parameter 

estimation/thermal field reconstruction  

In the previous sections we presented the experimental 

setup and thermal modeling description. Thermal 

modeling considers unknown parameters that have to be 

estimated. A design of experiments is employed to 

investigate space of unknown modeling parameters. 

Sobol quasi-random sequence is used to generate a set 

of 128 sample points, ensuring an uniform distribution 

across the parameters space. Each sample point 

represents a unique combination of parameters values. 

For each of these combinations, a finite element analysis 

(FEA) simulation is performed.  

 

In one hand, weld pool contours from these simulations 

are extracted, providing a dataset that links the input 

parameters to the observed weld pool characteristics. 

This dataset is used to train a surrogate model, a machine 

learning model that approximates the relationship 

between the input parameters and the weld pool 

morphology. The trained surrogate model is then used 
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in an optimization algorithm to estimate the unknown 

parameters. The optimization problem is formulated as 

finding the set of parameters that minimizes the 

discrepancy between the predicted weld pool 

morphology from the surrogate model and the actual 

weld pool morphology observed in experiments. This is 

achieved by minimizing a cost function that quantifies 

this discrepancy. The optimum set of parameters 

resulting from inverse problem solution is given by: 

𝜃𝑜𝑝𝑡 = [𝑎𝑓 = 2.6𝑚𝑚, 𝛼 = 4.1, 𝛽 = 2, 𝜂 = 0.8, 𝑐𝑐 = 1] (1) 

 

 
Fig. 6. Weld pool contour comparison between the 

experimental and numerical ones with estimated parameters. 

As shown in figure 6, the weld pool resulting from 

estimated modelling parameters is in a good agreement 

with the experimental weld pool. 

 

Concurrently, the estimated unknown parameters, 

which best fit the experimental data, are leveraged to 

predict the thermal field. This prediction traditionally 

involves solving conservation equations using 

numerical methods like finite element analysis. 

However, in this study, we exploit the dataset generated 

for the surrogate model to train a thermal field predictor. 

The K-Nearest Neighbors (K-NN) regression model is 

employed for this purpose, predicting temperature 

values at each node based on the estimated parameters. 

K-NN prediction involves calculating the distance 

between a new data point and existing training data 

points using a chosen distance metric (e.g., Euclidean or 

Manhattan distance). The predicted temperature value is 

then determined by averaging the values of its 'K' 

nearest neighbors. This approach enables the direct 

reconstruction of the thermal field from the estimated 

parameters, without requiring the explicit solution of 

complex equations. 

 

Let’s denote our training dataset as ሼ𝜃𝑖 , 𝑇𝑖ሽ, with 𝜃𝑖 the 

unknown parameters, 𝑇𝑖 the corresponding thermal field 

results from Finite elements calculation. Reconstructing 

the thermal field results for an unseen data point, derived 

from the solution of the inverse problem (1), is 

formulated as follows: 

1. Compute the distances between 𝜃𝑜𝑝𝑡 and all the 

training samples 𝜃𝑖 given a metric norm. The 

following formulas introduces some common 

norms to calculate distances: 
Manhattan distance: 𝑑𝐿1

(𝑝, 𝑞) = ∑ ∣ 𝑞𝑖 − 𝑝𝑖 ∣𝑛
𝑖=1  

Euclidian distance: 𝑑𝐿2
(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛

𝑖=1  

2. Identify the set of K training samples that are closest 

to 𝜃𝑜𝑝𝑡. 

3. The K-NN regressor function would average the 

corresponding thermal fields of the nearest K 

neighbors. 

There are different ways to calculate the averages in K-

NN regression. The most common method involves 

calculating the average of the output neighbors. The 

average is expressed as follows: 

𝑇(𝜃𝑜𝑝𝑡) = 𝐾𝑁𝑁(𝜃𝑜𝑝𝑡) =
1

𝐾
∑ 𝑇𝑖

𝐾

𝑖=1

 

Another method calculates a weighted sum based on the 

distances between 𝜃𝑜𝑝𝑡 and the samples training set. 

This method assigns more weights to the closest 

neighbors, with the prediction formulated as: 

𝑇(𝜃𝑜𝑝𝑡) = 𝐾𝑁𝑁(𝜃𝑜𝑝𝑡) =

∑
1

𝑑(𝜃𝑜𝑝𝑡, 𝜃𝑖)
𝑇𝑖

𝐾
𝑖=1

∑
1

𝑑(𝜃𝑜𝑝𝑡 , 𝜃𝑖)
𝐾
𝑖=1

 

2.4 K-Nearest Neighbors hyperparameters 
selection 

The selection of the number of nearest neighbors, the 

ranking of these neighbors, and the use of normal or 

weighted averages are all aspects of hyperparameter 

tuning. This tuning is performed using a search grid 

methodology, which involves varying the model's 

hyperparameters to identify the combination that yields 

the best performance. Performance is quantified by 

calculating the dissimilarities between the model-

predicted thermal field and the expected thermal field 

from the validation dataset. Several metrics can be used 

to measure dissimilarity, including maximum error, 

explained variance, mean absolute error, and mean 

squared error.  

3 Results and discussion 

We present the cross-validation results for different 

hyperparameters of the K-NN model using Leave-One-

Out Cross-Validation (LOOCV), which is particularly 

useful for small datasets. In LOOCV, each sample is 

used once as a validation point, with the process 

repeated until every sample has served as the validation 

point. The number of iterations equals the number of 

samples in the dataset. The performance metrics 

obtained from each iteration are then analyzed and 

aggregated to evaluate the model's overall performance 

and robustness under varying hyperparameters. These 

aggregated results are typically visualized using a box 

plot, where each box represents the distribution of 

performance metrics across all LOOCV iterations. 



 
Fig. 7. Ranked Comparison of K-NN Hyperparameters by 

Mean Absolute Error. (Distance metric: {M: Manhatan, E: 

Euclidian}, number of neighbors: {k}, sum: {D: Distance 

(weighted sum), U: Uniform (mean)}. 

Figure 7 shows the mean absolute error distribution for 

the cross-validation results. For thermal field 

dissimilarity sensing, the mean absolute error metric 

reflects the average temperature error over all mesh 

nodes and time steps. Considering this metric, the best-

performing K-NN model is achieved with the 

hyperparameters: Manhattan distance, 5 nearest 

neighbors, and distance-weighted summation. 

 

Further analysis concerning model hyperparameters 

selection considering different metric is presented in the 

following figure 8. 

 
Fig. 8. Ranked Comparison of K-NN Hyperparameters by 

Maximum Absolute Error Outside Melting Pool Region.  

This criterion was chosen because it is still impossible 

to get the temperature field inside the weld pool 

experimentally. Furthermore, we aim to use the 

reconstructed temperature field for thermal-mechanical 

analysis. Indeed, it is well known that above the melting 

point, mechanical plastic strains are cancelled out. 

Given this metric, the ranking of the best K-NN model 

hyperparameters differs from that based on mean 

absolute error. The optimal K-NN hyperparameters that 

minimize this error criterion are listed at the top of the 

ranking shown in the figure, corresponding to the 

Euclidean distance metric, 4 nearest neighbors, and 

distance-weighted summation. 

However, mean maximum error over Cross-Validation 

(CV) iterations does not fully capture the model's 

performance consistency. A model may perform well in 

some iterations but poorly in others. The worst 

performance recorded for the K-NN model over all CV 

iterations was 656.7 °C, while the best performance 

recorded was 31.3 °C. 

We present the comparison of accuracy and 

computational time efficiency between the traditional 

finite element analysis (Figure 9) and the thermal field 

reconstruction results generated by our K-NN model 

(Figure 10). 

 
Fig. 9. Thermal field last step resulting from finite elements 

analysis. 

Thermal field reconstruction with K-NN model given 

the estimated heat source parameters is well represented 

as shown in figure 10. 

 
Fig. 10. Predicted thermal field by K-NN regression model. 

The computational time required for thermal field 

prediction using our K-NN regression model was 

approximately 3.4 seconds. In contrast, traditional finite 

element analysis took about 12 minutes and 27 seconds, 

making the K-NN approach approximately 220 times 

faster. 

 

To assess prediction accuracy, we compared the thermal 

field results from finite element analysis with those 

predicted by our K-NN model. Our analysis reveals that 

the maximum error predominantly occurs within the 

melt pool region, as shown in Figure 11. Outside this 

area, the highest error observed locally near the molten 

region is 201.6°C. 

 

 
Fig. 11. Absolute difference error between FEM field and K-

NN predicted field. 



4 Conclusions 

This paper introduces a data-driven machine learning 

approach to predict thermal fields in tungsten inert gas 

welding applications given a non-intrusive non-

destructive camera using surrogate models. Specifically, 

unknown parameters heat source estimation achieved 

through optimization framework involving surrogate 

model, then we applied the K-nearest neighbors (K-NN) 

regression algorithm and evaluated its performance by 

varying hyperparameters such as the choice of distance 

metric, the number of neighbors, and weighting 

schemes. We compared two metrics, and the results 

demonstrated that the best model depends on the chosen 

metric. The optimal K-NN model, identified through our 

hyperparameter search, showcases satisfactory 

computational performance, predicting thermal fields 

200 times faster than the Finite Element Method. While 

the thermal field prediction outside the melting pool 

region is relatively well-represented, meanwhile the 

maximum absolute error can reach up to 200°C. The 

effectiveness and consistency of K-NN is limited by the 

curse of dimensionality, where higher-dimensional 

input spaces necessitate larger sample sizes to 

adequately cover parameter variations [9]. 

Looking ahead, our study reflects on existing 

methodologies in the literature that have achieved 

superior thermal field prediction. Notably, model order 

reduction techniques have been successful in mitigating 

the curse of dimensionality [10]. Additionally, we 

suggest enhancing thermal field prediction models by 

incorporating energy conservation laws. In this context, 

the selection of the best estimator based on various 

metrics (e.g., maximum error, explained variance, mean 

absolute error, mean squared error) significantly 

impacts the global field prediction accuracy. 

To address these challenges, integrating physics 

conservation laws into predictive modeling—referred to 

as Physics-Constrained Surrogate Models [11] or 

physics-informed machine learning [12,13]—offers a 

rigorous mathematical framework to validate predicted 

thermal fields. This approach aligns with advancements 

in the literature aimed at leveraging physics principles 

to enhance the accuracy and robustness of predictive 

models for physics-based quantities of interest. 
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