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Our understanding of the fundamental role that soil bacteria play in the structure and functioning 8 
of Earth’s ecosystems is ever expanding, but insight into the nature of interactions within these 9 
bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, 10 
growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire 11 
soil community and thereby modulating multiple ecosystem functions. Global climate change 12 
often alters soil bacterial community composition, which, in turn, impacts other dependent biota. 13 
However, the impact of climate change on facilitation within bacterial communities remains poorly 14 
understood even though it may have important cascading consequences for entire ecosystems. 15 
The wealth of metagenomic data currently being generated gives community ecologists the ability 16 
to investigate bacterial facilitation in the natural world and how it affects ecological systems 17 
responses to climate change. Here, we review current evidence demonstrating the importance of 18 
facilitation in promoting emergent properties such as community diversity, ecosystem functioning, 19 
and resilience to climate change in soil bacterial communities. We show that a synthesis is 20 
currently missing between the abundant data, newly developed models and a coherent ecological 21 
framework that addresses these emergent properties. We highlight that including phylogenetic 22 
information, the physicochemical environment, and species-specific ecologies can improve our 23 
ability to infer interactions in natural soil communities. Following these recommendations, studies 24 
on bacterial facilitation will be an important piece of the puzzle to understand the consequences 25 
of global change on ecological communities and a model to advance our understanding of 26 
facilitation in complex communities more generally. 27 
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Introduction 30 

“Natural, unconscious mutualism is one of the basic principles of biology” 31 

        W.C Allee in ‘Principles of Animal Ecology’, 1949 32 

Soil bacterial communities are integral parts of almost all of earth’s ecosystems, from 33 

sediments in the deepest marine trenches to soils on the highest mountains (Takami et 34 

al. 1997, Zhang et al. 2009). As fundamental links in the soil-plant interface and chemical 35 

pumps for the nitrogen and carbon cycles (Prashar et al. 2014, Naylor et al. 2020, 36 

Domeignoz-Horta et al. 2020), the importance of soil bacteria for life on earth is hard to 37 

overstate. Mirroring Darwin’s observations on plant communities, repeated evidence has 38 

identified soil bacterial diversity as an essential driver of ecosystem functioning (Finlay et 39 

al. 1997, Delgado-Baquerizo et al. 2017). Soil bacterial diversity ultimately facilitates 40 

many aspects of plant growth (Hayat et al. 2010), survival (Wei et al. 2019) and fertility 41 

(Chaparro et al. 2012), and influences atmospheric processes through reducing 42 

greenhouse gas emissions and sequestering CO2 thereby directly impacting human 43 

survival and well-being (Paustian et al. 2016). Further, the loss of bacterial diversity can 44 

impact large-scale ecosystem processes such as carbon cycling capabilities of soils in a 45 

wide range of ecosystems (de Graaff et al. 2015). Our understanding of the relationship 46 

between bacterial diversity and soil function continues to improve (Wagg et al. 2019), but 47 

studies so far have overlooked the role of biotic interactions in structuring bacterial 48 

communities (Horner-Devine et al. 2004, Abdul Rahman et al. 2021).  49 

The importance of biotic interactions in specific aspects of microbial ecology has long 50 

been recognized, for example, in the formation of biofilms or microbial mats (Davey and 51 



O’toole 2000). Microbial ecology has historically focused predominantly on negative 52 

interactions in bacterial communities, such as competition for resources (Hibbing et al. 53 

2010) or parasitic relationships (Geiman 1964). Over the past decade, these negative 54 

interactions and their effects on community functions have continued to be examined in 55 

bacterial systems, without taking positive interactions into account (Ghoul and Mitri 2016). 56 

The relative importance of positive versus negative interactions has been investigated 57 

using culture-based studies (Griffin et al. 2004) and some have argued that, on average, 58 

negative interactions are the prevailing drivers of bacterial community structure in 59 

experiments while positive interactions would be rare (Palmer and Foster 2022). 60 

However, positive interactions have long been known to be an essential component of 61 

bacterial communities; decades ago, Hardin (1944) established that some bacterial 62 

species cannot exist in mono-culture and require a symbiotic partner for survival. More 63 

recent studies have suggested positive interactions are important for community structure 64 

and functions, and probably more common than previously thought in bacterial 65 

communities (Pacheco et al. 2019, Kehe et al. 2021). As bacterial soil communities are 66 

increasingly studied worldwide, in particular because of the tools and data required to do 67 

so have increasingly become available, it is important that positive interactions are 68 

properly considered in these systems. 69 

Interactions can be mutually (+/+) or asymmetrically (+/0) positive, and both types are 70 

more broadly referred to as facilitation. The most cited definition of facilitation in 71 

community ecology requires a positive effect on a single species’ establishment, growth, 72 

or recruitment without negatively impacting the other (e.g. Bertness and Callaway 1994, 73 

and more specifically in Bronstein 2009). While exploitation or parasitism (+/-) may see 74 



one species’ growth being facilitated by the presence of another (see e.g. Kehe et al. 75 

2021), these interactions are typically grouped outside of ecological facilitation in the 76 

literature (see for instance Stachowicz 2001). Facilitation has been shown to have 77 

important effects on community structure and functioning in a variety of bacterial 78 

communities and can occur both intra- and interspecifically (Miele et al. 2019, Navarro-79 

Cano et al. 2021). Intra-species facilitation, for example in Myxococcus strains, can lead 80 

to complex emergent effects that provide function and alter community structure in a 81 

multicellular community. These populations collectively excrete enzymes to kill ‘prey’, 82 

including larger eukaryotes, a phenomenon referred to as social ‘predation’ (Contreras-83 

Moreno et al. 2024); and they are also well known for their aggregated fruiting body 84 

formation under environmental stress, in which different individuals specialize to facilitate 85 

resistant spore development (Reichenbach 1993). Examples of inter-specific facilitation 86 

are seen when species defend themselves and other community members against 87 

Myxococcus predation, by contributing to biofilm formation and through the production of 88 

antimicrobial chemicals (Thiery and Kaimer 2020). The bacterial world is full of other 89 

examples, where direct, pairwise facilitation benefits growth of bacterial strains (Ferrier et 90 

al. 2002, Morris et al. 2008, Pekkonen and Laakso 2012), confers benefits in dealing with 91 

environmental stress (Silveira Martins et al. 2016) and structures entire communities and 92 

maintains biodiversity (Kaeberlein et al. 2002, Niehaus et al. 2019). Facilitation can also 93 

be indirect or context-dependent, and higher order interactions may be important for 94 

diversity and resulting ecosystem functions (Bairey et al. 2016). In bacterial soil 95 

communities, relatively little is known about the effects of facilitation on community 96 

structure, functions and response to global change. 97 



Soil bacterial communities are in a time of extensive exploration due to the rapidly 98 

increasing availability of genetic data and the development of metagenomic techniques 99 

(Riesenfeld et al. 2004, Thompson et al. 2017). As the role of bacteria in driving soil 100 

functions in agricultural and natural systems becomes more apparent (Falkowski et al. 101 

2008, Astudillo-García et al. 2019), the potential vulnerabilities of soil bacterial 102 

communities to climate change has facilitated their inclusion into broader ecological 103 

theory (Prosser et al. 2007, Naylor et al. 2020). This makes them an excellent study 104 

system for fundamental ecological questions, such as the importance and prevalence of 105 

facilitative interactions in complex communities and the relationship of interactions to the 106 

environment. However, comprehensive studies of bacterial facilitation in naturally 107 

occurring soil communities remain rare in the literature. Recent studies have investigated 108 

soil bacterial interactions in a broader ecological framework (Goberna et al. 2019, 109 

Hernandez et al. 2021), but many microbial ecology papers only scratch the surface of 110 

what interaction networks may explain in regard to facilitation (Goberna and Verdú 2022), 111 

and especially how this might be pertinent in relationship to global change. 112 

When investigated, facilitation in soil bacteria is often demonstrated to have important 113 

consequences for the larger soil community, including eukaryotic structure and function 114 

(Rodríguez-Echeverría et al. 2016), and plays a role in the mediation of stressful 115 

conditions induced by climate change (David et al. 2020, Yuan et al. 2021). Bacterial soil 116 

community interactions are thus intrinsically linked to the functioning and resilience of 117 

whole ecosystems. Here, we argue that soil bacterial communities are an underutilized 118 

study system for investigating the importance of facilitation in complex natural systems, 119 

and we show how their study can help advance our understanding of the way interactions 120 



affect the responses of these systems to global change. Specifically, understanding the 121 

role of facilitation on emergent properties of soil systems requires adopting a broader 122 

ecological framework, which could prove crucial for predicting the effects of global change 123 

in both soils and ecosystems more generally.  124 

 125 

2 - Prevalence of bacterial facilitation in culture and nature 126 

Microcosm studies have provided evidence for the existence of bacterial facilitation since 127 

the development of this field of study. The seminal work by Winogradsky on nitrifying 128 

organisms first showed how bacteria may depend on the metabolic product produced by 129 

another organism (Winogradsky 1890). Later, microcosms continued laying the 130 

groundwork of such resource-sharing mechanisms, by which bacteria may grow on 131 

otherwise nutrient-deficient media (Winkler et al. 1952). This bacterial ‘cross-feeding’ 132 

exists in many forms and has long been shown as a requirement for the establishment of 133 

some species in microcosm (Yeoh et al. 1968). These examples of cross-feeding are now 134 

understood to be more energetically efficient and lead to higher growth rates (Costa et al. 135 

2006). Bacterial species that evolve complementary resource-use strategies may make 136 

use of available waste products in co-culture, ultimately resulting in higher productivity 137 

than in monoculture (Lawrence et al. 2012). It is noteworthy that these studies elucidating 138 

the mechanisms underlying facilitation have been limited to the investigation of pairwise 139 

bacterial interactions. In complex bacterial communities, facilitative relationships between 140 

species are not fixed and consist of a dynamic interplay between different species and 141 

genotypes (Velicer 2003). To understand the importance of facilitative interactions in 142 



bacterial communities, more studies in the complex conditions of the natural world are 143 

needed (Little et al. 2008, Kodera et al. 2022). 144 

Natural soil communities consist of bacterial species constantly interacting with each 145 

other, and intra- and interspecific relationships are mediated by the abilities of species to 146 

communicate with and regulate each other (West et al. 2006). Bacteria that competitively 147 

exclude one another in isolated co-culture may instead co-exist in more complex 148 

communities (Chang et al. 2023). For example, in natural soils bacteria commonly 149 

aggregate in biofilms and thus form intricate ecological and social networks that express 150 

many facilitative functions (Watnick and Kolter 2000, Solano et al. 2014). Protection from 151 

trophic pressures (Matz and Kjelleberg 2005, Justice et al. 2008), UV-radiation (Córdova-152 

Alcántara et al. 2019) or desiccation (Rosenzweig et al. 2012) are commonly associated 153 

with biofilm formation of bacteria, all underlaid by community interactions (Zachar and 154 

Boza 2022). Public good production is also required to lay the groundwork for biofilm 155 

formation and is further promoted inside closely interacting biofilm communities 156 

(Flemming and Wingender 2010, Liu et al. 2015). Biofilms thus represent, essentially, a 157 

mediation of the environment, whether resource-based or through other compounds, 158 

which is a common way for bacterial organisms to make new niche space available and 159 

increase the diversity and productivity of ecosystems (Oña et al. 2021). Biofilms also 160 

create a space for rapid bacterial evolution through the facilitation of horizontal gene 161 

transfer (Song et al. 2021), and they facilitate the dispersal of biofilm members to novel 162 

environments (Kaplan and Fine 2002). Biofilm formation itself is even inherently 163 

dependent on facilitative processes such as polymer excretions and metabolic 164 

dependencies, but they also form a battleground for bacterial competition (Huang et al. 165 



2011, Giaouris et al. 2015). A relevant ecological question thus becomes: how are 166 

interaction types influenced by environmental conditions? 167 

In the natural world, interactions between bacteria can shift from facilitation to competition 168 

depending on environmental conditions (Sun et al. 2022). Shifts from facilitative to 169 

competitive relationships may occur as a result of rapid evolution or shifts in community 170 

structure when conditions change (Zuñiga et al. 2019, Drew et al. 2021). Indeed, while a 171 

large repertoire of metabolic co-dependencies exists in bacterial communities, and many 172 

of these codependent interactions occur without significant cost to the facilitator, 173 

facilitative strategies may also be costly (Pacheco et al. 2019, Boza et al. 2023). For 174 

example, cheaters may exploit such strategies and engage in an ‘adaptive race’ with the 175 

facilitating organisms (Waite and Shou 2012). Potential interactions extend past the 176 

metabolic realm to the production and use of specific ‘public goods’ in bacterial 177 

communities, with common examples being the buildup of community-wide antibiotic 178 

resistance and other toxicity mediation that improves the environment for other organisms 179 

(Lee et al. 2010, Cordero et al. 2012, see Zengler and Zaramela 2018 for a more 180 

comprehensive summary). These resource sharing interactions exist on a spectrum from 181 

obligate mutualisms to facultative forms of commensalism (Morris et al. 2013), and 182 

bacteria can regulate facilitative behaviors through mechanisms like Quorum sensing 183 

(O’Brien et al. 2017) and rapid evolution (Drew et al. 2021). Large-scale analysis of 184 

natural systems suggests that different types of bacterial communities may emerge as a 185 

result, diverging into highly competitive and/or highly facilitative groups (Machado et al. 186 

2021). Other evidence demonstrates that many more intermediates exist in nature, with 187 

facilitation playing an important role in the functioning of many bacterial communities 188 



(Kost et al. 2023). What remains unclear is how the environment drives shifts in 189 

interactions in complex natural systems, and how this in turn affects overall bacterial 190 

community structure and functioning. 191 

3 - Bacterial facilitation in changing environments 192 

The Stress-Gradient Hypothesis (SGH) is a theoretical framework developed to assess 193 

the relationship between the environmental conditions and the frequency and strength of 194 

facilitative interactions (Bertness and Callaway 1994). Although the (species- or 195 

ecosystem-) specific response of the relationship between environmental stress on the 196 

one hand and the direction and strength of interactions in the other hand may differ 197 

depending on the type and strength of the stressor (Maestre et al. 2009, Smit et al. 2009), 198 

the SGH generally predicts that facilitative interactions should be more common and 199 

important under higher environmental stress, such as drought and temperature increases 200 

related to climate change (Verwijmeren et al. 2014, Gallien et al. 2018). Depending on 201 

the stress type and species-specific responses, facilitative networks have also been 202 

shown to collapse entirely under severe stress (Michalet et al. 2014). As conditions 203 

change, the overall interaction networks may change in real time as species requirements 204 

adapt (Soliveres et al. 2010, Guignabert et al. 2020). While a consensus exists regarding 205 

this theory for plant communities, there is only limited evidence for its applicability to other 206 

systems such as soil bacterial communities (Adams et al. 2021). The applicability of the 207 

SGH in bacterial communities was notably first considered in a mathematical model 208 

(Lawrence and Barraclough 2015), and Piccardi et al. (2019) were the first to perform a 209 



microcosm study that investigated the interactions type and strength of four bacterial 210 

species under changes in available nutrients and heavy metal toxicity.  211 

In bacteria, public-goods producers have been used to study the shift in interaction types 212 

under resource-based (Hoek et al. 2016) or toxin-based stress gradients (Hesse et al. 213 

2018). Indeed, toxicity-remediating bacteria provided the first targeted study system to 214 

assess the SGH in bacterial systems (Piccardi et al. 2019), and it presented evidence for 215 

the applicability of the SGH in this system (Hammarlund and Harcombe 2019), although 216 

earlier studies had already shown similar results without addressing the SGH explicitly 217 

(Silveira Martins et al. 2016, Velez et al. 2018). Toxicity gradients and associated public 218 

good production remain an important model in SGH research in bacteria, including in 219 

naturally occurring bacterial soil communities (Martino et al. 2023), where 220 

anthropogenically polluted systems were shown to exhibit a higher proportion of positive 221 

interactions in response to copper stress (Hesse et al. 2021) and other heavy metals (Li 222 

et al. 2017). These studies have focused mostly on pairwise interactions in co-culture and 223 

have provided strong evidence for the utility of the SGH as a framework to investigate 224 

bacterial interactions in relationship to soil physicochemistry (Silveira Martins et al. 2016, 225 

Weiss et al. 2022), but they are not informative for the broader question of how complex 226 

bacterial communities might respond to multi-facetted global change. 227 

Naturally occurring soil bacterial communities are increasingly recognized as a model for 228 

the study of the SGH, because of their ubiquity (Finlay 2002), large range of potential 229 

functions (Finlay et al. 1997), the ease of replication to study evolutionary and ecological 230 

time scales (Kayser et al. 2018) and their use as an analog for other biota (Steffan et al. 231 

2015). Soil bacterial communities have been used to study interaction networks in the 232 



context of environmental stress, pressures, and climate change (see e.g. Yuan et al. 233 

2021, Yang et al. 2022). Support for the SGH within soil bacterial communities is found 234 

when the effects of holistic stress gradients (Hernandez et al. 2021, Mandakovic et al. 235 

2023) or an investigation of different stressors (Zhou et al. 2021) are considered, both 236 

mimicking the potential effects of broader global change on soil communities. Narrower 237 

environmental gradients such as salinity (Menéndez-Serra et al. 2022) or drought (Gao 238 

et al. 2022) may find more conflicting results where different bacterial groups exhibit more 239 

variable responses. Collapse of facilitation under high environmental stress is shown in 240 

soil bacteria as in other systems (Wang et al. 2018), and drought is frequently reported 241 

as a driving environmental control of interaction strengths (de Vries et al. 2018, Gao et al. 242 

2022). However, it is not well known how global change may influence soil interaction 243 

networks generally, and many studies continue to underreport the interplay between 244 

environment and interaction types in soil bacterial communities. Meanwhile, the data and 245 

methods are available and often already included in their analyses, yet they fall short in 246 

their application within a coherent ecological framework (Ma et al. 2020a, Feng et al. 247 

2024). 248 

4 - How to investigate bacterial facilitation in the natural world 249 

The arrival of high-throughput nucleic acid sequencing has offered unique advantages in 250 

the study of natural bacterial communities (Hugenholtz et al. 1998, Lozupone and Knight 251 

2007) and their relationship to environmental pressures (Fierer and Jackson 2006). 16S 252 

rRNA or similar genetic markers enable profiling techniques that are extremely useful for 253 

rapidly and comprehensively mapping the structure and diversity of bacterial communities 254 



in soils (Thompson et al. 2017). These data readily supply community ecologists with 255 

species co-occurrence matrices used to infer the strength and direction of interactions 256 

between species using co-occurrence methods (Sfenthourakis et al. 2006, Veech 2013. 257 

Such co-occurrence methods may include environmental and spatial data to control for 258 

the potential effects of these processes and more accurately reflect real biotic interactions 259 

(D’Amen et al. 2018), or indirect interactions between associated species (Morueta‐260 

Holme et al. 2016). Compared to other ecological systems, bacterial soil communities 261 

have the added benefit of cosmopolitan ranges and high dispersal while simultaneously 262 

exhibiting biogeographic species fluctuations (Martiny et al. 2006, Ramette and Tiedje 263 

2007, Meyer et al. 2018), allowing for better inference of species’ interactions from co-264 

occurrences. Many studies have emerged over the last years inferring interaction 265 

networks from soil community metagenomic data with varying degrees of success 266 

(Matchado et al. 2021). However, many studies present genetically inferred interaction 267 

networks without a clear ecological framework to interpret those results and the 268 

drawbacks of using co-occurrence data to infer interaction types is frequently noted 269 

(Barner et al. 2018, Blanchet et al. 2020). 270 

Marker-gene based co-occurrence network approaches are thus regularly, and justly, 271 

criticized for poorly reflecting known species’ ecologies (Freilich et al. 2018). However, 272 

because metagenomic datasets generate phylogenetically relevant information about 273 

investigated bacteria, this information may increase the confidence of inferred interaction 274 

types assigned through these co-occurence methods (Goberna et al. 2019). Closely 275 

phylogenetically related bacteria are more likely to exhibit competitive interactions in the 276 

same ecosystem (Tan et al. 2012). Therefore, comparing the phylogenetic diversity within 277 



ecosystems may help measure the prevalence of competitive interactions in that 278 

ecosystem (Stegen et al. 2012). Evidence for this theory, called niche conservatism, has 279 

broad application across the tree of life for bacteria and archaea and may increase the 280 

confidence of assigning species interactions based on co-occurrence data (Goberna and 281 

Verdú 2016).  282 

Using phylogenetically informed co-occurrence networks allows researchers to 283 

investigate larger conceptual patterns (Goberna and Verdú 2022). Updated frameworks 284 

that build on these association methods can further improve detection of interactions by 285 

using ecological information about species’ traits with better a predictive power than 286 

phylogenetic information alone (Kéfi et al. 2016, Alneberg et al. 2020). Studies on bacteria 287 

using such trait- (Wang et al. 2023, Metz et al. 2023) and gene-based network methods 288 

to infer interaction types (Schaedel et al. 2023) may also help gain information about 289 

indirect and non-linear interaction types amongst community members that might not be 290 

revealed by a co-occurrence matrix alone (Saiz et al. 2019). Combined methods using 291 

these trait-based approaches allow a fuller understanding of the spatial and temporal 292 

variation in facilitating relationships (Tumolo et al. 2020), such as joint species distribution 293 

models (D’Amen et al. 2018). Network models may also confirm known interactions and 294 

reveal previously undiscovered associations between species encompassing both trophic 295 

and non-trophic interactions (Thurman et al. 2019). Using models to assess complex 296 

interaction webs such as metabolic dependencies and grounding them with empirical data 297 

thus confirms underlying relationships (e.g. Liao et al. 2020) even when the microbial 298 

species investigated aren’t always culturable or their metabolisms known (Lam et al. 299 

2020). Promisingly, studies that do consider specific functional groups find a high 300 



interaction strength of potential facilitators (Chao et al. 2016) – though these studies, in 301 

turn, often refrain from putting such results in a broader ecological framework – 302 

hampering our ability to elucidate conclusions applicable to other systems.  303 

To investigate the relationship between bacterial facilitation and the environment in a 304 

broader ecological framework, networks need to be examined comparatively and 305 

incorporate environmental information. Different environments exhibit broader 306 

phylogenetic diversity in bacterial communities (Goberna et al. 2014) or may directly 307 

influence the prevalence of certain interaction types (Piccardi et al. 2019). Coupled with 308 

phylogenetic information, network data may infer the overdispersion of taxonomic 309 

diversity and overall richness as a proxy for the strength of facilitative interactions in 310 

different environments (Goberna and Verdú 2016). Future research needs to emphasize 311 

fine-scale environmental information relevant to the bacterial communities studied to 312 

understand its relationship to community interactions and the potential collapse of 313 

bacterial networks under environmental stress (Michalet et al. 2014). Alternatively, 314 

facilitation may be studied directly in the metagenome of whole communities by looking 315 

at cooperative genes (Simonet and McNally 2021). Different approaches may reinforce 316 

one another by basing the assumptions on community-level interactions inferred from 317 

phylogenetic data on evidence from pairwise-experiments and validating those 318 

experiments by assessing natural and heterogeneous communities. These resulting 319 

predictions will ultimately be helpful to understand macro-ecological processes and 320 

understanding the evolutionary pressures that shape interaction networks (Segar et al. 321 

2020, Hall et al. 2020). The relationships between community composition, interaction 322 

types and the environment were tested predominantly in plant communities (Carrión et 323 



al. 2017, Zhang et al. 2017, Pashirzad et al. 2019) and are also coming to the foreground 324 

in research on soil bacteria (Stegen et al. 2012, Pérez‐Valera et al. 2017). As these 325 

models improve, they need to be used to address such fundamental relationships 326 

between community interactions and the environment and can be used to synthesize the 327 

role of bacterial communities in whole-system interactions.  328 

Moving to a multi-trophic framework remains a pressing challenge for many investigations 329 

of community or ecosystem structure (Seibold et al. 2018, Schleuning et al. 2020). 330 

Without a doubt, soil bacterial community structure and interactions have immense 331 

consequences for other organisms, whether below-ground as pathogens or mutualists in 332 

the rhizosphere (Schlatter et al. 2017), above-ground biomass of plants (Saleem et al. 333 

2019) and indirect effects on nutrient cycling (Dubey et al. 2019). Bacterial communities 334 

may be shaped by the interactions of other microbial trophic levels through parasitism or 335 

grazing (Li et al. 2023), while bacterial communities themselves may facilitate plant 336 

germination in harsher environments (David et al. 2020). Indirect facilitative effects may 337 

arise through inter-trophic interactions and increase both bacterial diversity 338 

(Pradeep Ram et al. 2020), as well as that of their predators (Yang et al. 2018, Scheuerl 339 

et al. 2019) and plants (Liu et al. 2019) through evolutionary pressures. Plants might 340 

benefit from soil bacteria feedbacks under drought (Buchenau et al. 2022), while plant 341 

responses to environmental changes further drive bacterial community structure and thus 342 

potential interactions (Koyama et al. 2018). Plant-growth-promoting bacteria can mitigate 343 

the effects of environmental stress on plants (Yang et al. 2009), but this may also 344 

negatively affect resident communities when they favor establishment of invaders (Zhang 345 

et al. 2018). A large range of potential mechanisms for facilitation thus exists between 346 



these trophic levels, whether nutrient-, water-, immune-mediating- or micro-climate 347 

related. A better understanding of the role of interactions in structuring these soil 348 

communities can help elucidate ecologically important emergent properties of those 349 

systems, such as community functioning, stability, or resilience (van den Berg et al. 2022). 350 

5 – Facilitation’s effect on emergent properties 351 

Mutualisms have long been suggested to be a driving force of ecosystem processes in 352 

soil communities (Wall and Moore 1999) and a growing field is studying the emergent 353 

properties of interaction networks in both experiments and theoretical models (van den 354 

Berg et al. 2022, Chang et al. 2023). Species diversity, specific ecosystem functions and 355 

overall system stability or resilience are all emergent properties influenced by species 356 

interactions. Stability and resilience are defined in many different ways, but broadly 357 

consider the ability of a system to remain in a certain state and the rate at which a system 358 

can return to this state following perturbations (van Meerbeek et al. 2021, but see 359 

Donohue 2016 for varying definitions). Interaction networks can be evaluated at the taxa 360 

level by the number of edges (inferred interactions), the proportions of different inferred 361 

edges (e.g. positive versus negative) and other parameters such as centrality or 362 

‘keystoneness’ to determine the role of nodes inside a community (Berry and Widder 363 

2014). At the system level, modularity or connectivity may provide hints about a system’s 364 

emergent properties, such as stability or resilience (de Vries et al. 2018). Studying how 365 

network properties vary under environmental changes allows researchers to assess the 366 

vulnerability of soil systems to global change in terms of their functioning, diversity, and 367 

resilience. 368 



Productivity and other functions 369 

Productivity may directly be enhanced by facilitative interactions in bacterial communities 370 

(Fiegna et al. 2015). Network approaches have identified that cross-feeding interactions 371 

may be dominant drivers of bacterial community structure (Germerodt et al. 2016, Hoek 372 

et al. 2016). Facilitative interactions in bacterial communities forming biofilms or biocrusts 373 

promote bacterial productivity both at the community and species level (Boles et al. 2004, 374 

Wu et al. 2019, Li et al. 2020). Horizontal gene transfer may directly increase some 375 

community functions by increasing nutrient cycling or stress response in whole 376 

communities (Song et al. 2021). In microcosm experiments, environmentally stressed 377 

bacterial communities may require higher diversity to perform similar functions (García et 378 

al. 2018). Warming may lead to direct losses productivity in microcosms (Bestion et al. 379 

2020), but the interplay between environmental changes and species-specific interactions 380 

is often more complex (Bestion et al. 2018). Soil functions like nutrient cycling and plant 381 

growth promotion may benefit from network complexity, but decrease as networks are 382 

stressed by environmental pressures at higher elevations (Chen et al. 2022). Other 383 

environmental stressors such as land use may greatly impact the connectivity of bacterial 384 

networks and specifically impact important ecosystem functions such as carbon cycling 385 

(Xue et al. 2022). How the environment impacts ecosystem functions may be different for 386 

subsets of the community, e.g. bacteria within positive interaction networks and those 387 

outside (Yang et al. 2022). Different spatial scales also modulate the outcome of 388 

interactions between bacterial species, which may be intensely competitive at a very local 389 

scale but facilitate co-existence at the community level (Kuhn et al. 2022). 390 

Diversity and stability 391 



Facilitation has been found to be an important driver of biodiversity in plant communities 392 

(Navarro-Cano et al. 2021), promoting coexistence both mechanistically and 393 

evolutionarily (McIntire and Fajardo 2014). Facilitation in bacterial communities may 394 

directly increase species diversity by creating niche space for whole metabolic consortia 395 

(Pascual-García et al. 2020) or cheaters (Leinweber et al. 2017) and is often observed 396 

specifically in cases such as biofilm formation (Wu et al. 2019). Evidence for increased 397 

stability of more diverse bacterial communities may be found when considering their 398 

susceptibility to invasions in microcosms (Hodgson et al. 2002, Eisenhauer et al. 2012) 399 

and reductions of bacterial diversity can lead to a loss of stability in soil communities 400 

(Wagg et al. 2021). For instance, invasions of new bacterial groups can change 401 

community dynamics and alter community structure (Amor et al. 2020, Mawarda et al. 402 

2020) – an effect to which less biodiverse systems are more susceptible (Xing et al. 2021). 403 

Interaction types themselves can influence stability, as stronger competition can decrease 404 

stability in bacterial communities (Ratzke et al. 2020). Positive interactions may 405 

destabilize bacterial systems by causing dependencies, whereas the negative feedback 406 

caused by competitive or exploitative interactions may have a stabilizing effect (Coyte et 407 

al. 2015). Theoretical models suggest higher diversity increases community fluctuations 408 

but can make facilitating communities more stable depending on the asymmetry and 409 

nestedness of their interaction networks – i.e. community structure (Thébault and 410 

Fontaine 2010), and experimental studies have confirmed that some of these predictions 411 

hold true in microcosms (Hu et al. 2022) and in nature (Liu et al. 2022). Positive 412 

correlations between bacterial diversity and ecosystem stability (García-García et al. 413 

2019, Xu et al. 2021) and functions (Delgado-Baquerizo et al. 2017, Maron et al. 2018) 414 



may be partially explained by interspecies facilitation leading to complementarity (Tilman 415 

et al. 2014). The balance of competitive to facilitative interactions is increasingly found to 416 

be an important driver of species coexistence and thus of the relationship between whole-417 

community diversity and stability (Gjini and Madec 2021). Importantly, the broader biotic 418 

and abiotic environment is thought to drive the relationship between strength of facilitative 419 

networks and community stability (De Vries and Shade 2013) and this relationship is not 420 

stable under changing environments (Yuan et al. 2021), which makes understanding 421 

these relationships ever more relevant in the face of increasing challenges posed by 422 

climate change. 423 

Climate resilience 424 

The functional resilience of soil bacterial communities is driven by both the physico-425 

chemical environment and the resulting community structure (Griffiths et al. 2007). 426 

Keystone species within interaction networks can contribute significantly to the 427 

community’s overall resilience to disturbances (Ma et al. 2020b). Predominant interaction 428 

types across a whole community may influence their resilience, such as a decreased 429 

impact of nutrient stress on highly facilitative communities (Machado et al. 2021). 430 

Conversely, highly competitive communities may be less resistant to environmental 431 

fluctuations (Ratzke et al. 2020). More phylogenetically and taxonomically diverse 432 

communities, implying more potential facilitative links, indeed show higher overall 433 

resilience to environmental stress in one study (Xun et al. 2021). Co-occurrence networks 434 

may be strengthened under drought stress and thus promote community resilience (Wu 435 

et al. 2019), but some bacterial communities show that highly connected co-occurrence 436 

networks can break down under drought stress (de Vries et al. 2018). Overall, 437 



experimental evidence for the relationship between community interaction types and 438 

resilience is rare (Philippot et al. 2021), and increased theoretical modelling efforts may 439 

provide better answers (van den Berg et al. 2022). Increased diversity due to facilitation 440 

promoting coexistence may have beneficial effects on bacterial community resilience 441 

(Yachi and Loreau 1999, Xu et al. 2021), but the direct relationship between bacterial 442 

facilitation and resilience in the face of climate change is generally poorly understood 443 

(Bardgett and Caruso 2020). Environmental changes can further lead to indirect changes 444 

in interaction networks, by influencing other groups such as invasive bacteria (Xing et al. 445 

2021) or plants (Pérez Castro et al. 2019) – which may subsequently affect the resilience 446 

or other emergent properties of the community. 447 

Resistance to invaders 448 

The increased establishment of invasive species under global warming is a well-known 449 

driver of biodiversity loss (Pimentel et al. 2005). In the context of species’ interaction 450 

networks, new players may drastically alter the existing dynamics of a community and the 451 

resulting resistance or resilience of an ecosystem – especially if their traits are different 452 

on average (van Kleunen et al. 2010). In soils, bacterial invasions are relatively 453 

understudied due to the enormous taxonomic challenges, but microcosm experiments 454 

may elucidate some of the general predictions. There is some evidence that highly 455 

facilitative communities can be more vulnerable to invaders (Li et al. 2018). Concurrently, 456 

higher resident diversity may limit invader success (van Elsas et al. 2012), and tightly 457 

interwoven facilitating communities show a higher degree of resistance to invaders (Qian 458 

and Akçay 2020, Kurkjian et al. 2021). Interactions with plants and other organisms may 459 

further influence the invasibility of bacterial soil communities (Fahey et al. 2020). The 460 



relationship of facilitation to community invasion thus depends on a complex interplay 461 

between the resident community’s existing niche partitions (Wei et al. 2015), 462 

environmental conditions (Yang et al. 2017) and species’ specific or evolutionary effects 463 

(van der Putten et al. 2007, Jousset et al. 2013). The effect of facilitation on such 464 

emergent properties has remained a pressing unknown in facilitation research for the last 465 

two decades (Richardson et al. 2000, Stachowicz and Byrnes 2006, Li et al. 2018, 466 

Piccardi et al. 2022). 467 

6 – Opportunities in bacterial facilitation research 468 

The last decade has seen tremendous progress in the study of bacterial facilitation, from 469 

the first experimental evidence for the stress gradient hypothesis in artificial (Piccardi et 470 

al. 2019) and natural (Hernandez et al. 2021) settings, to the continuous development of 471 

co-occurrence and modeling-based methods (Kodera et al. 2022). The important impacts 472 

of environmental change on soil bacteria are now well established and the role of 473 

facilitation for soil community climate resilience and resistance remains an important area 474 

of future research (Naylor et al. 2020). Both the determinants (Dai et al. 2022) and 475 

outcomes (Ratzke et al. 2020) of such emergent properties are increasingly well 476 

understood and applied in soil research (Xiang et al. 2023). However, how these 477 

emergent properties and complex dynamics emerge from interactions in bacterial 478 

communities remains a topic of interest and soil systems are perfectly poised to reveal 479 

these associations (Segrè et al. 2023). 480 

Microcosm studies have allowed for the study of  drivers of selection in shaping 481 

community interaction types (Martin et al. 2016, Kayser et al. 2018) and have immense 482 



promise to be engineered in a variety of experimental settings, which can help elucidate 483 

ecologically meaningful patterns (Friedman et al. 2017, McCarty and Ledesma-Amaro 484 

2019). They can also be used to create analogs of natural systems to distinguish 485 

interactions between all the different players in a bacterial community and investigate 486 

emergent properties in controlled settings (Antoniewicz 2020). Pairwise experiments 487 

tracking population growth rates can generate hypotheses and ultimately bring to light the 488 

mechanisms by which species might interact (Löder et al. 2014), especially across 489 

temporal and environmental variation (Coenen et al. 2020).  In nature, modern 490 

sequencing technologies make it possible to track both population structure and genetic 491 

diversity underlying species interactions on a very fine temporal and spatial scale (Sher 492 

et al. 2011, Rodríguez-Verdugo and Ackermann 2021). These experiments can also be 493 

especially useful to infer the natural parameters used in constructing models of these 494 

populations in artificial space (Boza et al. 2023), while the detailed community-level 495 

information can address questions about the effects of facilitation on community assembly 496 

or structure (Lin et al. 2018). However, to be useful for predicting the relationship between 497 

the environment and species interactions such experiments need to take the complexity 498 

of natural systems into account, including accounting for spatial and temporal 499 

heterogeneity of communities and the more complex context of field studies (Chamberlain 500 

et al. 2014, Xiang et al. 2023). The field is currently perfectly poised to combine both 501 

approaches to investigate real-world interaction shifts, based on ground-truthed 502 

experimental evidence from microcosms (Gralka et al. 2023). 503 

To enable the conceptual understanding of bacterial interaction networks in natural 504 

systems, we hope that future research will focus on generating findable, accessible, 505 



interoperable, and reusable genetic datasets from culture-based and real-world studies 506 

(FAIR, Pacheco et al. 2022). FAIR data will allow microbial ecologists to address 507 

ecological hypotheses, including ones related to the prevalence and importance of 508 

facilitative interactions, and their role in dealing with challenges posed by global change. 509 

Meanwhile, we should not lose sight of the underlying mechanisms that allow bacterial 510 

facilitation in a variety of settings, and take great care to study these in detail, both in field 511 

and laboratory settings. The genetic pathways underlying cross-feeding (D’Souza et al. 512 

2018), immune-mediating (Zélé et al. 2018), or environmental modulation interactions 513 

(Madsen et al. 2016) are increasingly mapped to enable the investigation of multiple 514 

functions in natural communities (Sun et al. 2022, Wang et al. 2023). Understanding how 515 

these interactions influence eventual ecosystem functions remains the challenging task 516 

for this field moving forward (Delgado-Baquerizo et al. 2020). 517 

By testing ecological predictions (Houlahan et al. 2017) and utilizing the combined 518 

methods proposed in this article, we hypothesize that ecosystem functions in soils will be 519 

shown to depend on facilitative processes as much as the intensively studied nurse plants 520 

– beneficiary systems (Brooker et al. 2008) or the intertidal communities of Bertness 521 

(1989). In fact, soil bacteria might be underlying much of the ecology traditionally ascribed 522 

to interspecific plant facilitation (Rodríguez-Echeverría et al. 2016), and the role of soil 523 

bacteria in ecosystem responses to climate change, including resilience and resistance, 524 

will undoubtedly prove crucial in mitigating the climate impacts on ecosystems worldwide 525 

(Certini and Scalenghe 2023). Describing and understanding the links between bacterial 526 

interactions on the one hand and ecosystem functioning and vulnerability on the other 527 



hand will prove to be crucial, particularly in the face of the considerable challenges posed 528 

to soil biodiversity by global change (Leal Filho et al. 2023). 529 

Significance statement: 530 

The Oikos special issue “The role of plant facilitation in mediating climate change impact on 531 

biodiversity” aims to synthesize the role of plant facilitation on biodiversity in the face of 532 

environmental changes. Soil bacteria are of immediate importance to this conversation as their 533 

facilitative links underlie function in soil ecosystems that are crucial for plants and other biota, yet 534 

are often left out of the discussion altogether. There exists no comprehensive review of the role, 535 

structure, and importance of facilitation in bacterial communities in natural soils, and the different 536 

fields that do research bacterial facilitation often fall short in investigating those as part of a 537 

comprehensive ecological framework. Here, we illustrate that facilitation in soil bacteria is 538 

ubiquitous and plays an important role in maintaining diversity, function, and resilience. We 539 

provide a synthesis of methodological avenues to improve inference of facilitation in natural soil 540 

communities and present an ecological framework to investigate these interactions in regard to 541 

global change. We believe that this forum article will help researchers on plant facilitation see 542 

their findings in a broader ecological context, help microbial ecologists synthesize their research 543 

aims within a broader ecological framework, and will be informative for anyone working in ecology 544 

generally to understand the importance of facilitation in bacterial communities and their potential 545 

in future study. 546 
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