INSTITUT DE CHIMIE SEPARATIVE DE MARCOULE

Impact of bubble coalescence in the determination of cavitation bubble sizes using a pulsed US technique

ER HELP

R. Pflieger^a, S.I. Nikitenko^a, M. Ashokkumar^b

a ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France R. Pflieger^a, S.I. Nikitenko^a, M. Ashokkumar^b
ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia **R. Pflieger^a, S.I. Nikitenko^a, M. Ashokkumar^b

^a ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France

^b School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia

ESS17, Jena, Germany,** R. Pflieger^a, S.I. Nikitenko^a, M. Ashokkumar^b
^a ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
nool of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
ESS17, Jena, Germany, August 28t

Important to estimate reliably the bubble sizes, in particular the distribution of bubble ambient radii (i.e., bubble radii at zero acoustic pressure) R_0

necessary for every modelling of bubble behavior

But: bubble sizes are far from being monodisperse

- \triangleright bubbles too small to be active
- \triangleright too big bubbles resulting from coalescence of smaller ones
- \triangleright of interest for sonochemistry: only cavitation bubbles

Ultrasonics Sonochemistry, 6 (1999) 43-51. 2

Direct experimental determinations: imaging Direct experimental determines imaging

Measurement of the bubble size

distribution in a streamer structure

at 20 kHz (standing wave)

Method initially based on a direct high-speed imaging of all visible bubbles

distribution in a streamer structure at 20 kHz (standing wave) Measurement of the bubble size

Measurement of the bubble size

distribution in a streamer structure

at 20 kHz (standing wave)

Most imaged bubbles have R_{max} 5-40 µm

(R=5 µm corresponds to limit of detection)

Recalcu

radii leads to values in the range of a few 20 µm.

R. Mettin, S. Luther, W. Lauterborn, Bubble size distribution and structures in acoustic cavitation, in: 2nd Conf. on Applications of Power Ultrasound in Physical and Chemical Processing, 1999, pp. 125-129.

Direct experimental determinations: imaging **nental determinations:**
 imaging

a statistical approach \rightarrow no need for a standing

2.2 µm.

No bubble observed with R>60µm

due to shape instabilities

R₀ mostly in the range 2-4 µm **nental determinations:**
 imaging

a statistical approach \rightarrow no need for a standing

2.2 µm.

No bubble observed with R>60µm

due to shape instabilities

R₀ mostly in the range 2-4 µm

(possibly below 2 µm also) **EXECUTE IN A DETERMINATIONS:**
 CONTROM MOVE ASSESSMENT A SET AND SURFERENT ASSESSMENT AND SUBSEX Roll mostly in the range 2-4 µm

(possibly below 2 µm also) **imaging**

a statistical approach \rightarrow no need for a standing

2.2 μ m.

No bubble observed with R>60 μ m

due to shape instabilities

R₀ mostly in the range 2-4 μ m

(possibly below 2 μ m also)

in agreement wit

Method further developed by coupling it to a statistical approach \rightarrow no need for a standing wave, lower detection limit, access to $R_0 \geq 2.2$ μ m. a statistical approach \rightarrow no need for a standing

2.2 μ m.

No bubble observed with R>60 μ m

due to shape instabilities

R₀ mostly in the range 2-4 μ m

(possibly below 2 μ m also)

in agreement with calculate

(27.5 kHz, air, 20°C)

F. Reuter, S. Lesnik, K. Ayaz-Bustami, G. Brenner, R. Mettin, Ultrasonics Sonochemistry, 55 (2019) 383-394.
More is a more', in Sonochemistry and Sonoluminescence, ed. by L.A. Crum, T.J. Mason, 4 J.L. Reisse, K.S. Suslick (Kluwer Academic Publishers, Dordrecht, 1999)

Reliable largely validated methods

However

limited to low frequencies due to technical limitations (f \uparrow : R \downarrow , period \downarrow).

For instance, Reuter et al. indicated that due to the **optical resolution**, only bubbles larger ble largely validated methods

ever

mited to low frequencies due to technical limitations (f 1: R \downarrow , period \downarrow).

For instance, Reuter et al. indicated that due to the **optical resolution**, only bubbles larger

th their statistical approach. **Figure 14.1**

• **invited to low frequencies due to technical limitations (f 1: R** \downarrow **, period** \downarrow **).**

• **for instance, Reuter et al. indicated that due to the optical resolution**, only bubbles larger

than **10.5** µm

than **10.5 µm** are accessible to the measurement, or equilibrium radii larger than 2.2 µm with
their statistical approach.
• in most cases (except Cairos et al.), direct observations focus on **all present bubbles**,
not jus not just on cavitation bubbles, which explains the reported large size intervals.

F. Reuter et al., Ultrason. Sonochem., 55 (2019) 383-394

^{118 (2017)} 5

Measurement of the void rate (total volume of bubbles) after the end of the US irradiation using an electromagnetic method

Emergence of cavitation bubbles: global water permittivity \downarrow and resonant frequency $f_r \uparrow$

Void rate proportional to the resonant frequency shift δf.

air-saturated water 300 & 1100 kHz

At 344 kHz most bubbles had $R_0 < 3.5 \mu m$

and resonant irequency I_r is the constant of the constant of the resonant frequency shift of r air-saturated water
300 & 1100 kHz
At 344 kHz most bubbles had $R_0 < 3.5 \mu m$
It was shown that if the US irradiation is to It was shown that if the US irradiation is too long, coalescence of bubbles can perturb the measurement and lead to a shift of the determined bubble size distribution towards bigger sizes

Labouret, J. Frohly, in: Int. Congress on Ultrasonics, Vienna, 2007; S. Labouret, J. Frohly, in: 10ème Congrès Français d'Acoustique, Lyon, France, 2010. 7

Scattering intensity of bubbles vs. time followed with an **acoustic method**.

It demonstrated the feasibility of measurement of bubble size distributions at frequencies as high as 5 MHz in a focused configuration.

'Larger bubbles were induced by longer pulses'

S.S. Xu, Y.J. Zong, X.D. Liu, M.X. Wan, Size Distribution Estimation of Cavitation Bubble Cloud via Bubbles Dissolution Using an Ultrasound Amer Inst Physics, Melville, 2017. 8

Indirect methods

Indirect methods
Monitoring technique = measurement of emitted light (SCL or SL) intensity.
Advantage: restricts the population of studied bubbles to (SCL or SL) active bubbles.
US during a constant on-time (t_{on}): for

In the following off-time (t_{off}) , no US, bubbles are allowed to dissolve Variation of t_{off} in a large interval to determine the time needed for bubbles to completely dissolve

US on-time arbitrarily fixed at 4 or 6 ms

under high intensity focused US (HIFU, 1.2 MHz and 5 MHz), there may be coalescence **US on-time arbitrarily fixed** at 4 or 6 ms

In light of the observations by Labouret and Frohly with their electroma

under high intensity focused US (HIFU, 1.2 MHz and 5 MHz), *there may*

Lee et al.: 515 kHz

• air-sat

Lee et al.: 515 kHz

- air-saturated water: size distribution of 2.8-3.7 μm
-

smaller size range

SDS known to limit bubble coalescence: maybe coalesced bubbles were measured in water

 \rightarrow necessary to further investigate possible phenomena taking place under pulsed US

Study (at 362 kHz):

-
-

 $S-8 \text{ ms}$, Ar)

ent observation of different bubble sizes

uously sparged with these gases

Saturation \rightarrow continuous gas flow:

strong decrase in bubble size

(NaCl solutions) $5 - 8$ ms, Ar)

ent observation of different bubble sizes

uously sparged with these gases

Saturation \rightarrow continuous gas flow:

strong decrase in bubble size

(NaCl solutions) $(5 - 8 \text{ ms}, \text{Ar})$
 $(5 - 8 \text{ ms}, \text{Ar})$
 $(5 - 8 \text{ ms})$

Figure 5. Evolution of the average SL (respectively SCL) bubble size with NaCl concentration, under Ar and He, at 355 kHz under continuous gas bubbling (present data) and at 515 kHz after saturation of the solution with the chosen gas.⁴

- effects of acoustic power and possible formation of a standing-wave
- gases other than Ar

R. Pflieger, J. Lee, S.I. Nikitenko, M. Ashokkumar, Journal of Physical Chemistry B, 119 (2015) 12682-12688

 t_{on} = 1-3 ms, the SL intensity steadily increases: initial increase in the number of active bubbles For longer on-times, plateau followed by a decrease in intensity: interactions between bubbles decrease the number of active bubbles

Previous works chose an on-time (4-6 ms) corresponding to a reached steady-state population (and high SL intensity).

M. Ashokkumar, R. Hall, P. Mulvaney, F. Grieser, J. Phys. Chem. B 101 (1997) 10845–10850. R. Pflieger, J. Bertolo, L. Gravier, S.I. Nikitenko, M. Ashokkumar, Ultrason. Sonochem., 2021, 73, 105532 12

Impact of pulse on-time

Obtained values strongly depend on the on-time. Mean radius at 47 W for t_{on} = 1–3 ms: 3.8–4.0 μ m for t_{on} = 4–5 ms: 5.0–5.2 μ m **pulse on-time**

red values strongly depend on the on-time.

radius at 47 W

for $t_{on} = 1-3$ ms: 3.8–4.0 μm

for $t_{on} = 4-5$ ms: 5.0–5.2 μm

for $t_{on} = 6-8$ ms: 6.2–6.8 μm

ar the t_{on} , more time is available for bubble

for $t_{on} = 6-8$ ms: 6.2–6.8 μ m

ger the t_{on} , more time is available for bubbles to

eract and possibly coalesce during t_{on}

at is then monitored is the dissolution of these

lesced bubbles.

4.8 μ m

5.5 μ m
 Longer the t_{on} , more time is available for bubbles to interact and possibly coalesce during t_{on} What is then monitored is the dissolution of these coalesced bubbles. Bigger bubbles: $R_2 = 3.8 \sqrt[3]{2} = 4.8 \mu m$

Bigger bubbles: $R_2 = 3.8 \sqrt[3]{2} = 4.8 \mu m$

Bigger bubbles: $R_3 = 3.8 \sqrt[3]{2} = 4.8 \mu m$

A bubbles: $R_4 = 3.8 \sqrt[3]{4} = 6.0 \mu m$ etc.

Bigger bubble sizes at lower P_{ac} ! More coalesc

e.g. for $R_0 = 3.8 \mu m$ After coalescence of 2 bubbles: $R_2 = 3.8 \sqrt[3]{2} = 4.8 \mu m$ 3 bubbles: R₃ = $3.8\sqrt[3]{3}$ = $5.5\ \mu m$ 4 bubbles: R₄ = $3.8 \sqrt[3]{4} = 6.0 \mu m$ etc.

In the presence of SDS, a size around $3.0 \mu m$ is obtained in all cases, for both acoustic powers and $t_{on} = 0.5 \& 1 \text{ ms}$

Some coalescence still happens with SDS and the dissolution of bigger (coalesced) bubbles is observed

Considering R_0 = 3.0 μ m, the other values can be derived from bubble coalescence:

- \triangleright coalescence of 2 3.0 µm bubbles \rightarrow 3.0 x $\sqrt[3]{2}$ = 3.8 µm
- \triangleright Coalescence of 3 bubbles \rightarrow 3.0 x $\sqrt[3]{3}$ = 4.3 µm.

D. Sunartio, M. Ashokkumar, F. Grieser, Study of the coalescence of acoustic bubbles as a function of frequency, $_{14}$ power, and water-soluble additives, Journal of the American Chemical Society, 129 (2007) 6031-6036.

Effect of a continuous Ar gas flow

Experimental conditions chosen to limit coalescence

Fig. 4. Evolution of the SL intensity in water during t_{on} for different Ar gas flow rates, $t_{on} = 1$ ms, $P_{ac} = 47$ W, $V_{PMT} = 1000$ V, t_{off} corresponding to the SL plateau; the red arrow indicates the beginning of the US pulse. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The reached SL intensity during t_{on} increases with the gas flow rate, indicating an increasing number of SL bubbles:

- higher number of cavitation nuclei
- more pronounced coalescence (growing bubbles to their active size)

Fig. 5. Bubble sizes vs. Ar flow rate in water; $t_{on} = 1$ ms, 362 kHz, 10 °C, $P_{ac} =$ 47 W.

The presence of a gas flow clearly **increases the** determined bubble sizes

Coalescence induced by the gas flow (during t_{on}) and t_{off})

on-times.

To measure the ambient radius, take great care to avoid (minimize) coalescence

-
- Avoid standing wave
- PMT focusing on a zone of lower bubble density
- No gas flow
- Check with SDS

In right conditions, measurement of the natural active bubble size can be achieved. • Avoid standing wave
• PMT focusing on a zone of lower bubble density
• No gas flow
• Check with SDS
In right conditions, measurement of the natural active bubble size can be
 $\rightarrow R_0 \approx 2.9-3.0 \mu m$ for Ar-saturated water s maing wave
sing on a zone of lower bubble density
www.
h SDS
s, measurement of the natural active bubble size can be achieved.
m for Ar-saturated water sonicated at 362 kHz.
value and coalescence, literature values obtaine • Avoid standing wave
• PMT focusing on a zone of lower bu
• No gas flow
• Check with SDS
In right conditions, measurement of the nat
 $\rightarrow R_0 \approx 2.9$ -3.0 µm for Ar-saturated water s
Considering this R₀ value and coalescen

Brotchie, Statham, Zhou, Dharmarathne, Grieser, Ashokkumar, Langmuir, 26 (2010) 12690-12695. Pflieger, Lee, Nikitenko, Ashokkumar, J. Phys. Chem. B, 119 (2015) 12682-12688.

Other rare gases, showing very different solubilities: He, Xe

Polyatomic gases: O₂, N₂, air

Impact of bubble coalescence in the determination of bubble sizes using a pulsed US technique: Part 2 – Effect of the nature
of saturating gas, R. Pflieger, G. Audiger, S.I. Nikitenko, M. Ashokkumar, *Ultrason. Sonochem.*, Impact of bubble coalescence in the determination of bubble sizes using a pulsed US technique: Part 2 – Effect of the nature of saturating gas, R. Pflieger, G. Audiger, S.I. Nikitenko, M. Ashokkumar, *Ultrason. Sonochem*

 t_{on} = 1 ms, continuous increase of the SL intensity during 1 ms

 \rightarrow no indication of pronounced coalescence. R_{min} taken as R_0 = 1.2 μ m \rightarrow close to the Blake threshold (1 μ m for $p_a = 1.5$ bar, 0.5 μ m at 3 bar)

Brotchie, Statham, Zhou, Dharmarathne, Grieser, Ashokkumar, Langmuir, 26 (2010) 12690-12695. Pflieger, Lee, Nikitenko, Ashokkumar, J. Phys. Chem. B, 119 (2015) 12682-12688.

strong bubble interactions already detected for $t_{on} = 1$ ms
 \rightarrow inferred sizes include coalesced bubbles

-
-
-

The values of bubble sizes obtained for the different t_{on} are best explained with R_0 3.1 μ m.

1 ms, indicating interactions between bubbles.

Change in slope already observed for $t_{on} =$ Smallest measured size: 3.5 μ m
1 ms, indicating interactions between An initial radius of **2.8** μ **m** (= 3.5 / $\sqrt[3]{2}$) allows to

 t_{on} = 1 ms: SL too dim t_{on} = 2 ms: I_{SL} increases continuously during the US irradiation then decreases $\frac{2.2 \mu m}{\text{cm}}$: coalescence of 4 1.4- μm bubbles t_{on} = 3 ms: change in slope after \approx 1.8 ms
2.8 µm: coalescence of 8 1.4-µm bubbles (or \rightarrow coalescence

SL too dim
 $\frac{1}{6}$ time, ms

SL too dim
 $\frac{1}{5}$ increases continuously

US irradiation then decreases

Change in slope after \approx 1.8 ms
 $\frac{1}{2}$ and the smallest measured size, 1.4 µm, can be derived from the

co $\frac{1}{10}$
 $\frac{1$

Coalescence already observed for $t_{on} = 1$ ms The SL intensity increases during 2 ms: it first

Values << ${\mathsf O}_2$ values, close to ${\mathsf N}_2$ ones but smaller: smaller extent of coalescence.

The minimum measured value of $1.1 \mu m$ allows to explain the different radius values obtained (obviously, 0.88 μ m too) \rightarrow close to the Blake threshold

eement with literature values:

uret and Frohly, 350 kHz: 2-3.5 μ m (bubbles < 2 μ m not accessible

t al. (laser diffraction and pulsed sonication, 443 kHz, 5 mM SDS

izes < 2 μ m not accessible to the measurement) eement with literature values:

uret and Frohly, 350 kHz: 2-3.5 μ m (bubbles < 2 μ m not accessible to th

t al. (laser diffraction and pulsed sonication, 443 kHz, 5 mM SDS): mea

izes < 2 μ m not accessible to the Labouret and Frohly, 350 kHz: 2-3.5 µm (bubbles < 2 µm not accessible to the measurement)

lida et al. (laser diffraction and pulsed sonication, 443 kHz, 5 mM SDS): mean radius of 3.6 µm

(but sizes < 2 µm not accessible t all (iaser unifiation and pused solidation, 443 kHz, 3 find 3)
izes < 2 µm not accessible to the measurement)
le sizes previously determined with the present technique w
ted by coalescence, due to the too long t_{on}. Ne be sizes previously determined with the present technique were most of the

ted by coalescence, due to the too long t_{on}. Nevertheless:

t al.: 515 kHz, t_{on} = 4 ms

• water: 2.8-3.7 µm

• 1.5 mM SDS: 0.91.7 µm

• 1.5 m Yasui et al. calculated R0 in the range 0.3-8.0 µm for SL bubbles in air-saturated water at 300 kHz
m in the range 0.3-8.0 µm for SL bubbles in air-saturated water at 300 kHz
in the range 0.3-8.0 µm for SL bubbles in air-saturated water at 300 kHz

-
-

-
-
-

• water: 2.8-3.7 μ m

• 1.5 mM SDS: (0.9)1.7 μ m

Brotchie et al.: bubble size depends on the pulse width;

• 2.5 μ m for t_{on} = 1 ms

• 3.8 μ m for 4 ms

• extrapolation to 0 ms: (1.2)1.8 μ m

Yasui et al. cal

K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towata, Y. Iida,, J. Chem. Phys., 128 (2008) 184705.

Y. Iida, M. Ashokkumar, T. Tuziuti, T. Kozuka, K. Yasui, A. Towata, J. Lee, Ultrason. Sonochem., 17 (2010) 473-479

J. Lee, M. Ashokkumar, S. Kentish, F. Grieser, J. Am. Chem. Soc., 127 (2005) 16810-16811

coalesced bubbles

Reducing the on-time to a minimum and/or adding SDS to water allows to reduce coalescence so that natural active cavitation bubble sizes can be measured

Obtained radii for pre-saturated water at 362 kHz are:

- $3.0 \mu m$ for Ar
- 1.2 μ m for He
- $3.1 \mu m$ for Xe
- 2.8 μ m for $O₂$
- around $1 \mu m$ for N_2 and air

The extent of coalescence strongly depends on the gas nature. No single physical property of the gas allows to explaining it, but it seems to increase with the gas solubility, and also to be favored by a high gas diffusion coefficient

