

I**brium Plasma in
Sonoluminescence**
A, Sergey Nikitenko¹, Thierry Belmonte²
A, CNRS, ENSCM, F-30207 Bagnols-sur-Cèze, INSTITUT DE CHIMIE INSTITUT DE CHIMIE

Rachel Pflieger¹, Sergey Nikitenko¹, Thierry Belmonte²

¹ICSM, Univ Montpellier, CEA, CNRS, ENSCM, F-30207 Bagnols-sur-Cèze, INUTITIDUDDIE SONOTUMINESCENCE

ICSM, Univ Montpellier, CEA, CNRS, ENSCM, F-30207 Bagnols-sur-Cèze,

France

²Univ Lorraine, CNRS, IJL, F-54000 Nancy, France France 2Univ Lorraine, CNRS, IJL, F-54000 Nancy, France

Acoustic cavitation, Göttingen and me

Acoustic cavitation, Göttingen and me

01/2008: I was appointed at CEA / ICSM to work on sonoluminescence combined to son

But: building under construction, no lab

Collaboration with MPI-KG Potsdam: there, SBSL, at ICSM **Acoustic cavitation, Göttinge**

01/2008: I was appointed at CEA / ICSM to work on sonoluminescence co

But: building under construction, no lab

Collaboration with MPI-KG Potsdam: there, SBSL, at ICSM: WBSL

Looking at th **EXECUTE: ACOUSTIC CAVITATION, Göttingen and me**

01/2008: I was appointed at CEA / ICSM to work on sonoluminescence combined to sonochemistry

But: building under construction, no lab

Collaboration with MPI-KG Potsdam: t **Acoustic cavitation, Göttings**
DO8: I was appointed at CEA / ICSM to work on sonoluminescence
But: building under construction, no lab
Collaboration with MPI-KG Potsdam: there, SBSL, at ICSM; MBSL **Acoustic cavitation, Götting**

1008: I was appointed at CEA / ICSM to work on sonoluminescence

But: building under construction, no lab

Collaboration with MPI-KG Potsdam: there, SBSL, at ICSM, MBSL

ng at the literature

Diplomarbeit vorgelegt von Reinhard Geisler Göttingen

angefertigt im Dritten Physikalischen Institut der Georg-August-Universität zu Göttingen

1998

Acoustic cavitation, Göttingen and me

Acoustic cavitation, Gö

06/2008: my first ESS (ESS-16)

Robert Mettin going from a poster to the next one and givin

Sharing knowledge as common trait in their group? **Acoustic cavitation, Göttingen and me**
06/2008: my first ESS (ESS-16)
Robert Mettin going from a poster to the next one and giving advice to every student
Sharing knowledge as common trait in their group? **Acoustic cavitation, Göttingen and me**
06/2008: my first ESS (ESS-16)
Robert Mettin going from a poster to the next one and giving advice to every student
Sharing knowledge as common trait in their group?
10/2011: Worksho

Acoustic cavitation & Sonochemistry

Acoustic cavitation & Sonochemistry

Acoustic cavitation & Sonochemistry **Acoustic cavitation & Sonochemistry
The very violent collapse of cavitation bubbles leads to the formation of a plasma
Radical generation in the sonochemical plasma:
H₂O ->))) H + *OH
Subsequent recombination : Acoustic cavitation & Sonochemistry**
The very violent collapse of cavitation bubbles leads to the formation of a plasma
Radical generation in the sonochemical plasma:
 $H_2O \rightarrow)$)) H + *OH
Subsequent recombination :
 $H + OH \$ **Acoustic cavitation & Sonochen**
The very violent collapse of cavitation bubbles leads to the formation of a
Radical generation in the sonochemical plasma:
 $H_2O \rightarrow)$)) $H + {}^{\bullet}OH$
Subsequent recombination :
 $H + OH \rightarrow H_2O$
 $H +$ Figure 1: Consider the Sonochemistry
Basis of sonochemical activity in aqueous solutions
Basis of sonochemical activity in aqueous solutions

$$
H_2O \rightarrow ||H + \bullet OH
$$

collapse of cavitation bubbles leads to the formation of a plasma
 9 in the sonochemical plasma:
 $+°OH$

mbination :
 2^O

Basis of sonochemical activity in aqueous solutions

3 zones of sonochemical activity:

Hot bu $H + OH \rightarrow H₂O$ Basis of sonochemical activity in aqueous solutions $H + H \rightarrow H_2$
 \bullet OH + \bullet OH \rightarrow H_2O_2

Sonoluminescence

OH (C²Σ'-Α²Σ')

60

50

40

30

20

10

0

SL Intensity, A.U.

- of reactions
- Estimation of temperatures Intense continuum + emissions from

electronically excited species

• Hints on formed species, on mechanisms

of reactions

• Emissions are characteristic of the species

and its excitation state

Estimation of temperature OH (A'z'-X^Pm)

Wavelength in water: 4.1 mm

US period: 50 μ s at 20 kHz,

at 362 kHz

US period: 50 µs at 20 kHz, 2.8 µs at 362 kHz

-
-
-
-

Crum, 1994

graphic plate submitted to US went blurred
cence, responsible for the blurring
nt, frequency-dependent etc. But averages
mple) – 1990 (Gaitan and Crum) :
SBSL made it possible to measure bubble
dynamics, light emission etc graphic plate submitted to US went blurred
cence, responsible for the blurring
nt, frequency-dependent etc. But averages
mple) – 1990 (Gaitan and Crum) :
SL)
SBSL made it possible to measure bubble
dynamics, light emission

- -
- -

SBSL set-up, Potsdam

PhD Julia Schneider (2008-2012)

First SBSL reactor: inspired by Göttingen

SBSL in controlled conditions:

temperature, gas nature et partial pressure, acoustic pressure 106 mL; 27.6 kHz

Hydrophone

Single bubble

Piezo-element

SBSL in water (air) (10 s exposure time)

7 (')

7)

MBSL set-up, Marcoule

250 mL, continuous gas flow, 10 °C Frequency: 20 / 100 / 200 / 362 / 600 / 1057 kHz

Göttingen (H₂SO₄, Xe)

Experimental evidence of plasma formation

Concentrated H_2SO_4 : :

**Experimental evidence of

Concentrated H₂SO₄:

exotic system far from applications

but generating beautiful spectra
** $\begin{array}{r} \text{Very low vapour} \\ \text{But generating beautiful spectra} \\ \Rightarrow \text{Bubble conte} \\ \Rightarrow \text{More efficient} \end{array}$ Experimental evidence of pl

Concentrated H₂SO₄:

exotic system far from applications

but generating beautiful spectra
 $\begin{array}{r} \text{very low vapour pressu} \\ \text{but generating beautiful spectra} \\ \text{but generating beautiful spectra} \\ \text{so} \end{array}$
 $\begin{array}{r} \text{very low vapour pressu} \\ \text{HySO}_4 \text{ 95 wt } \% : 2.10^{-3} \\ \$

- **Evidence of plasma formation
Very low vapour pressure (from water)
** H_2SO_4 **95 wt % : 2.10⁻³ mbar (10,000 times less than water)
** \Rightarrow **Bubble content = dissolved (rare) gas
** \Rightarrow **More efficient energy concentration** $\rm H_2SO_4$ 95 wt % : 2.10⁻³ mbar **ence of plasma formation

by vapour pressure (from water)**

95 wt % : 2.10⁻³ mbar (10,000 times less than water)

ble content = dissolved (rare) gas

pre efficient energy concentration

s quenching **Evidence of plasma formation
Very low vapour pressure (from water)
H₂SO₄ 95 wt % : 2.10⁻³ mbar (10,000 times less than water)
** \Rightarrow **Bubble content = dissolved (rare) gas
** \Rightarrow **More efficient energy concentration
 Evidence of plasma formation

Very low vapour pressure (from water)

H₂SO₄ 95 wt % : 2.10⁻³ mbar (10,000 times less than water)
** \Rightarrow **Bubble content = dissolved (rare) gas
** \Rightarrow **More efficient energy concentration
**
-
-
-

Example 18 Series Control of Plasma formation

Very low vapour pressure (from water)

H₂SO₄ 95 wt % : 2.10⁻³ mbar (10,000 times less than with
 \Rightarrow Bubble content = dissolved (rare) gas
 \Rightarrow More efficient energ SBSL, 85% $\rm H_2SO_4$, 67 mbar gas

 $^+$ - $\Delta^2\Sigma^+$) \cdot Ar $<$ Kr $<$ Xe and incr

Sonoluminescence spectroscopy in aqueous solutions: what temperatures are estimated?

Read of Line Read on the Company

Chemical determination of the temperature and the set of the set of

Chemical determination of Chemical determination of
Mean bubble temperature
Ciawi et al.: Aqueous solutions of *tert*-butanol, Ar
Methyl radical recombination method: temperature especombination reactions (thermal equili **Chemical determination of the**
Mean bubble temperature
Ciawi et al.: Aqueous solutions of *tert*-butanol, Ar
Methyl radical recombination method: temperature estimated
recombination reactions (thermal equilibrium assumed) **Chemical determination of the temperature**
Mean bubble temperature
Ciawi et al.: Aqueous solutions of *tert*-butanol, Ar
Methyl radical recombination method: temperature estimated from the kinetics of
recombination reacti **Chemical determination of the temperature**
Mean bubble temperature
Ciawi et al.: Aqueous solutions of *tert*-butanol, Ar
Methyl radical recombination method: temperature estimated from the kinetics of
recombination rea

-
-

Sonoluminescence derived temperature

Sonoluminescence derived temperature
Sonoluminescence is emitted at the last stage of collapse
It reflects the most extreme conditions reached
First approach = temperature derivation from the SL continuum shape

Sonoluminescence derived temperatured Sonoluminescence is emitted at the last stage of collapse
It reflects the most extreme conditions reached
First approach = temperature derivation from the SL continuum shap
Approach **Sonoluminescence derived temperature**

Sonoluminescence is emitted at the last stage of collapse

It reflects the most extreme conditions reached

First approach = temperature derivation from the SL continuum shape

Appr **Sonoluminescence derived temperature**

Sonoluminescence is emitted at the last stage of collapse

It reflects the most extreme conditions reached

First approach = temperature derivation from the SL continuum sha

Approa

Black-body: 8800 K Bremsstrahlung: 100,000 K

Spectroscopic measurements

Molecular emissions provide a more direct approach since their shape reflects their excitation level (i.e. the relative populations of excited levels).

Spectroscopic measure
 Spectroscopic measure

ir excitation level (i.e. the relative populations of excited

The temperature of cavitation,

Flint & Suslick (1991)

Flint & Suslick (1991)

= the first one

Silicon oil, = the first one Spectroscopic m

Silecular emissions provide a more direct appro-

ir excitation level (i.e. the relative populations of

The temperature of cavitation,

Flint & Suslick (1991) wate

= the first one Rare

Silicon oil, Ar, C_2 Swan bands

Franch School Spreads Serverse Conditions during cavitation
Hot spot conditions during cavitation in
Water, Didenko et al (1999)
Rare example in aqueous solutions
Benzene aq. solution, 20 kHz, Ar **The Surface Serverse Serverse Serverse Surface Serverse Surface Sprongle Surface Sprongle Serversions of excited levels).**

Hot spot conditions during cavitation in

water, Didenko et al (1999)

Rare example in aqueous so **Proach since their shape reflects**
 Proach since their shape reflects

And spot conditions during cavitation in

water, Didenko et al (1999)

Rare example in aqueous solutions

Benzene aq. solution, 20 kHz, Ar

C₂ Swa **Proach since their shape reflects**
 Sproach since their shape reflects

Hot spot conditions during cavitation in

water, Didenko et al (1999)

Rare example in aqueous solutions

Benzene aq. solution, 20 kHz, Ar

C₂ Sw C_2 Swan bands

Unicity of the temperature?

ectroscopy of water, Ar, 20 kHz

 $H_2O \rightarrow$))) H + OH*

Need to introduce

ferent temperatures!

= 12000 K, T_r = 4000 K Example 2

Need to introduce

different temperatures!
 $T_v = 12000 \text{ K}, T_r = 4000 \text{ K}$

 T_v = 12000 K, T_r = 4000 K

What do temperatures reflect?

Relative population of

Relative population of each

Relative population of each

General case in a non-equilibrium plasma: $T_e > T_v > T_r \sim T_{gas}$

SL spectroscopy of NH₃.H₂O, Ar, 20 kHz
 Experience and SCS

The Contract of NH₃.H₂O, Ar, 20 kHz

The Contract of NH₃.H₂O, Ar, 20 kHz

The Contract of NH₃.H₂O, Ar, 20 kHz

The Contract of NH₃.H₂O, Ar, SL spectroscopy of $NH_3.H_2O$, Ar, 20 kHz

 T_v > T_r: non-equilibrium plasma, as in H₂O, Ar

0.1 M t-BuOH, Ar, 20 kHz, 11°C

SL spectra present C_2 Swan bands C_2 (d³ $\Pi_g - a^3 \Pi_u$))

High frequency SL spectra, NH₃.H₂O, Ar

transition US frequency T_{w} K T_{n} , K p, bar 359 kHz 10000 ± 1000 2200 ± 500 359 kHz 13000 ± 2000 6000 ± 1000 $T_v > T_r$	310 315 320 λ , nm	டிய 325	$0,0 -$	340 330 335 λ , nm
NH ($A^3\Pi$ - $X^3\Sigma$ -) OH $(A^2\Sigma^-.X^2\Pi)$				
				1200 ± 100
				2000 ± 500
Good agreement between OH & NH temperatures				

 $T_v > T_r$
Good agreement between OH & NH temperatures

High frequency SL spectra, aq. t-BuOH, Ar
OH, Ar, 362 kHz, 5°C

8.5 10-4 M t-BuOH, Ar, 362 kHz, 5°C

**spectra, aq. t-BuOH, Ar

[t-BuOH] = 1.10⁻³ – 5.10⁻³ M; 362 kHz

SL spectra present C₂ Swan bands

C₂ (d³** Π **_c – a³** Π **_.) spectra, aq. t-BuOH, Ar

[t-BuOH] =** $1.10^{-3} - 5.10^{-3}$ **M; 362 kHz

SL spectra present C₂ Swan bands

C₂ (d³** $\Pi_g - a^3\Pi_u$ **)** SL spectra present C_2 Swan bands C_2 (d³ $\Pi_g - a^3 \Pi_u$) **Example 13 and 14 BuOH, Arthurst 11**

II = 1.10⁻³ – 5.10⁻³ M; 362 kHz

tra present C₂ Swan bands

(d³ Π_g – a³ Π_u))

The presence of volatile solutes induces a decrease in T_{w} in agreement with

INSTITUT DE CHIMIE (france) SEPARATIVE DE MARCOULE (UGO LI)

What about the pressure estimation?

Read of Delivery

About the pressure estimation **About the pressure estimation**
Two experimental techniques to determine pressure / intrabubble density:

> Shift in wavelength

- Lepoint-Mullie (*Ultrason Sonochem* 2001) (Rb*, 20 kHz, Ar) : d_{rel} = 18 ± 2

- McNamara **About the pressure estimation**
experimental techniques to determine pressure / intrabubble density:
ift in wavelength
- Lepoint-Mullie (*Ultrason Sonochem* 2001) (Rb*, 20 kHz, Ar) : d_{rel} = 18 ± 2
- McNamara (*Nature* 1 **About the pressure estimation**
experimental techniques to determine pressure / intrabubble density:
ift in wavelength
- Lepoint-Mullie (*Ultrason Sonochem* 2001) (Rb*, 20 kHz, Ar) : d_{rel} = 18 ± 2
- McNamara (*Nature* 1 (corresponding to 300 bar at 4700 K)

(corresponding to 300 bar at 4700 K)

\triangleright Shift in wavelength

-
-

About the pressure estimation

-
- **About the pressure estimation**

Peak broadening (present approach also)

 Hypothesis: pressure = main source of peak broadening

 Sehgal (*u Chem Phys 1979*) (Na*, 460 kHz, Ar): d_{rel} = 36-50
	-
	- **About the pressure estimation**

	Eak broadening (present approach also)

	 Hypothesis: pressure = main source of peak broadening

	 Sehgal *u Chem Phys* 1979) (Na*, 460 kHz, Ar): d_{rel} = 36-50

	 Choi *(J Phys Chem B* 20 **About the pressure estimation**

	eak broadening (present approach also)

	- Hypothesis: pressure = main source of peak broadening

	- Sehgal (*J Chem Phys 1979*) (Na*, 460 kHz, Ar): d_{rel} = 36-50

	- Choi (*J Phys Chem B* 2 **About the pressure estimation**

	- Hypothesis: pressure = main source of peak broadening

	- Sehgal (*J chem B Phys 1979*) (Na*, 460 kHz, Ar): d_{rel} = 36-50

	- Choi (*J Phys Chem B 2008*) (Na*, 138 kHz, Ar): d_{rel} = 59,5 **About the pressure estimation**

	Eak broadening (present approach also)

	- Hypothesis: pressure = main source of peak broadening

	- Sehgal (*u chem Phys 1979*) (Na*, 460 kHz, Ar): d_{rel} = 36-50

	- Choi (*u Phys Chem B 20*
	-

Peak broadening (present approach also)

- Hypothesis: pressure = main source of peak broadening

- Sehgal *u Chem Phys* 1979) (Na*, 460 kHz, Ar): d_{rel} = 36-50

- Choi *u Phys Chem B* 2008) (Na*, 138 kHz, Ar): d_{rel} = - Hypothesis: pressure = main source of peak broadening

Sehgal (*J* Chem Phys 1979) (Na*, 460 kHz, Ar): d_{rel} = 36-50

- Choi (*J* Phys Chem B 2008) (Na*, 138 kHz, Ar): d_{rel} = 59,5 (i.e. 880 bar for

- Kazachek (*Tech*

Specair software; T_v , $T_r \pm 1000$ K; $P_{\text{eff}} \pm 300$ bar

This value of effective pressure quantifies the broadening of the emissions. It is not a real pressure.

About the pressure estimation About the pressure estimation
Another source of peak broadening, the perturbation by the charged species present
in the plasma (Stark effect) must be taken into account
Neutral species \rightarrow pressure broadening About the pressure estimation
Another source of peak broadening, the perturbation by the charged species present
in the plasma (Stark effect) must be taken into account
Neutral species \rightarrow pressure broadening
Charged spe About the pressure estime

In source of peak broadening, the perturbation by the cha

Dasma (Stark effect) must be taken into account

Neutral species \rightarrow pressure broadening

Charged species \rightarrow Stark broadening **About the pressure estim**

Pressure of peak broadening, the **perturbation by the charged Stark effect**) must be taken into account

Neutral species \rightarrow pressure broadening

Charged species \rightarrow Stark broadening
 $\begin{CD} \$

Flannigan (Phys Rev Lett 2006) (Ar^{*}, H₂SO₄))

Stark parameters)

US frequency & Stark effect

US frequency & Stark effect

Strong broadening of emissions at HF

Estimated T_V (Specair) HF > BF

More ionized plasma at HF US frequency & St

Strong broadening of emissions at HF

Estimated T_v (Specair) HF > BF
 $\frac{10}{\pi} \left\{ \frac{10}{20} \frac{10}{10} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{100} \frac{10}{10$ Estimated T_v (Specair) HF > BF **More ionized plasma at HF**

362 kHz 8,5 10-4M Ar (b)

EPARATIVE DE CHIMIE

Read of December 18

Ar vs. Ar/O₂ at different frequencies at different frequencies

Figures

In the presence of O_2 : : + OH[•] O_2 + H[•] \rightarrow HO₂[•] • $2 HO_2^{\bullet} \rightarrow H_2O_2 + O_2$ O_2 —))) \rightarrow 2 O (5.15 eV/bond) $O + H₂O \rightarrow 2OH^{\bullet}$ $O + H^{\bullet} \rightarrow OH^{\bullet}$ Under Ar: H_2O —))) \rightarrow H^{\cdot} + OH^{\cdot} $2 H^{\bullet} \rightarrow H_{2}$ 2 OH^{$\cdot \rightarrow$ H₂O₂} Ar-20%O₂

Jnder Ar: In the presence of O₂:
 H_2O -))) \rightarrow H⁺ + OH⁺ O₂ + H⁺ \rightarrow H_{O2}⁺
 2 HO₂⁺ \rightarrow H₂O₂⁺ O₂
 0 H⁺ \rightarrow H₂O₂ (5.15 eV/bond)
 $0 + H_2O \rightarrow 2OH^*$
 $0 + H^* \rightarrow OH^*$

Higher incr the presence of O₂:

+ H⁺ \rightarrow HO₂⁺

HO₂⁺ \rightarrow H₂O₂⁺ O₂

--))) \rightarrow 2 O (5.15 eV/bond)

+ H₂O \rightarrow 2OH⁺

+ H⁺ \rightarrow OH⁺

yield at à HF

yield at à HF

Ar vs. Ar/O₂ at different frequencies

Adding 20%O₂ in Ar: LF: H₂O₂ ↑, SL \downarrow ₂₅ $HF: H_2O_2 \uparrow$, SL \uparrow

 O_2 + H^{\bullet} \rightarrow HO₂ \bullet • $2 HO_2^{\bullet} \rightarrow H_2O_2 + O_2$ O_2 —))) \rightarrow 2 O (5.15 eV/bond) $O + H₂O \rightarrow 2OH⁴$ $O + H^{\bullet} \rightarrow OH^{\bullet}$

Pflieger et al., Ultrason. Sonochem. (2015)

Dissociation of N2

Water Ar-20% N_2 MBSL spectra

20 kHz (P_{ac} = 33 W) 100 kHz (P_{ac} = 40 W) 362 kHz (P_{ac} = 43 W) 18° C, 100 mL.min⁻¹ Ar/(20 vol.%)N₂

 $\frac{1}{300}$
 $\frac{1}{320}$
 $\frac{1}{340}$
 $N + H \rightarrow NH$ $N + H_2 \rightarrow NH + H$

Dissociation of N_2 at high and intermediate frequencies (≥ 100 kHz)

INSTITUT DE CHIMIE

Read of December 18

CO disproportionation

 $CO + OH \rightarrow CO₂ + H$ + H

But also formation of a solid similar to $(C_3O_2)_n$ polymer

CO disproportionation

20 kHz sonication of water saturated with Ar - 20% CO:

CO + OH → CO₂ + H

But also formation of a solid similar to (C₃O₂)_n polymer

CO*(v₁) + CO*(v₂) → CO₂ + C

C + CO(v₀) + Ar → $CO^*(v_1) + CO^*(v_2) \to CO_2 + C$ $C + CO(v_0) + Ar \rightarrow CCO + Ar$ $CCO + CO(v_0) + Ar \rightarrow C_3O_2 + Ar$ **CO disproport**

ication of **water saturated with Ar - 20% CO:**
 CO_2 + H

mation of a solid similar to $(C_3O_2)_n$ polymer
 $D^*(v_2) \rightarrow CO_2 + C$
 $Ar \rightarrow CCO + Ar$
 $) + Ar \rightarrow C_3O_2 + Ar$
 $_3O_2)_n$

ne ultrasonically driven disproportiona n C₃O₂ \rightarrow (C₃O₂)_n \mathcal{L}_{n}

20 kHz sonication of water saturated with Ar - 20% CO:
 $\overline{CQ + CH \rightarrow CQ_2 + H}$

But also formation of a solid similar to $(C_3Q_2)_n$ polymer
 $\overline{CQ + CH \rightarrow ACQ_2 + H}$
 $\overline{CQ + CH \rightarrow ACQ_2 + H}$ (C_3O_2) _n solid enriched n

<sub>)_n solid enriched

¹³C isotope

¹³C isotope

_{n equilibrium}</sub> in 13C isotope Non equilibrium

nation
 $(C_3O_2)_n$ solid enriched

in ¹³C isotope

Non equilibrium

At equilibrium, enrichment with

light isotope expected: it reacts

faster due to its higher zero

vibrational level energy. **nation**
 $(C_3O_2)_n$ solid enriched

in ¹³C isotope

Non equilibrium

At equilibrium, enrichment with

light isotope expected: it reacts

faster due to its higher zero

vibrational level energy.

Here the reaction occur **ration**
 $(c_3O_2)_n$ solid enriched

in ¹³C isotope

Non equilibrium

At equilibrium, enrichment with

light isotope expected: it reacts

faster due to its higher zero

vibrational level energy.

Here the reaction occur (C₃O₂)_n solid enriched
in ¹³C isotope
Non equilibrium
At equilibrium, enrichment with
light isotope expected: it reacts
faster due to its higher zero
vibrational level energy.
Here the reaction occurs via
vibratio $(C_3O_2)_n$ solid enriched
in ¹³C isotope
Non equilibrium
At equilibrium, enrichment with
light isotope expected: it reacts
faster due to its higher zero
vibrational level energy.
Here the reaction occurs via
vibrational (C_3O_2)_n solid enriched

in ¹³C isotope

Non equilibrium

At equilibrium, enrichment with

light isotope expected: it reacts

faster due to its higher zero

vibrational level energy.

Here the reaction occurs via
 ($C_3C_2n_n$ solid emicined
in ¹³C isotope
Non equilibrium
At equilibrium, enrichment with
light isotope expected: it reacts
faster due to its higher zero
vibrational level energy.
Here the reaction occurs via
vibration

 \mathbf{r}

Sonochemical splitting of water molecule

The contract of the **Sonochemical splitting of water molecule

20** kHz sonolysis of H₂O/D₂O mixtures saturated with Ar / Xe

Measurement of H₂, D₂, HD in the gas phase (MS)

(*I(H₂*) + $\frac{1}{2}$ /(H_D) + $\frac{1}{2}$ /(HD) **Sonochemical splitting**
20 kHz sonolysis of H₂O/D₂O mixtures saturated with A
Measurement of H₂, D₂, HD in the gas phase (MS)
H/D isotope separation factor α ($\frac{H}{D}$) **Prochemical splitting of water molecution**
 J/D_2 O mixtures saturated with Ar / Xe

, HD in the gas phase (MS)

ation factor α ($\frac{H}{D}$)
 $\left(\frac{I(H_2) + \frac{1}{2}I(H_1)}{I(D_2) + \frac{1}{2}I(H_2)}\right)$ **Sonochemical splitting of water**

sonolysis of H₂O/D₂O mixtures saturated with Ar / Xe

rement of H₂, D₂, HD in the gas phase (MS)

H/D isotope separation factor α
 $\alpha = \frac{\left(\frac{H}{D}\right)_{product}}{\left(\frac{H}{D}\right)_{initial}} = \frac{\left(\frac{H}{$

Measurement of H_2 , D_2 , HD in the gas phase (MS)

ting of water molecule
\nwith Ar / Xe
\n
$$
\alpha = \frac{\left(\frac{H}{D}\right)_{product}}{\left(\frac{H}{D}\right)_{initial}} = \frac{\left(\frac{I(H_2) + \frac{1}{2}I(HD)}{I(D_2) + \frac{1}{2}I(HD)}\right)}{\left(\frac{H_2O}{D_2O}\right)}
$$
\nEquilibrium case (T_g=5000 K) α < 1.2
\n98% D₂O α ≈ 2
\nEnrichment in light isotope
\nNot only water molecule splitting as
\nusually reported
\nH₂O → H + OH
\nBut more complex plasma mechanism

 $H_2O \rightarrow H + OH$ (*D*)_{initial} (*D*₂*O*)

Equilibrium case (T_g=5000 K) α < 1.2

98% D₂O $\alpha \approx 2$

Enrichment in light isotope

Not only water molecule splitting as

usually reported
 $H_2O \rightarrow H + OH$

But more complex plasma mechanis Equilibrium case (T_g=5000 K) α < 1.2
98% D₂O $\alpha \approx 2$
Enrichment in light isotope
Not only water molecule splitting as
usually reported
 $H_2O \rightarrow H + OH$
But more complex plasma mechanism
involving e_{h} , D₂O⁺, HD₂

, D_2O^+ , HD_2O^+ ...

hot spot formed in cavitation bubbles is a non-equ
aqueous solutions
a: presence of **electrons & charged species**
in aqueous solutions, no emission of ions in SL
indirect indication of their presence = strong broad
emiss non-equilibrium: no unique temperature characterizes excited by few these in aqueous solutions

yelasma: presence of **electrons & charged species**

in aqueous solutions, no emission of ions in SL

indirect indication of th Implications of this non-equilibrium in sonochemistry have been illustrated by few experimental studies but would deserve more interest.

Implications of their presence = strong broadening of
 \triangleright non-equilibrium: no un even in Wildem and presence of **electrons & charged species**

in aqueous solutions, no emission of ions in SL

indirect indication of their presence = strong broadening of

emissions (Stark effects)
 Form-equilibrium: no

For your kind attention!