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Résumé. Nous considérons un problème d’estimation du temps de rechute dans des Pro-
cessus de Markov Déterministes par Morceaux (PDMP) dont la composante euclidienne est
un biomarqueur de substitution pour l’état de patients atteints de myélome. L’une des prin-
cipales difficultés du problème réside dans le fait que notre processus n’est que partiellement
observé, ce que peu de travaux ont pris en compte jusqu’à présent. Nous proposons une
méthode basée sur de la régression itérative pour estimer les paramètres d’un PDMP observé
en temps discret et avec du bruit. Nous évaluons les performances de notre procédure à
travers une étude de simulation et discutons des limites de notre approche.

Mots-clés. Processus de Markov Déterministes par Morceaux, Temps de rechute, Obser-
vations partielles, Survie

Abstract. We consider a problem of relapse time estimation in Piecewise Deterministic
Markov Processes (PDMPs) whose Euclidean component is a proxy biomarker for the status
of myeloma patients. One of the main difficulties of the problem lies in the fact that our
process is only partially observed, which few works have considered until now. We provide
a method based on iterative regression for estimating the parameters of a PDMP observed
in discrete time and through noise. We assess the performances of our procedure through a
simulation study and discuss the limitations of our approach.

Keywords. Piecewise Deterministic Markov Processes, Relapse time, Partial observa-
tions, Survival

1 Introduction

When monitoring patients suffering from a disease, it is common to measure the level of a specific biomarker
as an indicator of the pathological process or the action of a treatment. The biomarker may evolve in a
deterministic manner during different phases of the disease and be disrupted by random jumps that indicate
a change in the patient’s condition. In this work, we propose to model this behaviour through Piecewise
Deterministic Markov Processes (PDMPs) (Davis, 1984) in the case of patients followed after developing
myeloma. Our aim is to estimate patients’ relapse time, or survival time, based on their biomarker levels
measured during follow-up visits. One of the difficulties of the problem lies in the fact that our observations
are noisy and only partially observed: we have a measurement of a biomarker at discrete visit dates, but
its true value at and between dates is unknown. Such frameworks are considered e.g. in (Cleynen and
de Saporta, 2018) where the authors propose a numerical scheme to approximate the value function of a
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change-point detection problem for a partially observed PDMP in discrete time and through noise. In this
paper, we focus on relapse time estimation. We develop an estimation procedure to recover the parameters
of our model and evaluate its performance through a simulation study. We discuss the impact of parameter
estimation errors on the overall relapse time estimation.

2 The model

2.1 PDMPs

Piecewise Deterministic Markov Processes (PDMPs) introduced by Davis in the 80’s are a general class of
stochastic processes, including almost all non-diffusion models found in applied probability (Davis, 1984).
These continuous-time processes are used to describe deterministic motions punctuated by random jumps.

Let (Xt)t≥0 be a PDMP defined on a state space E ⊂ Rd. The trajectories of (Xt)t≥0 are determined by
the behavior of the process between jumps, as well as when and where the jumps occur. These aspects are
described by a flow Φ, a jump intensity λ and a Markov kernel Q, respectively. The flow Φ: E × R+ → E
is a continuous function satisfying the semi-group property: ∀x ∈ E, ∀t, s ∈ R+, Φ(x, t+ s) = Φ(Φ(x, t), s).
Starting from x ∈ E, Φ(x, t) gives the position of the process after some time t if no jump has occurred (see
Figure 1).

t

s

x Φ(x, t)
Φ(x, t+ s) = Φ(Φ(x, t), s)

Figure 1 – Starting from x at time 0, the process follows its flow up to time t and ends up at Φ(x, t), assuming
no jump has occurred. Going on up to time t+ s is the same as starting from Φ(x, t) and following the flow
for a time s.

The process can jump deterministically or randomly. Deterministic jumps occur when the flow reaches the
boundary ∂E of E. Given a starting point x ∈ E, this happens after a time t∗(x) = inf {t > 0: Φ(x, t) ∈ ∂E}.
Random jumps are governed by the jump intensity λ : E → R+ — also known as the hazard rate — which
is a measurable function such that ∀x ∈ E, ∃ε > 0:

∫ ε

0
λ(Φ(x, s))ds < ∞. That is, jumps cannot occur

instantaneously (and therefore there cannot be several jumps at the same time). The jump times of a PDMP
are obtained by taking the minimum between deterministic jumps and stochastic ones. Given a starting
point x0 ∈ E, for all t ∈ R+, the first jump time T1 satisfies

PX0=x0
(T1 > t) =

{
PX0=x0

(T1 > t) = e−
∫ t
0
λ(Φ(x0,s))ds if t < t∗(x0)

0 if t ≥ t∗(x0)
. (1)

For both deterministic and random jumps, the new location of the PDMP is drawn from the Markov
kernel Q : Ē × B(Ē) → E, where B(Ē) is the set of Borels of Ē. When the process starts from x ∈ Ē, we
have that ∀A ∈ B(Ē), Q(x,A) = P(XT1

∈ A | XT−
1

= x), where T−
1 denotes the time just before the first

jump. For Q to be a Markov kernel, we need x 7→ Q(x,A) to be measurable ∀A ∈ B(Ē) and A 7→ Q(x,A) to
be a probability density function ∀x ∈ Ē. The Markov kernel Q satisfies P(Xt = x | Xt− = x) = 0,∀t ∈ R+.
In other words, each jump must involve a real change of location.

It is common practice to separate the state space E into a hybrid one made up of a discrete component
and a continuous one, such that Xt = (mt, ζt) ∈ E ⊂M ×Rd, where mt corresponds to a discrete mode and
ζt to a continuous variable. Furthermore, the state space can be specific to each mode: ∀m ∈M, Em ⊂ Rdm .
The mode-specific flow Φm is such that ∀m ∈M, Φm : Em × R+ → Em and Φ((m, ζ), t) = (m,Φm(ζ, t)).
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2.2 Our model

We consider subjects undergoing medical follow-up after developing myeloma. During medical visits, their
serum-M protein levels, a proxy for the progression of their disease, are measured. At the start of monitoring
they are administered a treatment, the effect of which is to reduce the serum-M protein level exponentially.
If the level falls below a certain fixed threshold ζ0, the patient is considered to be in remission. In the event of
a relapse, the serum level rises again exponentially. The horizon H of follow-up is different for each patient.
We now link the notations introduced in 2.1 with our specific model. There are three possible modes for the
subjects in the study. They can either be sick under treatment (m = −1), sick without treatment (m = 1)
or in remission (m = 0) — for simplicity, we assume that the process characteristics in remission mode are
the same with or without treatment and do not differentiate the two cases. We thus have M = {−1, 0, 1}
and E−1 = ]ζ0,+∞[, E0 = {ζ0} × R+ and E1 = [ζ0,+∞[. In mode m = 0, a time variable u ∈ R+ is added
to the state space to allow more flexibility in the jump intensity while ensuring the Markov property holds.
Under treatment, the serum spike decreases exponentially with a slope v−1 < 0. During relapse, it increases
exponentially with a slope v1 > 0. For all ζ ∈ R and for all u, t ∈ R+ we have


Φ−1(ζ, t) = ζev−1t,

Φ0(ζ, t, u) = ζ = ζ0,

Φ1(ζ, t) = ζev1t.

(2)

In mode m = −1, the jump occurs when the subject reaches the fixed remission threshold ζ0. This is
therefore a deterministic jump at the boundary and λ−1(ζ) = 0. The jump time t∗−1(ζ) is the solution of

Φ−1(ζ, t) = ζ0. That is, t∗−1(ζ) = 1
v−1

log( ζ0ζ ). With the additional time variable in mode m = 0, we have

Φ0((ζ0, u, t), t) = (ζ0, u+ t) and t∗0(ζ, u) = +∞. The jump intensity λ0 > 0 is unknown. For practical reasons
explained in Section 4, we decide to approximate it with a Weibull distribution. In our model, we consider
that once the process reached mode m = 1, no more jump can occur.

For the mode-specific Markov kernels, we have

{
Q−1(m

′, ζ ′, u′ | ζ) = 1ζ=ζ0 × 1ζ′=ζ0 × 1m′=0 × 1u′=0

Q0(m
′, ζ ′ | ζ, u) = 1ζ=ζ0=ζ′ × 1m′=1

(3)

3 Real data

Our data comes from a study carried out by the Inter-Groupe Francophone du Myélome (IFM) in 2009.
The author consider the effect of lenalidomide, bortezomib and dexamethasone (RVD) therapy alone versus
RVD therapy plus autologous stem cell transplantation on disease progression (Attal et al., 2017). About 700
patients with newly diagnosed myeloma were randomly divided into two groups and followed up after receiving
their respective therapy. Their serum M-protein levels were measured at different frequencies depending on
the phase of the trial. Patients may remain in remission, suffer a relapse or leave the study for various reasons.
The length of follow-up therefore varies from one individual to another. In this work, we are interested in
estimating the relapse time of patients. For the time being, for the sake of simplicity we do not take into
account the difference between patient groups, nor any other covariate, and we consider relapse times in a
general way. The raw data had been preprocessed to remove observations unsuitable for model fitting. The
detailed preprocessing procedure is given in Appendix A. The post-processed dataset consists of 479 serum
M protein peak trajectories over time.

3



4 Estimating model parameters

In this section, we explain the estimation procedure for the parameters of our model based on the data.
This involves first estimating the process jump times, and then finding the parameters of the relapse time
distribution. Note that our observations here are not in continuous time, so the jump times are hidden (see
Figure 2). In what follows, we let t0 := T1 the time of the first jump, from mode m = −1 to mode m = 0
and T0 := T2 the second jump, if any, from mode m = 0 to mode m = 1.

4.1 Jump time estimation

Our estimation method for t0 and T0 is an iterative optimisation process based on regression. It is illustrated
in Figure 2. Let (Xt)t≥0 be a PDMP as defined in 2.2 and let (Xk)k∈N = (Xdk

)k∈N be the process at the
observation dates (dk)k∈N that generates our trajectories. The observations are defined as Yk = F (Xk)e

εk ,
where εk ∼ N (0, σ2) is a Gaussian noise and where F : E → R+ is a function that returns the second
component of the PDMP. Hence, Yk = ζke

εk . We use a multiplicative noise both to match the exponential
growth and decay of biomarker level and to simplify the estimation procedure described hereafter. We start
with the estimation of t0. Let y0, y1, . . . , yj be the first j values of an N -length trajectory of M-protein levels
recorded at dates d0, d1, . . . dj , respectively. The biomarker level has an exponential form, so we use least
squares to fit a linear function f : x 7→ ax+ b to the logarithm of our data, where a∗ = v̂−1 and eb

∗
= x̂0 are

the optimal solutions of the problem. We use a logarithmic transformation to prevent errors at the beginning
of the trajectory from having too much weight on the overall error.

We then estimate t0 as the solution for t of x̂0e
v̂−1t = ζ0 (see Figure 2). This gives us an approximation

of the jump time from m = −1 to m = 0 and we compute a general regression error as the sum of two
errors: one between the points falling before t̂0 and the fitted curve, and the other on the remaining part of
the trajectory. Note that all the above estimates depend on j, which is omitted for clarity. This process is
repeated for j ∈ {3, . . . , N} until a stopping criterion is met. This results in optimal estimates for the entry
time into remission t0 and the slope v−1 in mode m = −1. Note that v̂−1 is only used to estimate t0 and
will not be used to estimate the relapse time afterwards. Details of the estimation procedure can be found
in Algorithm 1.

We can then use the same process again on the remaining part of the trajectory1 — that is, on (yk)k=t̂0,...,N

— to obtain T̂0 and v̂1. It is important to note that if the trajectory is very flat, it is not relevant to look
for a jump time, plus the algorithmic minimization could fail due to numerical instability. In such cases, we
assume that no change in mode occurred. This happens mainly when subjects do not relapse within their
follow up time. They are considered ”censored subjects” and are discussed hereafter.

1 From a computational point of view, if kt̂0 is the index of time t̂0 in the vector d ∈ RN of visit dates associated with the
trajectory, we apply Algorithm 1 with dk

t̂0
:N in reverse order of its elements as vector of visit dates. Same for the corresponding

vector of spikes.

4



Algorithm 1: Jump time estimation

input: d ∈ RN vector of visit dates, y ∈ RN vector of spikes at visit dates, ζ0 ∈ R theoretical
threshold for remission mode

init: ∆tmp = ∆min =∞
for j = 3, . . . , N do

dtmp = d0:j //slicing of the first j coordinates of d

ytmp = y0:j
find â and b̂ optimal solutions when fitting f : x 7→ ax+ b to log(ytmp) using least squares

t0tmp = (log(ζ̂0))− log(̂b)/â //solve b̂etâ = ζ0 for t

k = |i : di ≤ t0tmp|
n1 = ∥y0:⌊k⌋ − b̂e−d0:⌊k⌋×â∥22 //error between the first ⌊k⌋ points and the fitted curve

n2 = ∥y⌊j⌋+1:N − ζ0∥22 //error on the remaining part of the trajectory

∆ = ∆tmp

∆tmp = n1 + n2

if ∆tmp ≤ ∆min AND t0tmp > 0 then
t0 = t0tmp

∆min = ∆tmp

a∗ = â
b∗ = b̂

if ∆tmp > ∆ AND t0 > 0 AND j > 15 then break
return t0, a

∗, b∗

t0 T0

ζ0

x0

mt = −1 mt = 0 mt = 1

ζte
v−1t

ζte
v1t

t

ζt

Figure 2 – Illustration of the estimation process. The true PDMP starts in mode m = −1 from an initial
point x0 and follows a deterministic trajectory along its flow unit the first jump occurs at time t0. The mode
changes to become m = 0 and the flow equals ζ0 until a new jump occurs at time T0. The mode switches
to m = 1 and the trajectory rises exponentially along Φ1(ζ, t). The black crosses represents the observations
and we seek to recover the model parameters.
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4.2 Survival time before relapse

Having calculated t̂0 and T̂0 for every trajectory, we now have access to the survival times of subjects. That
is, the number of days between the remission start and the beginning of the relapse, if any, or the follow up
time otherwise. Following the terms of survival analysis, an event is defined as the occurrence of a relapse.
A patient is considered censored if no event has occurred until the end of its follow up. The survival function
S(t) = P(T0 − t0 > t) gives us the probability that a patient remain in remission beyond a time t after
remission entry, and we seek to recover its parameters. We assume that the hazard rate — the event rate at
time t conditional on survival up to time t or later — increases with time. This leads us to choose a Weibull
distribution to model our relapse time, as is conventionally done in such cases in survival analysis. We will
see in Section 5 that this assumption is quite reasonable. The probability density function of the Weibull
distribution is given by

f(x) =

(
α

β

)(
x

β

)α−1

e−(
x
β )

α

, (4)

for x > 0 and where α is a shape parameter and β is a scale parameter. Its hazard function is

h(x) =

(
α

β

)(
x

β

)α−1

. (5)

Note that a shape parameter α < 1 (resp. α > 1) means that the failure rate decreases (resp. increases)
over time. If α = 1, this rate is constant. To estimate the parameters of the Weibull distribution, we fit a
parametric survival regression model with the survival time as a response variable together with an censoring
indicator. This gives us the estimations α̂ and β̂ of the shape and scale parameters, respectively.

5 Simulation study

In this section, we assess the performances of the estimation procedure described in Section 4 on simulated
data. The trajectories are generated from the model presented in 2.2. We compare the estimates with the
ground-truth and discuss the impact of jump times errors on relapse time estimation. The parametric survival
regressions are performed with the R survival package (Therneau, 2023).

5.1 Simulation process

We use Algorithm 2 to simulate patient trajectories. The input parameters are chosen as follows. When
patients enter the clinical trial, they can have a serum M-protein level anywhere between a remission threshold
and some upper threshold with equiprobability. This leads us to opt for a uniform distribution to generate
the first point x0 = ζt=0 of a trajectory. Similarly, patients follow-up may end at any time within a certain
date range since they did not enter the study at the same time. We thus choose H uniformly distributed as
well. Based on real data analysis, we pick l0 = 15, u0 = 55 and lH = 900, uH = 1900 as lower and upper
bounds for ζt=0 and H, respectively. To select the model parameters α, β, v−1 and v1 for the simulation,
we apply the estimation procedure on our real data. We take v−1 to be the average of all the estimated
slopes in mode m = −1. The same is done for v1 but only considering trajectories for which a relapse is
predicted. This gives us v−1 = −0.046 and v1 = 0.012. The parametric survival regression gives α̂ = 4.69

and β̂ = 1650 which we choose as our α and β inputs. Note that α̂ > 1, which is consistent with the fact that
the risk of a relapse increases over time. Figure 3 shows the fitted survival curve and the overlapping Weibull
survival function plotted with α̂ and β̂. The Weibull distribution seems to fit the data fairly well, although
its survival curve is slightly shifted compared to the survival curve adjusted on the data. Both the shape
and the scale estimates are obtained with significant p-values (2× 10−16). On clinical trials, visit frequency
often varies during follow-up depending on the stage of the study and the patient status. For the sake of
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simplicity, we only consider fixed time intervals δ ∈ N between visits. However, we study several different
values for δ to assess the impact of visit frequency on estimation errors. Finding an optimal frequency is an
important point: visits must be frequent enough to detect a relapse as early as possible, while avoiding a
burdensome and restrictive monitoring for patients. We consider values of δ in {10, 20, 30, 40, 50, 60}. The
remission threshold ζ0 is set to 1 according to medical criteria. For practical reasons, we use additive noise to
simulate our data, although we have assumed in 4.1 that the noise is multiplicative. This provides trajectories
that more closely resemble those of the real data. We set the standard deviation σ to 1.

Algorithm 2: Simulation of one trajectory from a PDMP

input: l0, u0 ∈ R, lH , uH ∈ R, lower and upper bounds for starting point and follow up time
distribution, α, β ∈ R shape and scale parameters for the Weibull distribution, v−1, v1 ∈ R
slopes for mode m = −1 and m = 1, δ ∈ N number of days between two visit dates, ζ0 ∈ R
theoretical threshold for remission mode

init: ζt=0 ∼ U[l0,u0], H ∼ U[lH ,uH ]

t0 ← (log(ζ0)− log(ζt=0))/v−1 ; w ∼ W(α, β)
T0 ← w + t0 ; c← 1{H≤T0} //c censoring indicator

δend ← ⌊H/δ⌋ //last visit date

for k = 0, . . . , δend do
dk ← kδ //visit dates at regular time intervals until H

mk ← −1{dk<t0} + 1{dk>T0}1{c}
if mk = −1 then

ζk ← Φ−1(ζ0, dk)
else if mk = 0 then

ζk ← ζ0
else

ζk ← Φ1(ζ0, dk − T0)
yk = ζk +N (0, σ2)

return y = (yk)k

Figure 3 – Survival curve fitted on real data and 95% confidence interval. Crosses signify censored events.
The black dashed line shows the Weibull survival function with parameters estimated from survival regression.
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5.2 Results

We evaluate our method through 100 repetitions of 500 PDMP trajectories.

Figure 4 presents the distributions of absolute errors on t̂0 and T̂0 depending on visit frequency. Un-
surprisingly, with longer time intervals between visits, the mean error and the variability increase for both
jump times. For δ ≤ 30, the mean error on t̂0 is less that the one on T̂0, whereas the opposite occurs for
larger values of δ. Note that for δ = 60, the average number of days of error is approximately equal to the
time interval itself: the estimate T̂0 is one visit apart from the actual jump time T0. As a complement to
Figure 4, Table 1 presents the mean number days of error on relapse time estimation |(T0 − t0)− (T̂0 − t̂0)|
depending on visit frequency. One can see that the errors on t̂0 and T̂0 do not compensate: roughly speaking,
the mean error on relapse time estimation is the sum of the two, especially for larger values of δ. Figure 5
shows the distributions of relative errors on Weibull shape and scale parameter estimates. The average error
on the scale parameter β increases with the time between visits. This is fairly consistent with the results
in Table 1, since the increase in δ degrades the estimate of relapse time and spreads out its distribution,
leading to a less accurate estimation. Conversely, the average relative error on α̂ decreases with δ, but this
behaviour is less clear to us to interpret. However, it can be said that a compromise needs to be found on the
frequency of visits for the estimation of the distribution parameters. The curves of the probability density
functions of the Weibull distributions obtained with the mean estimates are shown in Figure 6, together with
the ground-truth density used to simulate the trajectories. The modes of the distributions are closer to the
true mode for smaller values of δ. However, the estimated distributions are less spread out than the true one,
whatever the visit frequency. On the whole, we tend to underestimate the relapse time. Note however that
of all the trajectories simulated, about 66% were censored, which adds a significant difficulty to the problem.
Table 2 provides the average proportions of false censoring and false relapse predictions. A false censoring
occurs when the T0 estimates falls after the time horizon H. Such errors tend to appear more often as the
visit frequency decreases: the longer we wait before checking a patient again, the more likely we are to miss
a relapse. Our estimation procedure never predicts a relapse when there is none. This is probably due to the
low noise level we have chosen for the simulations, and it would be interesting to consider noisier trajectories
to see if this behaviour is maintained.

Figure 4 – Boxplots of absolute number of days of error on estimated jump times t̂0 and T̂0 over 100
repetitions with 500 trajectory samples, depending on visit frequency (in days). The distributions are only
calculated on trajectories for which relapse occurred and is correctly predicted.
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Visit frequency |(T0 − t0)− (T̂0 − t̂0)|
10 10.745± 1.156
20 16.494± 1.738
30 24.429± 2.931
40 38.650± 4.552
50 62.341± 6.471
60 86.816± 5.793

Table 1 – Average absolute number of days er-
ror and standard deviation on estimated survival
times over 100 repetitions with 500 trajectory
samples, depending on visit frequency. The mean
is only calculated on trajectories for which relapse
occurred and is correctly predicted. Values are
rounded to the nearest 10−3.

Visit frequency False censoring False relapse

10 0.092 0.0
20 0.096 0.0
30 0.101 0.0
40 0.109 0.0
50 0.124 0.0
60 0.144 0.0

Table 2 – Average proportion of false censor-
ing and false relapse prediction over 100 repeti-
tions with 500 trajectory samples, depending on
visit frequency. Values are rounded to the near-
est 10−3.

(a) (b)

Figure 5 – Boxplots of relative error on Weibull (a) shape and (b) scale parameter estimates over 100
repetitions with 500 trajectory samples, depending on visit frequency (in days).

6 Conclusion and further work

We have presented a proof of concept for the estimation of relapse time in PDMPs with noisy and partially
observed trajectories. The results are encouraging, but there is still considerable room for improvement. For
the moment, we have only considered a simplistic simulation framework and it would seem appropriate to
choose the initial parameters differently and to control the censoring rate. We have chosen to fully exploit
the assumptions of our model. It would be interesting to see what happens if one or more of them are no
longer verified. What would happen if our noise were additive rather than multiplicative? Or if the growth
and decay of the process were not exponential? We could also consider the case where the slopes are no
longer fixed but chosen at random. Finally, it would be interesting to compare our estimation procedure
with methods for which no or almost no assumptions about the model are required, such as moving average
methods or hidden Markov models. This comparison is planned as future work.
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A Preprocessing real data

The raw data had been preprocessed to remove observations unsuitable for model fitting. Apart from obser-
vations for which the quantity of interest is missing or incomplete, the following data have been deleted, in
this order:

1. first observations whose spike is lower than that of the second; the process is repeated iteratively until
the first spike is higher than the next one

2. trajectories whose first spike is lower than a threshold of 5µg/L (value at which the level is considered
negligible)

3. trajectories with less than two spikes below 5µg/L: we assume that the associated subjects never
reached remission

4. observations with spike equalling 0µg/L surrounded by spikes above 5µg/L: we assume these correspond
to insignificant isolated zeros

5. trajectories with less than 10 visits.
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