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Supramolecular Chemistry

An Interlocked Figure-of-Eight Molecular Shuttle
Maxime Gauthier, Karine Fournel-Marotte, Caroline Clavel, Philip Waelès, Philippe Laurent,
and Frédéric Coutrot*

Abstract: Here is reported the synthesis and character-
ization of an interlocked figure-of-eight rotaxane molec-
ular shuttle from a dibenzo-24-crown-8 (DB24C8)
derivative. This latter bears two molecular chains, whose
extremities are able to react together by click chemistry.
One of the two substituting chain holds an ammonium
function aimed at driving the self-entanglement through
the complexation of the DB24C8 moiety. In the targeted
figure-of-eight rotaxane, shuttling of the DB24C8 along
the threaded axle from the best ammonium station to
the weaker binding site triazolium was performed
through deprotonation or deprotonation-then-carba-
moylation of the ammonium. This way, two discrete co-
conformational states were obtained, in which the
folding and size of the two loops could be changed.

In the past decades, advances in supramolecular
chemistry,[1] then utilization of the template effect[2] opened
an avenue for the synthesis of a wide range of mechanically
interlocked molecules (MIMs),[3] from catenanes[4] to
rotaxanes[5] through sophisticated interlocked architectures
such as interlocked linear,[6] cyclic[7] or multidimensional[8]

molecular muscles, foldarotaxanes,[9] links,[10] or knots.[11]

The [1]rotaxane architecture (Figure 1a),[12] whose encircled
thread and surrounding macrocycle are linked together
through covalent bond, may be encountered in natural
compounds such as lasso peptides[13] for example. To date,
this molecular architecture has been less exploited than
[2]rotaxanes (Figure 1b), in which no covalent bond exists
between the two embedded units. Even scarcer are the
published reports about rotaxanes in which the two extrem-
ities of the encircled thread are linked to the surrounding
macrocycle. Such a double connection between thread and
macrocycle affords a singular [1]rotaxane molecular archi-
tecture, called a figure-of-eight (Fo8) rotaxane because it is

reminiscent of that of a eight number. The first figure-of-
eight rotaxane was synthesized by Vögtle et al. in 2001
through the post-synthetic conversion of a [2]rotaxane.[14]

Since then, only two other examples were reported inde-
pendently by Sauvage, Stoddart et al.,[15] as a methodological
synthetic access, then very recently by Smith et al.[16] for the
conception of novel globular and efficient fluorescent probes
of high stability against enzymes and not prone to self-
aggregation. Noteworthy, no Fo8 rotaxane has been synthe-
sized to date with the aim of behaving as a molecular
machine. The possibility to shuttle the macrocycle in a Fo8
rotaxane gives the opportunity to expand and contract the
respective loops of the interlocked molecule.[6–8] In this
paper, we report on the synthesis and characterization of a
new Fo8 rotaxane molecular shuttle that consists in the
combination of a DB24C8 derivative surrounding a molec-
ular axle that contains an ammonium and a triazolium
molecular stations. Unlike the preceding reported chemical
pathways to Fo8 (Figure 1c), the strategy employed here
consisted in synthesizing first a hermaphrodite[12d,17] mole-
cule—i.e. a molecule containing the two complementary
interacting sites that may bind together—able to self-
entangle before the architecture was mechanically locked
through connecting the free encircled axle extremity to the
surrounding macrocycle (Figure 1d).

The targeted Fo8 rotaxane 3-HPF6 contained an
ammonium station[18] as the best pH-responsive site of
interaction for the DB24C8 derivative and a N-meth-
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Figure 1. Representation of: (a) a [1]rotaxane; (b) a [2]rotaxane ; (c)
already reported strategy to yield a Fo8 rotaxane; (d) present strategy to
yield a Fo8 rotaxane molecular shuttle.
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yltriazolium[19] as the weaker secondary station (Scheme 1).
It was prepared from the cis disubstituted DB24C8 1u-
Boc[20] according to a three-step sequence. Boc removal
revealed the ammonium moiety on one substituting chain of
the DB24C8. In the non-competitive solvent CD2Cl2, the
hermaphrodite compound 1u-HPF6 self-entangled to yield
the pseudorotaxane 1-HPF6 as a racemic mixture.[21] 1H
NMR spectrum of Figure 2a indicates the uncomplexed
architecture of 1u-HPF6 in the dissociating solvent DMSO
because solvation of the ammonium moiety by the solvent
molecules predominates over intramolecular hydrogen
bonds. On contrary, evidences of the pseudorotaxane
architecture 1-HPF6 are noticed in the non-competitive

solvent CD2Cl2 (Figure 2b). By comparing the two
1H NMR

spectra, the methylenic hydrogen atoms of the macrocyclic
chain of the crown ether appear split in the pseudorotaxane
1-HPF6 because they are facing the two non-symmetrical
ends of the threaded axle (Figure 2b). This is not the case in
the uncomplexed compound 1u-HPF6 (Figure 2a). Besides,
hydrogen atoms H19 and H21 that belong to the ammonium
template are both shifted downfield in the pseudorotaxane
structure because they interact through hydrogen bonding
with the oxygen atoms of the crown ether moiety. The
downfield shifts observed in DMSO for the hydrogen atoms
of the amide motifs H2,31,34 and H13 are unsurprisingly due to
their solvation by the very polar competitive solvent. Mean-

Scheme 1. (a) Synthesis of the targeted Fo8 rotaxane molecular shuttle via the hermaphrodite compound 1u-HPF6. Experimental conditions to
yield compound 3, i: BEMP resin, CD3CN. To yield compound 3-Boc, ii: Et3N, Boc2O, CD3CN. For clarity, only one of the two enantiomers for the
Fo8 rotaxanes is represented; (b) Synthesis of the non-interlocked macrobicyclic analogues from the disubstituted DB24C8 derivative 1u-Boc.
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while, the same trend is observed for the much less acidic
hydrogen atoms H16,17 and H23-25, in this case because they
experience in CD2Cl2 the shielding effect of the aromatic
rings of the crown ether. The ring-closing of pseudorotaxane
1-HPF6 to yield the Fo8 rotaxane 2-HPF6 was achieved in
dichloromethane using the copper(I)-catalyzed Huisgen[22]

alkyne-azide 1,3-dipolar cycloaddition,[23] in the presence of
Cu(CH3CN)4PF6 and 2,6-lutidine at the necessary high
dilution (10� 4 M) to avoid intermolecular side-reactions. Fo8
rotaxane 2-HPF6 was isolated in a 43% yield after
purification by size exclusion chromatography using Bio-
Beads S-X1 Support.

Subsequent quantitative methylation of the triazole, then
counter-ion exchange, led to the formation of the hexafluor-
ophosphate N-methyltriazolium as the secondary molecular
station for the DB24C8. The isolated figure-of-eight 3-HPF6

was the object of molecular machinery through the quantita-
tive deprotonation (or deprotonation-then-carbamoylation)
of the ammonium station. In both cases, this triggered the
shuttling of the crown ether along the threaded axle from
the ammonium to the triazolium station, in 3 and 3-Boc,
resulting in the tightening of one of the two loops of the Fo8
rotaxane and the simultaneous loosening of the other
loop.[24] The shuttling of the crown ether was invertible
through protonation of 3 or removal of the Boc protection
of 3-Boc under acidic conditions.

Molecular shuttling was evidenced by the direct compar-
isons between the 1H NMR spectra in CD3CN of the Fo8
rotaxanes 3-HPF6, 3 and 3-Boc with their non-interlocked
analogues[25] 3u-HPF6, 3u and 3u-Boc (Figure 3). Compar-
ison between the 1H NMR spectrum of the Fo8 rotaxane 3-
HPF6 and that of its non-interlocked analogue 3u-HPF6

demonstrated the interlocked architecture of the Fo8
rotaxane and showed the main localization of the crown
ether around the ammonium station (Figure 3a–b). With
respect to the uncomplexed macrobicycle 3u-HPF6, meth-
ylenic hydrogen atoms of the crown ether (D, I, M, R, E, H,

N, Q, F, G, O, P) are split in 3-HPF6 due to the dissymmetry
of the encircled thread, indicating the interlocked structure
of the Fo8 rotaxane. Moreover, hydrogen atoms of the
ammonium station H19,21 are shifted downfield in 3-HPF6

because of their implication in hydrogen bonding interac-
tions with the oxygen atoms of the surrounding crown ether
(Δδ= +0.37 ppm). Upfield shifts are also noticed for the
hydrogen atoms of the Fo8 rotaxane that are localized in the
shielding region of the aromatic rings of the crown ether, as
observed for H14-17 (Δδ from � 0.17 to � 0.26 ppm) and H23-27

(Δδ from � 0.15 to � 0.51 ppm).
Deprotonation of the ammonium triggered the shuttling

of the crown ether towards the N-methyltriazolium station.
The new localization of the crown ether was deduced from
the comparison between 1H NMR spectrum of Fo8 rotaxane
3 with that of its uncomplexed analogue 3u (Figure 3c–d).
Indeed, hydrogen atoms of the N-methyltriazolium site H13-

16 are deshielded in the Fo8 rotaxane because of their
hydrogen bonding interactions with the oxygen atoms of the
surrounding crown ether moiety (Δδ= +0.25, +0.59, +0.44
and +0.22 ppm, respectively). This new localization of the
surrounding macrocycle was corroborated by the tremen-
dous upfield shift for H36, H11 and in a lesser extent H10 in 3
(Δδ= � 0.61, � 0.93 and � 0.45 ppm, respectively) because
these hydrogen atoms experienced the shielding effect of the
aromatic ring of the surrounding crown ether derivative.

Deprotonation-carbamoylation of 3-HPF6 using triethyl-
amine and Boc2O in acetonitrile led to the carbamoylated
Fo8 rotaxane 3-Boc. Same trend and similar values of 1H
NMR chemical shift displacements were noticed for 3-Boc
with respect to 3u-Boc (Figure 3e–f) than those noticed
between 3 and 3u (Figure 3c–d), indicating very similar
conformations for Fo8 rotaxanes 3 and 3-Boc. Compared to
3, signals of hydrogen atoms H36, H11 and H10 were shifted
upfield in 3-Boc (Δδ= � 0.66, � 0.92 and � 0.46 ppm, respec-
tively), while signals of H13-16 were shifted downfield (Δδ= +

0.23, +0.58, +0.39 and +0.29 ppm, respectively).
Interestingly, Fo8 rotaxane 3-Boc was also obtained

from 2-HPF6 if the carbamoylation reaction was carried out
prior to the N-methylation of the triazole. After deprotona-
tion-then-carbamoylation of the ammonium, one could have
expected that the macrocycle would interact with the amide
site, as we previously reported in the literature.[26] In this
case, the localization of the amide site was certainly too
close to the crown ether moiety to allow such a tightened
loop. Although triazole was not known to be an efficient
secondary station for DB24C8 in [2]rotaxane,[27] the macro-
cycle had, here, no other possibility than interacting with the
very poor triazole interaction site through hydrogen bonding
between the oxygen atoms of the DB24C8 and H13-15 (see
Supporting Information for the 1H NMR evidences of the
localization of the macrocycle around the triazole site in 2-
Boc). Subsequent methylation of the triazole led to the
insulation of the sole compound 3-Boc, corroborating the
co-conformational state determined for 2-Boc.

Noteworthy, with respect to their non-interlocked ana-
logues, signals of some geminal hydrogen atoms exhibited
great chemical shift inequivalence in the Fo8 rotaxanes 3, 3-
Boc and in a lesser extent in 3-HPF6. In 3-Boc, it is on

Figure 2. 1H NMR spectra (400 MHz, 298 K) of the respective com-
pounds 1u-HPF6 and 1-HPF6 at a concentration of 10� 3 M in (a)
DMSO-d6 and (b) CD2Cl2. The numbering and lettering correspond to
the proton assignments indicated in Scheme 1.
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particularly the case of the diastereotopic methylene hydro-
gen atoms H11, H14 and H15 being on either side of the N-
methyltriazolium (Δδ= +0.16, +0.17 and +0.08 ppm for the
difference of chemical shift between the respective pairs of
geminal hydrogen atoms H11-H11’, H14-H14’ and H15-H15’,
respectively in 3-Boc). This was also observed for hydrogen
atoms H32, H33 and in a lesser extent H29, all belonging to the
peripheral of one of the two loops of the Fo8 rotaxane
(Δδ= +0.21, +0.15 and +0.07 ppm for the difference of
chemical shift between the respective pairs of geminal
hydrogen atoms H32-H32’, H33-H33’ and H29-H29’, respectively
in 3-Boc). This greater differentiation of geminal hydrogen

atoms provided evidence of conformational restriction for
the Fo8 rotaxanes with respect to non-interlocked ana-
logues. In 3-HPF6, this difference of chemical shift between
geminal hydrogen atoms was more pronounced for the
respective pairs H32-H32’ and H33-H33’ (Δδ= +0.26 ppm for
both), highlighting the lower conformational degree of
freedom of the tightened loop containing H32-33—i.e. when
the crown ether lied around the ammonium station.
However, with respect to 3-Boc much less differences of
chemical shift between geminal hydrogen atoms H11, H14-15

were noticed, corroborating the higher degree of freedom of
the loosened loop that contained these atoms.[28]

Figure 3. 1H NMR spectra (600 MHz, CD3CN, 298 K) of: (a) the protonated uncomplexed macrobicycle 3u-HPF6; (b) the protonated Fo8 rotaxane
3-HPF6; (c) the deprotonated Fo8 rotaxane 3; (d) the deprotonated uncomplexed macrobicycle 3u; (e) the carbamoylated Fo8 rotaxane 3-Boc; (f)
the carbamoylated uncomplexed macrobicycle3u-Boc. The numbering and lettering correspond to the proton assignments indicated in Scheme 1.
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In conclusion, we reported herein the first Fo8 rotaxane
able to act as a molecular shuttle. With respect to linear
analogues, cyclic molecules are known for their singular
properties that are related to their restrained conformational
degree of freedom. In parallel, interlocked rotaxane molec-
ular machines gained interest in the past decades because of
their peculiar switchable physical and chemical properties.
Combining both structural properties in cyclic interlocked
molecular machines such as the very aesthetic Fo8 rotaxane
molecular architecture allowed for interdependent tighten-
ing or loosening motion of the two loops of the single
molecule. With such a molecular architecture, taking
advantage of this invertible motion might confer dual
responsive property to the molecule.
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