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ABSTRACT  23 

Platinum-yttrium alloys are considered promising candidates to satisfy the challenging 24 

requirements for the cathodic oxygen reduction reaction (ORR) in proton exchange membrane 25 

fuel cells (PEMFCs). Nevertheless, the practical structure-activity-stability trends of these 26 

electrocatalysts in the form of carbon-supported nanostructures are poorly understood, especially 27 

under the operating conditions. Herein, carbon-supported PtxY nanoalloys were explored during 28 

the electrochemical ORR environment, following the atomic-scale degradation steps that the 29 

nanoalloys experience during operation. Our results reveal that PtxY/C nanoalloys undergo 30 

considerable structural modification during the early stage of electrochemical cycling. Moreover, 31 

operando techniques identify that, during accelerated stress testing under O2 atmosphere, the 32 

majority of nanoalloy degradation occurs during the initial 1,000 electrochemical cycles, and is 33 

accompanied by a diminished ORR performance. The observed operando structure-activity-34 

stability trends guide further optimization routes for carbon-supported Pt-Y nanoalloys as 35 

PEMFC cathode electrocatalysts.   36 

 37 

 38 

 39 

 40 

 41 

 42 
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1. INTRODUCTION 43 

Current decarbonization targets are priority in our society, and proton-exchange membrane fuel 44 

cells (PEMFCs) have gained attention as energy conversion devices that can contribute 45 

importantly to fulfilling these objectives.
1
 Nevertheless, their massive production and 46 

commercialization are still hindered by technical barriers that need to be overcome, including  47 

performance, durability, cost and fuel efficiency,
2, 3

 and one particular bottleneck is the 48 

electrocatalyst activity and long term durability for the sluggish oxygen reduction reaction 49 

(ORR). A well-known approach to enhance the ORR electrocatalytic activity is by alloying Pt 50 

with late transition metals (usually Ni, Co, Fe, Cu, etc), which also decreases simultaneously the 51 

amount of Pt and, therefore, the cost.
4
 The long-term stability of Pt-based nanoalloys during the 52 

ORR, however, represents a crucial issue that must be tackled.
5-7

  53 

Since their introduction as ORR electrocatalysts in 2009,
8
 platinum-yttrium (Pt-Y) alloys have 54 

been considered as promising candidates to satisfy the demanding ORR requirements from their 55 

predicted high activity and long-term stability. Pioneering theoretical studies
8
 concluded that the 56 

exceptionally high negative alloy formation energy (-1.02 eV/atom for Pt3Y)
9
 represents a partial 57 

thermodynamic barrier for yttrium diffusion through the alloy lattice, which should provide high 58 

electrochemical stability. Further research on bulk sputter-cleaned Pt3Y polycrystalline 59 

electrodes
8, 10, 11

 and unsupported PtxY nanoparticles (NPs)
12

 revealed that the high 60 

electrocatalytic activity of these alloys stems from the formation of a specific structure, in which 61 

the Pt-Y alloy is protected by a thin Pt-rich overlayer, which induces a lateral compressive strain 62 

in the Pt-rich shell.
13

 Indeed, the surface specific ORR activity showed an exponential 63 

dependence on the degree of ex situ measured compressive strain of the Pt-rich shell.
12

 In the 64 

particular case of unsupported PtxY NPs, a particle size dependency was also identified, and an 65 
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outstanding ORR mass activity of 3.05 A mgPt
-1 

was obtained for NPs of ca. 9 nm.
12

 66 

Nevertheless, after the applied accelerated stress test (AST), which consisted of 9,000 potential 67 

cycles from 0.6 to 1.0 VRHE (triangular potential wave at 100 mV s
-1

) in O2-saturated 0.1 M 68 

HClO4, the unsupported PtxY NPs lost ca. 64 % of their initial mass activity. 69 

Inspired by the contributions discussed above, further research focused on the challenging 70 

production of carbon-supported PtxY nanoalloys,
14-17

 the practical and desired form for an ORR 71 

electrocatalyst. Even though several studies claimed the formation of carbon-supported Pt-Y 72 

nanoalloys (more usually yttrium (hydr)oxide-decorated Pt NPs instead of the actual alloy),
18

 the 73 

first solid evidence was reported in 2016
17

 and 2018
15

. However, the measured ORR mass 74 

activity of the Pt-Y/C nanoalloys reported so far is in the range between 0.1 and 0.6 A mgPt
-1

,
14, 

75 

15, 17, 19-21
 which is still far below that of the reference value of 3.05 A mgPt

-1 
of unsupported 9 nm 76 

PtxY NPs,
12

 c.f. Figure S1 and Table S1. This discouraging trend raises critical questions for the 77 

viability of PtxY/C as ORR electrocatalyst, such as 1) the discrepancy between the theoretically 78 

predicted high stability and the experimentally observed high activity loss; 2) the reason for the 79 

activity gap between unsupported NPs and carbon-supported NPs; 3) the electrochemical 80 

threshold and driving force for alloy degradation under the reaction environment; 4) the 81 

electrochemically induced metal dissolution structural transitions during operation, and so on.   82 

Of huge potential in this context, the development of in situ and operando techniques, such as 83 

wide-angle synchrotron X-ray scattering (WAXS),
22

 X-ray absorption spectroscopy (XAS),
23

 84 

online inductively coupled plasma mass spectrometry (ICP-MS),
24

 etc., has provided 85 

fundamental insights at the atomic scale on the degradation of Pt-based electrocatalysts in real or 86 

simulated PEMFC electrochemical environments. Nevertheless, the studies that have used these 87 

advanced techniques for the characterization of Pt-Y nanoalloys are scarce. For instance, 88 
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Escudero-Escribano et al. have used in situ grazing incident X-ray diffraction (GIXRD) to study 89 

the formation, induced strain and correlation lengths of the Pt-rich overlayer on Gd/Pt(111) 90 

single-crystal electrodes,  reporting that the induced compressive strain that the Pt overlayer 91 

experiences is relaxed upon repeated electrochemical cycling in the potential range 0.6-1.0 VRHE. 92 

This strain relaxion effect is stronger as the upper potential limit increases. To the best of our 93 

knowledge, the only publication concerning the in situ characterization of Pt-Y nanoalloys is 94 

given by Malacrida et al.
25

 In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) 95 

was used to investigate the dealloying mechanism of unsupported PtxY NPs under near PEMFC 96 

operating conditions, when the nature of oxygenated near-surface species was observed as a 97 

function of the applied potential.
25

 From this study, the authors concluded that a post-synthesis 98 

acidic wash is needed to form a protective Pt-rich overlayer, and to avoid the presence/leaching 99 

of Y
3+

 cations that may compromise the conduction properties of the PEMFC membrane. 100 

Nevertheless, there is still a need for a deeper understanding of the relatively novel PtxY/C 101 

nanoalloys during the ORR operating conditions. 102 

For this purpose, we have synthesized carbon-supported PtxY nanoalloys via a solid-state 103 

approach, and have used advanced techniques for their characterization, i.e., operando WAXS, 104 

online ICP-MS, atomic resolution HAADF-STEM, and have interpreted the results with the 105 

assistance of DFT calculations. We have followed, from the early electrochemical activation to 106 

the end of the applied AST, the time- and potential-resolved  metal dissolution, the variations in 107 

crystal structure, the evolution of the local chemical composition and the morphology of PtxY/C 108 

nanoalloys as ORR electrocatalysts. The extracted results are rationalized and critically 109 

discussed, shedding light for the first time on the operando relationship between physico-110 

chemical properties, ORR activity and stability of carbon-supported Pt-Y nanoalloys.   111 
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 112 

3. RESULTS AND DISCUSSION 113 

PtxY/C nanoalloys were synthesized using the carbodiimide complex route developed by Hu et 114 

al.
14

 using carbon Ketjenblack EC-300J as a support. The resulting powder was treated via an 115 

acidic wash in N2-saturated 0.5 M H2SO4
21, 26

 (see Supplementary Information S2). The as-116 

prepared electrocatalyst crystalline structure, morphology and chemical properties were 117 

characterized ex situ, and reported in our previous contribution.
21

 Briefly, the chemical analysis, 118 

determined by ICP-MS, sets a Pt content of ca. 27 % wt. and an Y content of ca. 3 % wt. The 119 

higher atomic Pt:Y obtained by ICP-MS relative to the Pt3Y crystalline structure stoichiometry 120 

could be related to the formation of the Pt-rich shell and the possible presence of small pure Pt 121 

NPs. Besides, the ex situ characterization confirms the formation of Pt3Y nanoalloy, and the 122 

presence of a dominant population of NPs of ca. 5 nm was observed, as well as some 123 

agglomerates of ca. 12 nm dispersed over the carbon support.     124 

The ORR electrocatalytic activity and long-term stability were investigated using the rotating 125 

disk electrode (RDE) technique in 0.1 M HClO4 electrolyte at 25 °C (Supplementary 126 

Information S2). These screenings attest that PtxY/C surpasses the initial ORR mass activity of 127 

the Pt/C reference (0.58 A mgPt
-1

 vs. 0.23 A mgPt
-1

 at 0.9 VRHE, respectively). The 128 

electrocatalysts’ stability was evaluated using an AST inspired from the Fuel Cell Technical 129 

Team of the U.S Department of Energy (DoE/FCTT) protocol, which consists of 30,000 130 

potential cycles from 0.60 to 0.95 VRHE (square potential wave, 3 s at each potential limit with a 131 

transition of 0.5 s in between)
27

 in O2-saturated 0.1 M HClO4. After the AST, the PtxY/C and the 132 

reference Pt/C lost, respectively, ca. 35 % and ca. 44 % of their initial mass activity (see Figure 133 
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S3). Even though these results clearly show an enhanced performance of PtxY/C with respect to 134 

the Pt/C reference, the activity value and retention of PtxY/C do not correlate with the expected 135 

trend.  136 

Previously, we have reported that Pt-rare earth nanoalloys undergo significant structure 137 

transitions during the early surface conditioning step, namely, the electrochemical activation.
28, 29

 138 

Such transitions, often not investigated or underestimated, do induce a considerable effect on the 139 

electrocatalyst activity and its retention.
30, 31

 Therefore, online ICP-MS and operando WAXS 140 

measurements were conducted to follow any possible degradation of PtxY/C during the 141 

electrochemical activation, see Figure 1.   142 

 143 

 144 

 Figure 1. (a) Specific dissolution profiles extracted from online ICP-MS measurements; (b) 145 

schematic representation of the PtxY nanoalloy dissolution and stabilization; and (c) 146 

microstructural refined parameters extracted from operando WAXS measurements [where (i) 147 

indicates the electrode potential wave profile used, (ii) the phase weight fraction, (iii) scale 148 

factor, (iv) lattice constant and (v) coherent domain size of the Pt3Y alloy and Pt phases] of 149 

PtxY/C during the electrochemical activation. The highlighted region in (a) and (c) indicates the 150 

first polarization scan. The arrows serve as a guide to the eye.  151 
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 152 

A sharp peak is observed in the specific dissolution profiles, c.f. Figure 1a, for Pt and a broad 153 

peak for Y, which decay through the potential cycling until the signals are stabilized, revealing 154 

that the first cathodic scan (first polarization from the open circuit potential, OCP, to 0.05 VRHE) 155 

induces metal dissolution. It may be noticed that Pt dissolution starts before Y dissolution, which 156 

suggests that the partial or the total dissolution of the protective Pt overlayer formed ex situ (after 157 

the post-synthesis acidic wash) exposes the Y atoms to the acidic electrolyte, see Figure 1b. 158 

These Y atoms are quickly oxidized into Y
3+

 (E
0

Y3+/Y0 = -2.38 VSHE), which represents a strong 159 

segregation driving force toward the surface and, eventually, the Y atoms are dissolved. This 160 

process might proceed until Pt is sufficiently available to form a thicker protective overlayer, 161 

reconstructing the surface and stabilizing the NP structure, see Figure 1b. In line with the 162 

specific dissolution profiles, the refined parameters extracted from operando WAXS 163 

measurements, Figure 1c, also reveal that as soon as the electrode potential goes from the OCP 164 

to 0.05 VRHE, evolution of the structure of the PtxY nanoalloys is triggered. Quantitatively, the 165 

metallic phase weight fraction of the Pt3Y alloy decreases from ca. 60 % to 45 %, and a Pt face-166 

centered cubic (fcc) phase increases from ca. 40 % to 55 %. This trend might be linked to the Y 167 

dissolution observed in Figure 1a. The scale factor intensities, however, seem to be independent 168 

from each other, namely, the steady decrease of the Pt3Y scale factor (related to the Y 169 

dissolution) is not correlated to the sudden growth of the fcc Pt scale factor. This behavior 170 

suggests that the increase of the fcc Pt phase might originate from the electrochemical reduction 171 

of an amorphous phase containing Pt, even at such low electrode potential.
32

 Besides, we do not 172 

rule out the probability that the dissolved Pt species might redeposit forming pure Pt crystalline 173 

domains during the potential cycling.
33

 Furthermore, during the electrochemical activation, the 174 
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lattice constant of both Pt3Y and fcc Pt phases experienced a contraction of ca. -0.4 % and -0.5 175 

%, respectively. Finally, while the average coherent domain size of the Pt3Y phase slightly grows 176 

from ca. 7.5 nm to 8 nm, that of the fcc Pt phase seems to be almost constant (ca. 1.2 nm).    177 

After the electrochemical activation, three potentiodynamic cycles at 5 mV s
-1

, from 0.05 to 0.95 178 

VRHE, were performed to clearly resolve the transient dissolution behavior of Pt and Y. Figure 179 

2a shows the specific dissolution profiles of PtxY/C under these conditions. In agreement with 180 

the literature,
24, 33-37

 the predominant Pt dissolution signal is located at the cathodic scan. This 181 

feature is related to the electrochemical reduction of the formed Pt oxides.
35

 Besides, the specific 182 

Pt dissolution profile also reveals the presence of an additional anodic dissolution peak during 183 

the first potential cycle. This signal could be associated with the dissolution of low-coordinated 184 

sites through the surface oxidation.
24

 Moreover, the Y dissolution follows the first anodic Pt 185 

dissolution, and low-intense broad signals appear during the cathodic Pt dissolution, suggesting 186 

the stabilization of a protective Pt-rich shell after the electrochemical activation.      187 

 188 

 189 
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Figure 2. (a) Specific dissolution profiles of PtxY/C acquired during slow potentiodynamic 190 

cycles (3 cycles at 5 mV s
-1

); (b) OH-adsorption induced segregation energy as function of the Y 191 

position in the Pt slab. The negative values of segregation energies indicate the preference of Y 192 

to migrate toward the surface. Representative HAADF-STEM analysis after the electrochemical 193 

activation of PtxY/C: (c) atomic resolution micrograph (the insert shows the corresponding 194 

SAED); (d) EDX elemental mapping; and (e) EDX line scan chemical analysis.  195 

 196 

For the sake of clarity, Figure 2b exhibits the OH-adsorption induced segregation energy 197 

diagram as function of the Y atom position in the Pt slab, i.e., Y atoms exposed at the surface 198 

(first surface layer) and protected by n Pt monolayers (n =1, 2 or 3). This diagram unveils that Y 199 

atoms present a strong affinity for OH, which favors their segregation towards the surface and 200 

eventually their dissolution (the more negative the segregation energy, the easier the 201 

segregation), in line with previous reports on Pt3Y alloys covered by a Pt monolayer.
38

 202 

Notwithstanding, this trend is suppressed once Y atoms are protected by at least 3 Pt monolayers, 203 

stabilizing a core/shell (Pt-Y alloy/Pt-rich overlayer) structure. To gain more insights, high 204 

resolution HAADF-STEM analyses were carried out after the electrochemical activation, and are 205 

presented in Figure 2c-e and Supplementary Information S3. The average particle size 206 

measured ex situ is not affected by the electrochemical activation (see below). Besides, the 207 

atomic-resolution micrographs and their respective EDX chemical mapping/profiles clearly 208 

confirm the presence of the Pt-Y nanoalloy after the electrochemical activation, as NPs 209 

presenting a Pt enrichment of 0.6-1.2 nm at the surface. Considering that the thickness of an 210 

atomic monolayer of Pt is ∼ 0.2 nm,
39

 the observed Pt-rich overlayer is 3-6 atom thick, in 211 

agreement with the diagram shown in Figure 2b.  212 
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Following the PtxY/C nanoalloy stabilization after electrochemical activation, the effect of the 213 

square potential wave used in the AST on compositional degradation was investigated by 214 

electrochemical online ICP-MS. To clearly deconvolute and resolve the dissolution events during 215 

the square potential wave, we have held the lower and upper potential limits (0.60 and 0.95 VRHE 216 

respectively) for 3 min, following a slow transition between them at 5 mV s
-1

. Figure 3a shows 217 

the acquired specific dissolution profiles using three cycles under the aforementioned conditions.  218 

Looking at the Pt specific dissolution profile, the anodic dissolution signal through the surface 219 

oxidation (yellow arrows in Figure 3a-b) peaks as soon as the electrode potential reaches 0.95 220 

VRHE, followed by a slow decay. This anodic dissolution event could be associated with the 221 

formation and dissolution of metastable Pt species (e.g., amorphous surface oxides,
40

 Pt-OxHy
41

), 222 

the origin of which comes from the slow Pt oxidation kinetics.
40

 After the formation of a stable 223 

Pt oxide, signal decay is observed indicating that the surface is passivated. Meanwhile, the 224 

cathodic dissolution event through the reduction of the stabilized Pt oxides (red arrows in Figure 225 

3a-b) takes place, and results in a more intense single peak. This signal has been largely 226 

attributed to the oxide place-exchange mechanism, i.e., the exchange of the original lattice sites 227 

of surface Pt atoms by O atoms. Simultaneously, the Y specific dissolution profile presents 228 

signals during the first cycle at both anodic and cathodic regimes, which are attenuated during 229 

the second and third cycles. Based on Figure 2b, it might be expected that once the stabilized Pt 230 

shell is partially dissolved, its thickness eventually decreases, leading to higher segregation 231 

driving force of the previously protected Y atoms, and to the subsequent dissolution of Y until Pt 232 

diffusion re-stabilizes the NP structure. This observation might suggest that the stabilization of 233 

the Pt-rich shell is critical in hampering Pt-Y segregation.  234 

 235 
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 236 

Figure 3. (a) Specific dissolution profiles of PtxY/C acquired during simulated AST potential 237 

cycles (square-like wave, 0.60 – 0.95 VRHE, 3 min at each potential limit with a transition 238 

between them at 5 mV s
-1

). The yellow and red arrows (oxidation and reduction, respectively) 239 

serve as a guide to the eye. (b) schematic representation of the PtxY/C dissolution during the 240 

AST potential cycles; (c) microstructural refined parameters extracted from operando WAXS 241 

measurements (metallic weight phase fraction, lattice constant and coherent domain size) of the 242 

Pt3Y alloy and Pt phases detected during the applied AST (square-like wave, 0.60 – 0.95 VRHE, 3 243 

s at each potential limit with a transition between them of 0.5 s).  244 

 245 

Furthermore, the degradation of the PtxY/C nanoalloys during the AST (square potential wave, 3 246 

s at each potential limit with a transition of 0.5 s between) was followed by means of operando 247 

WAXS and online ICP-MS in O2-saturated 0.1 M HClO4 at 25 °C. The evolution of the WAXS 248 

refined microstructural parameters during the AST (5,000 cycles) are shown in Figure 3c. The 249 

metal phase weight fraction of the Pt3Y alloy lies between 43 - 48 % during the first 1,000 250 

cycles, and reaches an almost constant value of ca. 45 % afterwards. Moreover, during the first 251 

1,000 cycles, the metal phase weight fraction of the fcc Pt phase fluctuates between 57 - 52 %, 252 

and stabilizes ca. 55 % afterwards. While the lattice constant of the fcc Pt phases underwent an 253 
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increasing trend (lattice constant expansion), the Pt3Y phase follows a decreasing behavior 254 

(lattice constant contraction). This trend clearly reflects the expected steady loss of the 255 

compressive strain effect, with negative effect on the electrocatalytic ORR performance. Finally, 256 

the average coherent domain size trend of the Pt3Y phase revealed a slight increase from ca. 7.8 257 

nm to 8.4 nm during the first 600 cycles, continuing to ca. 8 nm (1,000 cycles), ca.7.7 nm (2,000 258 

cycles) and ca. 8 nm thereafter. Besides, the fcc Pt phase slight grew during the first 1,000 cycles 259 

from ca. 1.20 nm to 1.35 nm, achieving an almost constant value of ca. 1.37 nm thenceforth. 260 

Therefore, the strongest structural degradation during the AST takes place during the first 1000 261 

cycles, in line with previous results on Gd/Pt(111) single-crystal electrodes.  262 

Owing to the fact that the most pronounced microstructural variations are discernible during the 263 

first 1,000 cycles, the Pt and Y dissolution were monitored by online ICP-MS during the first 264 

1,000 cycles of the AST (Supplementary Information S4). The total dissolved Pt and Y under 265 

these conditions, i.e., the integrated specific dissolution rates, are ca. 155 pg and 201 pg, 266 

respectively, which represent a loss of 0.01 % and 0.13 % of the initial electrode loading after 267 

1,000 AST cycles.       268 

Enhanced kinetics of the sluggish ORR in acidic medium require the binding energies (ΔE) of 269 

the key reaction intermediates, i.e., O* and OH*, to be weaker than those with Pt (111) by ∼0.2 270 

eV and ∼0.1 eV, respectively.
42

 DFT computations were performed to track the ΔEO* and ΔEOH* 271 

as a function of the Pt-Pt interatomic distance, c.f. Figure 4 and Supplementary Information 272 

S5. The Pt-Pt interatomic distances of PtxY/C nanoalloys during the AST were extracted from 273 

the operando WAXS measurements and are plotted in Figure 4, from which a modest 274 

weakening of ΔEO* (~ 0.02 eV) and ΔEOH* (~ 0.001 eV) respect to Pt (111) may be observed. 275 
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This result indicates that the induced compressive strain is attenuated by the thickening of the Pt 276 

overlayer, which leads to lower ORR activity.       277 

 278 

Figure 4. DFT calculated binding energies, with respect to Pt (111) surface, of (a) adsorbed O, 279 

and (b) adsorbed OH as function of the Pt-Pt interatomic distance. Purple points represent the 280 

experimental average Pt-Pt interatomic distance of PtxY/C nanoalloys during the AST (5000 281 

square-like wave, 0.60 – 0.95 VRHE, 3 s at each potential limit with a transition between them of 282 

0.5 s). 283 

 284 

With this knowledge, the local morphology and chemical composition of the PtxY/C 285 

electrocatalyst were investigated after the AST in the RDE setup (30,000 square potential wave, 286 

3 s at each potential limit with a transition of 0.5 s between in O2-saturated 0.1 M HClO4 at 25 287 

°C) using high resolution HAADF-STEM analyses, c.f. Figure 5 and Supplementary 288 

Information S6. Figure 5a shows the evolution of the average particle size from the ex situ state 289 

to the end of the AST: while the electrochemical activation does not strongly affect the average 290 

particle size, the potential cycling of the AST causes a growth of the electrocatalyst particles 291 

from 5.4 nm to 6.6 nm, in line with the average coherent domain size trend in Figure 3c. The 292 

ECSA variations shown in Figure S3 might be related to this particle size evolution. Although 293 

the acquired micrographs indicate the predominance of dense NPs, the presence of porous 294 
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structures after the AST was also observed (Supplementary Information S6), which are 295 

expected due to the dealloying process occurring on potential cycling.
7, 39

  The atomic-resolution 296 

micrographs and their respective EDX chemical mapping/profiles, Figure 5b-d, clearly confirm 297 

the presence of the Pt-Y nanoalloy after the AST, with a thicker Pt enrichment at the border of 298 

the NPs of ca. 1.2-1.6 nm, being equivalent to a Pt shell of 6-8 atom thick.    299 

 300 

 301 

Figure 5. Representative HAADF-STEM analysis of PtxY/C after the AST: (a) evolution of the 302 

average particle size, from the ex situ state, the electrochemical activation and at the end of the 303 

AST; (b) atomic resolution micrograph (the insert shows the corresponding SAED); (c) EDX 304 

elemental mapping; and (d) EDX line scan chemical analysis.  305 

 306 

4. CONCLUSION 307 
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Carbon-supported PtxY nanoalloys were extensively studied, for the first time, under the 308 

electrochemical conditions for the ORR by means of operando WAXS, online ICP-MS, atomic 309 

resolution HAADF-STEM and DFT calculations. This allowed monitoring of the atomic-scale 310 

degradation steps undergone by the electrocatalyst from the early electrode surface conditioning 311 

(or electrochemical activation) to the end of the applied AST. Such results clearly revealed that 312 

the PtxY/C nanoalloys underwent considerable degradation during the early operation steps 313 

(electrochemical activation), with metal dissolution and crystalline structure evolution being 314 

observed, and surface reconstruction.  315 

Furthermore, operando measurements identified that the strongest nanoalloy degradation, in 316 

terms of metal dissolution and structural evolution, takes place during the first AST 1,000 cycles 317 

under O2 atmosphere, which eventually diminished the ORR kinetic benefit from the Pt-Y alloy. 318 

Although the expected high ORR performance of PtxY/C was not observed, the proposed 319 

operando structure-activity-stability trends guides further optimization of the delicate 320 

activity/stability trade-off of this system. Besides, we believe that this work might inspire further 321 

in-depth understanding of the degradation of carbon-supported Pt-based nanoalloys during the 322 

harsh ORR electrochemical environment. 323 
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