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Abstract: In this work, we report on the synthesis and investigation of new hybrid multifunctional
iron oxide nanoparticles (IONPs) coated by coumarin-bound copolymer, which combine magneto-
or photothermal heating with luminescent thermometry. A series of amphiphilic block copolymers,
including Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42 bearing luminescent and
photodimerizable coumarin moiety, as well as coumarin-free PPhOx27-PMOx57, were evaluated
for their utility as luminescent thermometers and for encapsulating spherical 26 nm IONPs. The
obtained IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are perfectly dispersible in water and able
to provide macroscopic heating remotely triggered by an alternating current magnetic field (AMF)
with a specific absorption rate (SAR) value of 240 W.g−1 or laser irradiation with a photothermal
conversion efficiency of η = 68%. On the other hand, they exhibit temperature-dependent emission
of coumarin offering the function of luminescent thermometer, which operates in the visible region
between 20 ◦C and 60 ◦C in water displaying a maximal relative thermal sensitivity (Sr) of 1.53%·◦C−1

at 60 ◦C.

Keywords: nanoparticles; polymeric coating; luminescence; thermometry; coumarin

1. Introduction

Inorganic nanoparticles capable of inducing a macroscopic temperature increase when
exposed to external stimuli, such as alternating current magnetic fields (AMFs) or light
irradiation, have garnered significant attention for several decades. This attention stems
not only from a fundamental standpoint but also due to their promising applications for
hyperthermia therapy for cancer [1–3], bacterial infections [4–8], drug delivery systems [9],
modulation of enzymatic reactions [10], plasmonic devices, control of single cell func-
tions [11,12], catalytic processes [13], polymerization reactions [14] and more. A plethora
of nanostructures have been engineered to serve as photothermal or magnetothermal
nano-heaters, encompassing plasmonic metallic nanostructures, diverse carbon materials,
metal oxides, metal alloys, semiconductors and carbides/nitrides, each offering distinct
advantages for targeted heating applications [15–18]. Among these, iron oxide nanopar-
ticles (IONPs) have been the subject of extensive investigation for many decades, owing
to their exceptional capacity to generate heat when remotely exposed to external stimuli,
their controlled size ranging from a few to hundred nanometres, different shapes, an easily
functionalizable surface and biocompatibility [18–20]. Indeed, they can efficiently convert
magnetic energy into heat providing an important temperature rise of colloidal solutions
containing nanoparticles at macroscopic level. Recent advancements have led to the devel-
opment of highly efficient IONPs with various shapes, such as spherical, cubic or dendritic
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forms, achieving specific absorption rate (SAR) values of up to 1000 W g−1 [18,21]. More
recently, IONPs have also been recognized as photothermal agents capable of providing
an important temperature rise under irradiation in the near-infrared (NIR) window, mak-
ing them competitive with conventional Au nano-objects [21]. Moreover, the possibility
of employing them as dual magneto- and photothermal agents, therefore enhancing the
heating ability by up to fivefold when compared to magnetic stimulation alone, reaching
SAR values of up to 5000 W g−1, has also been demonstrated [22].

One of the primary challenges in the realm of nanoparticle-assisted heating lies in
achieving precise temperature control at the nanoparticle’s surface. This task is especially
critical due to the rapid fluctuations and localized effects inherent at such scales, necessitat-
ing innovative strategies for accurate temperature monitoring and regulation. This issue
holds principal importance for optimizing various applications, including hyperthermia
therapy, catalytic processes and polymerization reactions, all of which rely on maintaining
specific temperature ranges or a very localized heating for optimal performance. However,
conventional temperature measurement techniques, such as thermocouples or infrared
thermography, often struggle with limitations in sensitivity and accuracy when applied
to nanoscale systems. Fluorescence-based thermometry is emerging as one of the most
promising alternative approaches, aimed at overcoming these challenges and enabling more
precise local and remote temperature monitoring at the micro- and even nanoscales [23–26].
In this context, the design of multifunctional heater/luminescent thermometer nano-objects
is essential for ensuring nanoparticle-assisted heating triggered by external stimuli, which is
combined with accurate luminescent-based temperature monitoring at the nanoscale. Such
design requires a careful choice of nano-heater, including its size, composition and surface
functionalization, as well as the selection of appropriate luminescent probes and identifica-
tion of their interface. In this line of thought, three main approaches have been implemented
with IONPs. Firstly, L. D. Carlos, A. Millan and colleagues reported on the successful com-
bination of magnetic γ-Fe2O3 nanoparticles with Ln3+-based β-diketonate coordination
complexes (where Ln3+ = Tb3+/Eu3+, Tb3+/Sm3+) as ratiometric luminescent tempera-
ture probes based on the luminescent intensity ratio of two lanthanides included into the
organosilica [27] or copolymer shells [28,29]. In these works, the luminescent complexes
have been encapsulated into the shells without their covalent anchoring. Secondly, both
upconversion NaYF4:Yb3+, Er3+ nanorods permitting temperature measurements based on
their temperature-dependent lifetime and small IONPs allowing magnetothermal heating
have been included in mesoporous silica nanoparticles [30]. This work demonstrated that
the temperature inside the silica nano-objects containing magnetically activated IONPs
was higher in comparison with the macroscopic ones in environmental colloidal solution.
Thirdly, magnetic nanoparticles of several compositions and sizes (spherical MnFe3O4 of
6 nm, MnCoFeO4 of 15 nm, spherical Fe3O4 nanoparticles of 12 or truncated octahedral of
25 nm) have been conjugated with organic dyes (Rhodamine B or DyLight) [12,31,32] or
with fluorescent proteins, which present temperature-dependent fluorescence permitting
the temperature readout [10]. Note that for these latter nano-objects, the effort has mainly
been focused on the investigation of the “hot spot effect” of the nanoparticles’ surface
and the thermometric performance has not been investigated, except in one recent work
involving Fe3O4 functionalized by fluorescent polymer with Rhodamine B [31]. Note also
that for these multifunctional IONPs, their magnetothermal properties have been targeted
and their photothermal heating has never been explored in combination with thermometry
despite a significant interest in recent years in the excellent photothermal capacity of IONPs.

In this article, we report on the synthesis, magneto- and photothermal heating and
luminescent thermometry of multifunctional IONPs enwrapped into amphiphilic copoly-
mers bearing luminescent coumarin moiety. Previously, some of us demonstrated the
successful coating of IONPs by a hydrophilic polymer of the polyoxazoline family [33].
The amphiphilic polymer coating has been chosen in this work because this kind of macro-
molecular architecture allows a good affinity with inorganic nanoparticles and ensures a
dispersion of IONPs in water thanks to its hydrophilic block. Further, the polyoxazolines
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are very attractive for biomedical applications because they have excellent biocompatibility,
cyto- and haemocompatibility, as well as a stealth behaviour. Finally, it is expected that
they can exhibit fluorescence due to their aromatic constituents [34], while, to the best
of our knowledge, there have been no studies conducted on the temperature-dependent
fluorescence of polyoxazolines.

Polyoxazolines can be easily synthesized by cationic ring-opening polymerization
(CROP). This chemistry is a versatile tool for direct access to hydrophilic polymers using
commercial 2-R-2-oxazoline monomers, where R corresponds to methyl or ethyl sub-
stituents, while hydrophobic ones result from monomers bearing propyl, butyl or phenyl
substituent [35]. Hence, we elaborated two amphiphilic block copolymers, PPhOx27-
PMOx57 and PButOx8-PMOx42, in one sequential step. Moreover, this polymerization
process permits various terminal functionalizations using functional initiators and/or ter-
minating agents. Consequently, amphiphilic block copolymers bearing a terminal coumarin
unit, Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42 have been success-
fully prepared, as previously reported [36]. The introduction of the coumarin moiety is
motivated by the following properties: (i) its ability to photodimerize under UV irradiation
at 365 nm and, therefore, reinforce the IONP coating and (ii) its temperature-dependent
emission in the visible region, making it a fluorescent thermometer [37]. However, although
some polymers bearing a coumarin unit have already been investigated for temperature
measurement purposes [38–41], they have never been used for the temperature detection
and the encapsulation of nano-heaters.

In this article, a series of amphiphilic block copolymers, Coum-C11-PPhOx27-PMOx59
and Coum-C11-PButOx8-PMOx42, covalently bonded to a luminescent and photodimeriz-
able coumarin moiety and PPhOx27-PMOx57 copolymer were evaluated in their micellar
form as luminescent thermometers. All of them present a temperature-dependent flu-
orescence with the maximal relative thermal sensitivities (Srmax) varying in the range
1.90–2.71%·◦C−1 at 60 ◦C. Secondly, they were tested for the encapsulation of spherical
IONPs of 26 nm. The as-obtained multifunctional nano-objects IONP@Coum-C11-PPhOx27-
PMOx59 are well dispersible in water and able to provide macroscopic heating triggered
either by an AMF with a specific absorption rate (SAR) value of 240 W g−1 or laser ir-
radiation with a photothermal conversion efficiency η = 68%. Moreover, they exhibit
temperature-dependent luminescence, offering the function of a luminescent thermometer,
which operates in the 20–60 ◦C range in water displaying the Srmax value of 1.53%·◦C−1 at
60 ◦C.

2. Materials and Methods

All the chemicals were purchased commercially and used without further purifica-
tion. Ferric hydroxide oxide (FeO(OH) hydrated, 30–50 mesh), oleic acid (90%, OA) and
oleylamine (90%, OL) were purchased from Sigma-Aldrich (Steinheim, Germany) and
n-docosane (99%) was purchased from Acros organic. 2-Methyl-2-oxazoline (MOx), 2-butyl-
2-oxazoline (BuOx) and 2-phenyl-2-oxazoline (PhOx) were dried and distilled from CaH2
and stored under a dry nitrogen atmosphere (purchased from Acros organic, Geel, Belgium).
Acetonitrile (ACN) was distilled before use and stored under dry nitrogen (purchased from
Acros organic). 7-Hydroxy-4-methylcoumarin (97%), 11-bromoundecanol (98%), methyl
p-toluenesulfonate (MeOTs) (98%), ether, chloroform, p-toluenesulfonyl chloride (TsCl,
>99%), triethylamine, pyridine, piperidine, MgSO4 and potassium carbonate were used
without further purification and purchased from Acros organic.

2.1. Syntheses

Amphiphilic copolymers. The copolymers Coum-C11-PPhOxm-PMOxn and Coum-
C11-PButOxm-PMOxn were synthesized according to already published procedures [36].
PPhOx27-PMOx57 was produced by using the same protocol and MeOTs as a cationic
ring-opening polymerization initiator.
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Formation of micelles with amphiphilic copolymers. Micelles were prepared in glass
haemolysis tubes according to a film rehydration process. After weighing out approxi-
mately 20 mg of polymer, 1 mL of chloroform was added to solubilize it. CHCl3 was chosen
for solubilization as it is a good solvent for both blocks, but it is also the solvent used
for nanoparticles’ synthesis (later use). The solution was then evaporated using a rotary
evaporator at 40 ◦C (pressure 104 mbar) for 1 h to obtain a thin, transparent and uniform
film on the tube wall. Once the solvent was evaporated, the polymer was dried under
dynamic vacuum for 3 h 30 and then under static vacuum for an additional 30 min. The film
was rehydrated with an ultrapure water to achieve a concentration of 5 mg mL−1. The tube
was stirred for 30 min at 65 ◦C and then sonicated at 65 ◦C for 1 h. The resulting solution
appears as a clear, slightly opalescent one. It should be protected from light for storage. The
same protocol was followed for all the amphiphilic copolymers. The dimerization of the
micelles was achieved by irradiating the sample in a cylindrical photochemical “Rayonet”
reactor. It is equipped with 16 symmetrical lamps emitting at 350 nm for dimerization and
254 nm for de-dimerization.

Synthesis of pristine spherical IONPs stabilized by oleate and oleyl amine. Pristine IONPs
of ca. 26 nm stabilized by oleate (OA) and by oleyl amine (OAm) were prepared by
adapting a previously published thermal decomposition method (at 350 ◦C) by using
FeO(OH) as the iron precursor in n-docosane as a solvent [42]. First, a flask containing
a mixture of FeO(OH) (2.1 mmol, 0.186 g), oleic acid (10 mmol, 3.17 g) and n-docosane
(5.02 g) was connected to a Schlenk line to remove moisture and oxygen for 30 min at room
temperature under vacuum and magnetic stirring. Subsequently, the flask was heated to
350 ◦C under argon flow with a heating rate of 10 ◦C min−1. The solution was maintained
at 350 ◦C for a further 90 min under stirring and argon flow. Then, the mixture was
cooled down to 200 ◦C. When the temperature reached 200 ◦C, the system was opened
to air and the temperature was maintained at 180 ◦C for further 90 min to realize the
nanoparticles’ oxidation (from FeO to Fe3O4). After this period, the heating was stopped.
When the temperature of the suspension reached 50 ◦C, cyclohexane (15 mL) was added.
The obtained nanoparticles were washed twice by dispersing in diethyl ether, followed by
precipitation with ethanol (1:1 v/v), and were then recovered using centrifugation (20,000
rpm, 10 min). Oleylamine (200 µL) was added to the collected material as additional
stabilizer. The resultant oleate/oleylamine-coated IONP/OA/OAm nanoparticles were
dispersed and stored in chloroform (15 mL) [43].

Encapsulation of IONPs by amphiphilic copolymers. The encapsulation of IONPs by
amphiphilic copolymers follows a similar protocol to the formation of micelles alone,
except that a balloon is used instead of glass haemolysis tubes. After weighing out the
20 mg of polymer, 1 mL of a 1 mg mL−1 solution of IONPs in chloroform is added.
Evaporation and vacuum drying were carried out in the same way as for the micelles
alone. After the vacuum ramp, ultrapure water is added. Due to the magnetism of the
IONPs, there is no need for an initial magnetic stirring step. The container is directly
sonicated at 65 ◦C for around 1 h, alternating with vortexing to help solubilize the film. The
obtained IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles were washed three times with
water. The nanoparticles were separated from nanoparticle-free micelles by using magnetic
separation with a NdFeB- magnet (1 T).

2.2. Physical Methods

For transmission electron microscopy (TEM), 5 µL of suspension was deposited on a
carbon-coated 300 mesh grid for 1 min, blotted dry by touching with a filter paper and then
placed on a 2% uranyl acetate solution drop. After 1 min, the excess stain was removed
by touching the edge with a filter paper, and the grid was dried at room temperature
for a few min and examined using a Jeol 1400 Plus Transmission Electron Microscope
(JEOL, Akishima, Japan) operating at 100 kV accelerating voltage. Data were collected
with a high-sensitivity sCMOS JEOL Matataki Flash camera (JEOL, Akishima, Japan).
Hydrodynamic diameter and polydispersity index (PDI) were measured using a Zetasizer



Nanomaterials 2024, 14, 906 5 of 18

NanoZS apparatus (Malvern Panalytical B.V., Almelo, The Netherlands) equipped with
a He-Ne laser (wavelength: 633 nm) at a temperature of 25 ◦C and a scattering angle of
173◦ for detection. Size measurements were performed in water. ICP-AES analysis was
performed by using a Spectro Arcos ICP (AMETEK Materials Analysis, Mahwah, NJ, USA).
The samples were digested in nitric and hydrochloric acids before being diluted to obtain
10 mL of a final solution in 4% of acid.

Photoluminescence and thermometry measurements. Emission and excitation spectra were
performed at room temperature (298 K) in water, using an Edinburgh FLS-920 spectrofluo-
rometer (Edinburgh Instruments Ltd., Kirkton Campus, UK). The excitation source was
a 450 W Xe arc lamp. The spectra were corrected for the detection and optical spectral
response of the spectrofluorometer. Photoluminescent measurements as a function of
temperature (luminescent thermometry) were performed by using the temperature setup
incorporated into the Edinburgh spectrofluorometer. Emission spectra were recorded in
the temperature range from 20 to 60 ◦C. At each temperature step, a period of 2 min was
given to allow the temperature to stabilize and then 1 emission spectrum was recorded
with a dwell time of 0.2 s and a step of 1 nm.

Magnetothermia. Magnetothermal experiences were realized using an alternating
current magnetic field generator (UltraFlex Power Technologies, Ronkonkoma, NY, USA)
at 342 kHz. The generating magnetic field is 20 mT at a frequency of 342 kHz. The samples
were in liquid state (colloidal solutions) and isolated with polystyrene. The temperature of
the liquid was measured using an OPTRIS PI 450 thermal camera (Optris, Berlin, Germany)
and an optical fibre.

Photothermia. Photothermal experiences were realized using a laser with a wavelength
of 808 nm and a surface power of 2.58 W.cm−2. The samples were in liquid state (colloidal
solutions of 600 µL) in a glass tube. The temperature of the liquid was measured using an
optical fibre.

2.3. Simulations and Fitting

Magnetothermal experiments. Magnetothermal experiences were fitted using the heat
equation with a thermal exchange parameter (f (T)) as previously reported [43]:

cv
dT
dt

= P − f (T)

where cv and P are the heat capacity in J/K and the heat power source in W, respectively. P
is linked to the SAR by the following equation:

SAR =
P

mFe

where mFe is the total mass of iron in the experiment sample.
Photothermal experiments. Photothermal experiences were fitted using a model built

using COMSOL software [44]. The geometry of the experiments was reproduced in the
software. The heat equation and the natural convection were solved simultaneously. The
natural convection was solved for the nanoparticle suspension and for the air above the
liquid. The heat equation was solved for the nanoparticle suspension, the air above and
the glass tube. A thermal flux exchange was added between the glass and the rest of the
environment. The thermal power source of the heat equation was calculated using the
laser intensity and the shape of it spot, the light coefficient absorption a of the nanoparticle
suspension and the photothermal efficiency η. The three following parameters were
optimized during the fit process: the absorption, the thermal flux exchange and the thermal
efficiency. The optimization of the parameters was realized using the least squares method
in a python script which controls the COMSOL software.
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3. Results and Discussion

The synthesis of the multifunctional nano-objects containing IONPs encapsulated by
amphiphilic block copolymers was performed in three steps as follows: (i) the synthesis
of a series of amphiphilic copolymers able to form micelles and the investigation of their
thermometric ability (Scheme 1a), (ii) the synthesis of pristine spherical IONPs of ca. 26 nm
stabilized by oleate and oleylamine and (iii) the encapsulation of IONPs by amphiphilic
copolymers and the investigation of their ability to macroscopically heat their environment
under external stimuli (light irradiation and AMF) and provide a temperature readout
(Scheme 1b).
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Scheme 1. Representation of the approach used in this work for (a) the preparation of micelles
from amphiphilic copolymers, (b) the encapsulation of IONPs with amphiphilic copolymers in order
to design multifunctional nano-objects able to provide magnetothermal or photothermal heating
associated with the luminescent thermometry. CMC is the critical micellar concentration; US is the
ultrasound sonication.

3.1. Amphiphilic Polymeric Micelles as Luminescent Thermometers

A series of amphiphilic copolymers was synthesized and investigated, with some
of them functionalized by a hydrophobic and fluorescent coumarin moiety at the end of
their hydrophobic block. The primary objectives were twofold: firstly, to explore their
potential utility as luminescent thermometers, and secondly, to assess their suitability as
luminescent shells for encapsulating hydrophobic IONPs. Each copolymer comprises a
hydrophilic block of PMOxn (where n corresponds to the number of hydrophilic repetitive
units), ensuring the water dispersibility of further micelles. It was covalently bonded to a
hydrophobic block denoted as PPhOxm or PButOxm (where m represents the number of
hydrophobic repetitive units), essential for encapsulating IONPs. Two copolymers were
functionalized by a coumarin moiety because the latter is fluorescent and also expected to
undergo dimerization upon UV irradiation, thereby enhancing the stability of the micelles
formed. Consequently, copolymer micelles containing coumarin were investigated both
before and after dimerization to understand their behaviour comprehensively. Schematical
representations of all the synthesized copolymers—namely, Coum-C11-PPhOx27-PMOx59
(P1 before and P2 after dimerization), PPhOx27-PMOx57 (P3) and Coum-C11-PButOx8-
PMOx42 (P4 before and P5 after dimerization)—are shown in Table 1.
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Table 1. Schematic representation of the amphiphilic block copolymers P1–P5 employed in this work
with their excitation and emission wavenumbers.

Name Structure Excitation and Emission Wavelengths

Coum-C11-PPhOx27-PMOx59
non-dimerized

(P1)
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The amphiphilic block copolymers were prepared via a CROP process in one pot by
sequential addition of the monomers using tosylate initiators. The latter included either a
photosensitive coumarin modified by a C11 aliphatic spacer (Coum-C11-OTs) for the synthe-
sis of Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42 copolymers [36], or a
methyl group (MeOTs) for the PPhOx27-PMOx57. The polymerization under microwaves of
hydrophobic PhOx or ButOx monomers was performed in order to obtain the hydrophobic
block. Subsequently, the terminal reactive oxazolinium species of this block served as a
macroinitiator to synthesize the hydrophilic PMOx block, yielding the amphiphilic poly-
mers. Finally, the reaction was quenched with piperidine to convert the oxazolinium end
group into an unreactive terminal amine. The composition and the molecular weight of the
as-obtained copolymers were determined by 1H NMR spectroscopy (Figure S1, ESI) and
GPC (Figure S2, ESI).

An amphiphilic block copolymer, Coum-C11-PPhOx27-PMOx59, featuring a hydropho-
bic block of PPhOx covalently linked to the luminescent and photodimerizable coumarin
moiety, was synthesized first. It is worth noting that aromatic moieties typically contribute
to the fluorescence properties of organic molecules. For instance, pyrene functionalized
oxazolines have already been studied for their fluorescent properties [34]. However, to
the best of our knowledge, there have been no investigations of the fluorescence of com-
mercial oxazolines and especially of a PPhOx hydrophobic block within amphiphilic block
copolymers of the oxazoline family. Therefore, Coum-C11-PPhOx27-PMOx59 could poten-
tially combine the luminescent properties of PhOx and coumarin, along with the potential
stabilization of the micelles induced by the dimerization of the latter. The formation of
micelles was performed in water by solubilizing the copolymer in chloroform, followed by
drying to form films, which were then rehydrated in water (Figure S3, ESI). The micelles of
Coum-C11-PPhOx27-PMOx59 could be obtained in either their dimerized or non-dimerized
states by using reversible light irradiation at 350 nm for dimerization (transformation of
P1 to P2) and at 254 nm for de-dimerization (transformation of P2 to P1) (Figure S4, ESI).
To characterize the formed micelles, DLS measurements were performed on both the non-
dimerized P1 and dimerized P2 forms. A monomodal population with a hydrodynamic
diameter of 57 nm and a narrow dispersity (PDI: 0.12) was observed. The correlation and
distribution curves are shown on Figure S5a,b. Notably, no significant difference in the
size of the formed micelles was observed before or after dimerization. The Transmission
Electronic Microscopy (TEM) image of Coum-C11-PPhOx27-PMOx59 in its dimerized form
(P2) demonstrates the presence of homogeneous spherical micelles.

In order to investigate the photoluminescence and encapsulation ability of polyoxazo-
line copolymer without coumarin, a block copolymer of similar composition and molar
mass, PPhOx27-PMOx57 (P3), was synthesized and its micelles were prepared in water as
described above. The DLS measurements indicated a hydrodynamic diameter of 50 nm
with a narrow dispersity (PDI: 0.15) for P3 micelles (Figure S6a, ESI).

Finally, Coum-C11-PButOx8-PMOx42 copolymer containing coumarin moiety, but with
non-luminescent PButOx block instead of PPhOx, was synthesized and solubilized in water
following the same preparation to form micelles. In this case, thanks to the presence of
coumarin, micelles can also be obtained in either their dimerized or non-dimerized states
by using reversible light irradiation at 350 nm for dimerization (transforming of P4 to P5)
and at 254 nm for de-dimerization (transforming of P5 to P4). The DLS measurements
revealed the presence of two populations, while the TEM images indicated the formation
of rather cylindrical/vermicular-shaped micelles (Figure S6b,c, ESI).

The photoluminescence properties of the aqueous solutions of copolymer micelles
P1–P5 were first investigated in water at room temperature. Figure 1a demonstrates their
excitation spectra monitored at 383 nm. The coumarin-free copolymer PPhOx27-PMOx57
presents only one band in the excitation spectrum located at 323 nm. The two coumarin-
containing copolymers, Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42,
demonstrate the presence of two (at 297 or 270 and 351 nm) or one (at 336 nm) excitation
bands depending on the non-dimerized or dimerized states of coumarin, respectively.
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The emission spectra of all the copolymer micelles shown in Figure 1b indicate the
occurrence of a bright luminescence at 383 or 384 nm. The emission spectrum of the
coumarin-free sample P3 under an excitation at 323 nm presents the emission band at ca.
383 nm, which can be attributed to the phenyl oxazoline moiety (PhOx). The coumarin-
containing copolymer Coum-C11-PButOx8-PMOx42 exhibits a coumarin-linked emission
at 383/384 nm in the non-dimerized (under excitation at 351 for P4) or dimerized (under
excitation at 336 nm for P5) states of coumarin. Thus, the observed emission in Coum-C11-
PPhOx27-PMOx59 stems from both fluorescent species, PhOx and coumarin. The excitation
and emission wavelengths are summarized in Table 1.

Second, the emission spectra of P1–P5 were investigated in the 20–60 ◦C tempera-
ture range in order to evaluate their potential to work as luminescent thermometers. It
is noteworthy that prior studies have explored the temperature-dependent luminescence
of certain polymers featuring a coumarin moiety. Notably, research on coumarin-bearing
thermosensitive copolymers, based on NIPAM and oligo(ethylene glycol) methacrylate
blocks, has utilized the fluorescence of coumarin for temperature detection during phase
transitions [40]. Similarly, PEG and P(NIPAM)-based copolymers, incorporating the same
fluorescent coumarin moiety, have been investigated for luminescent temperature detection
within living cells, leveraging the fluorescence resonance energy transfer (FRET) phe-
nomenon [41]. Additionally, reports exist on coumarin-functionalized poly(vinyl alcohol)
demonstrating a linear temperature dependence of the coumarin-based emission, although
temperature detection remains unexplored [39]. It is important to note, however, that the
temperature-dependent fluorescence of both coumarin- and oxazolines-based copolymer
micelles, as well as the determination of their thermometric parameters, have not yet
been investigated.

The temperature-dependent emission spectra in the 20–60 ◦C temperature range are
demonstrated in Figure 2 for Coum-C11-PPhOx27-PMOx59 before (P1) and after dimer-
ization (P2) and in Figure S7 (ESI) for the other copolymers, P3–P5. As expected, the
emission intensity decreases as the temperature increases. This effect has previously been
attributed to the fluorescence quenching due to the increased collision between molecules
with temperature and the intersystem crossing [39]. Note that after the first heating/cooling
cycle, the intensity at 20 ◦C perfectly coincides with that primarily obtained at 20 ◦C, which
indicates that no photodegradation/modification of the molecules’ structure occurred
during the irradiation/heating. The photoluminescent intensity (integrated area between
370 and 500 nm) shows a linear temperature dependence for all the copolymers except for
P4, for which a polynomial function can be used (Figure 3, Figure S8, ESI). Note that the
coumarin-free copolymer P3 presents a higher intensity than P4, which offers the possibility
to use it as promising luminescent temperature probe. The presence of 27 phenyl moieties
for P3 instead of only one coumarin for P4 probably explains this difference.

The sensitivity of the luminescent thermometer is defined by the absolute sensitivity
Sa, which can be expressed as follows:

Sa(T) = |∂I(T)/∂T| (1)

In order to compare the sensing performance of these copolymers with other or-
ganic dye-based thermometers, the maximal relative thermal sensitivity (Srmax) was calcu-
lated [23]. The Sr value refers to the relative variation rate of the thermometric parameter
(I380 in the present systems) per degree of temperature, expressed as:

Sr(T) = Sa(T)/I(T)× 100% (2)

The temperature dependence of Sr for P1–P5 indicates that all the Sr values are
maximal at 60 ◦C (Figure 3, Figure S8, ESI). All the calculated Srmax values are in the range
1.90–2.71%·◦C−1 (Table 2), which is superior to 1%·◦C−1, the value frequently considered
as a threshold for good luminescent thermometers [24].



Nanomaterials 2024, 14, 906 10 of 18
Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 2. Emission spectra of Coum-C11-PPhOx27-PMOx59 amphiphilic copolymer recorded in the 
20–60 °C temperature range before (P1) (λexc = 351 nm) (a) and after dimerization (P2) (λexc = 336 nm) 
(b). 

 
Figure 3. Temperature dependence of the main intensity, I385 (integrated area 370–500 nm) in the 20–
60 °C temperature range in water for amphiphilic copolymers P1 (a) and P2 (b). The solid lines 
represent linear fits. Inset: Temperature dependence of their relative sensitivity Sr. 

The sensitivity of the luminescent thermometer is defined by the absolute sensitivity 
Sa, which can be expressed as follows: 𝑆௔(𝑇) = |𝜕𝐼(𝑇) 𝜕𝑇⁄ | (1) 

In order to compare the sensing performance of these copolymers with other organic 
dye-based thermometers, the maximal relative thermal sensitivity (Srmax) was calculated 
[23]. The Sr value refers to the relative variation rate of the thermometric parameter (I380 in 
the present systems) per degree of temperature, expressed as: 𝑆௥(𝑇) = 𝑆௔(𝑇) 𝐼(𝑇)  × 100%⁄  (2) 

The temperature dependence of Sr for P1–P5 indicates that all the Sr values are max-
imal at 60 °C (Figure 3, Figure S8, ESI). All the calculated Srmax values are in the range 1.90–
2.71%·°C−1 (Table 2), which is superior to 1%·°C−1, the value frequently considered as a 
threshold for good luminescent thermometers [24]. 

The thermal uncertainties for copolymers P1–P5 were calculated as the smallest tem-
perature change that can be calculated as follows: 

Figure 2. Emission spectra of Coum-C11-PPhOx27-PMOx59 amphiphilic copolymer recorded
in the 20–60 ◦C temperature range before (P1) (λexc = 351 nm) (a) and after dimerization (P2)
(λexc = 336 nm) (b).

Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 2. Emission spectra of Coum-C11-PPhOx27-PMOx59 amphiphilic copolymer recorded in the 
20–60 °C temperature range before (P1) (λexc = 351 nm) (a) and after dimerization (P2) (λexc = 336 nm) 
(b). 

 
Figure 3. Temperature dependence of the main intensity, I385 (integrated area 370–500 nm) in the 20–
60 °C temperature range in water for amphiphilic copolymers P1 (a) and P2 (b). The solid lines 
represent linear fits. Inset: Temperature dependence of their relative sensitivity Sr. 

The sensitivity of the luminescent thermometer is defined by the absolute sensitivity 
Sa, which can be expressed as follows: 𝑆௔(𝑇) = |𝜕𝐼(𝑇) 𝜕𝑇⁄ | (1) 

In order to compare the sensing performance of these copolymers with other organic 
dye-based thermometers, the maximal relative thermal sensitivity (Srmax) was calculated 
[23]. The Sr value refers to the relative variation rate of the thermometric parameter (I380 in 
the present systems) per degree of temperature, expressed as: 𝑆௥(𝑇) = 𝑆௔(𝑇) 𝐼(𝑇)  × 100%⁄  (2) 

The temperature dependence of Sr for P1–P5 indicates that all the Sr values are max-
imal at 60 °C (Figure 3, Figure S8, ESI). All the calculated Srmax values are in the range 1.90–
2.71%·°C−1 (Table 2), which is superior to 1%·°C−1, the value frequently considered as a 
threshold for good luminescent thermometers [24]. 

The thermal uncertainties for copolymers P1–P5 were calculated as the smallest tem-
perature change that can be calculated as follows: 

Figure 3. Temperature dependence of the main intensity, I385 (integrated area 370–500 nm) in the
20–60 ◦C temperature range in water for amphiphilic copolymers P1 (a) and P2 (b). The solid lines
represent linear fits. Inset: Temperature dependence of their relative sensitivity Sr.

Table 2. Calibration parameters of the copolymer micelles P1–P5 thermometers and IONP@ Coum-
C11-PPhOx27-PMOx59 in the 20–60 ◦C temperature operating range.

Parameters P1 P2 P3 P4 P5
IONP@ Coum-
C11-PPhOx27-

PMOx59

Relative maximal thermal
sensitivity Srmax (%·◦C−1)

at 60 ◦C
2.21 2.64 2.71 1.93 2.21 1.53

Uncertainty δT(◦C)
at 60 ◦C 0.28 0.40 0.87 0.14 0.29 0.82

The thermal uncertainties for copolymers P1–P5 were calculated as the smallest tem-
perature change that can be calculated as follows:

δT = δI/Sa(T) = δI/(I(T)× Sr(T)) (3)
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The obtained thermal uncertainty values in the range 0.14–0.87 are satisfactory (Table 2).
It is important to note that in Equation (3), the Sr value is in ◦C−1 and not in % ◦C−1.

Considering the above-described results, all the prepared copolymer micelles present
a good potential as emissive thermometers and can be used for encapsulation of IONP.

3.2. IONP Coating with Amphiphilic Bloc Copolymers

The luminescent amphiphilic copolymers Coum-C11-PPhOx27-PMOx59, Coum-C11-
PButOx8-PMOx42 and PPhOx27-PMOx57 were used for the coating of spherical IONPs
of 26 nm in order to combine the thermometric function of copolymers with the mag-
neto or photothermal heating of nanoparticles (Scheme 1b). The synthesis of the pristine
IONP/OA/OAm was carried out by the classical thermal decomposition method coupled
with the oxidation of FeO to Fe3O4 at the end of the procedure [43]. This step promotes
the conversion of most of the FeO phase to Fe3O4. Note that the obtained nanoparticles
stabilized by oleate and oleyl amine are very well dispersible in organic solvents and
absolutely not dispersible in water. The encapsulation of the as-obtained IONP/OA/OAm
nanoparticles by amphiphilic copolymers was carried out by using a three-step procedure,
which consists of the following steps: (i) the solubilization of the IONP/OA/OAm and cor-
responding amphiphilic copolymer in an appropriate solvent, (ii) the formation of a film by
solvent evaporation and (iii) solubilization of the film in water (Scheme 2). A first indication
of the successful encapsulation of the nanoparticles by Coum-C11-PPhOx27-PMOx59 and
PPhOx27-PMOx57 was the complete change in behaviour in water as a homogeneous dark
solution that was stable over days with no sedimentation. For Coum-C11-PButOx8-PMOx42,
the nanoparticles sedimented within a few minutes, which indicated that the encapsulation
failed. The cylindrical morphology of these micelles probably explained the difficulties
encountered for the encapsulation. After the encapsulation step, a three-time magnetic
washing was performed in order to remove the encapsulated IONPs from the formed empty
micelles, which do not contain IONPs. Among the tested copolymers, a successful result
was obtained only with Coum-C11-PPhOx27-PMOx59. Indeed, the nanoparticles’ aggrega-
tion/sedimentation was observed after the third washing for the PPhOx27-PMOx57/IONP
system, which indicates the total loss of copolymer during the washing procedure. On the
contrary, IONP@Coum-C11-PPhOx27-PMOx59 forms a nice colloidal aqueous solution of
brown colour indicative of IONP presence. The photographs of each step of encapsulation
during the formation of IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are given in
Scheme 2. Note that this difference in the behaviours of Coum-C11-PPhOx27-PMOx59
and PPhOx27-PMOx57 was not expected and highlights that the presence of the coumarin
moiety is necessary for the IONPs’ encapsulation.
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Scheme 2. Scheme for IONP encapsulation with representative photographs of products obtained at
each step of the procedures.

The IONP@Coum-C11-PPhOx27-PMOx59 nano-objects were first characterized by DLS
measurements, which indicated that the size of the micelles encapsulating the nanoparticles
significantly increased to reach a hydrodynamic diameter of 128 nm with a narrow size
distribution (PDI: 0.132) (Figure S9, ESI) in comparison with that of 57 nm (PDI: 0.120)
obtained for the copolymer micelles alone (Figure S5a,b, ESI). Note that after several
washing cycles, the dispersity of nanoparticles becomes much narrower (PDI: 0.132 vs. PDI:
0.246 for the first and the third washing cycles), while the hydrodynamic diameter slightly
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increases (128 nm vs. 110 nm). This observation is coherent with the removal of the empty
copolymer micelles during the washing. To confirm the DLS results, TEM observations
were performed for the pristine IONP/OA/OAm and IONP@Coum-C11-PPhOx27-PMOx59
nanoparticles (Figure 4). The IONP/OA/OAm nanoparticles are quasi-spherical in shape
and present a size of 26 ± 2 nm (Figure S10, ESI). In TEM, the electron density is responsible
for the contrast of the objects observed. Thus, in Figure 4a, the Fe3O4 nanoparticles appear
dark due to their electronic density compared to that of the carbon support of the grid
used. To obtain the TEM image depicted in Figure 4b, negative staining was employed.
This consists of applying an electronically dense molecular contrast agent, which increases
the image contrast by darkening the area in which it is located. The experimental protocol
followed here (see Materials and Methods) makes it possible to visualize the electronically
dense Fe3O4 nanoparticle within the micelles, which appear light in colour, the contrast
agent used for the negative colouring being located around the micelles.

Nanomaterials 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Scheme 2. Scheme for IONP encapsulation with representative photographs of products obtained 
at each step of the procedures. 

The IONP@Coum-C11-PPhOx27-PMOx59 nano-objects were first characterized by DLS 
measurements, which indicated that the size of the micelles encapsulating the nanoparti-
cles significantly increased to reach a hydrodynamic diameter of 128 nm with a narrow 
size distribution (PDI: 0.132) (Figure S9, ESI) in comparison with that of 57 nm (PDI: 0.120) 
obtained for the copolymer micelles alone (Figure S5a,b, ESI). Note that after several wash-
ing cycles, the dispersity of nanoparticles becomes much narrower (PDI: 0.132 vs. PDI: 
0.246 for the first and the third washing cycles), while the hydrodynamic diameter slightly 
increases (128 nm vs. 110 nm). This observation is coherent with the removal of the empty 
copolymer micelles during the washing. To confirm the DLS results, TEM observations 
were performed for the pristine IONP/OA/OAm and IONP@Coum-C11-PPhOx27-PMOx59 
nanoparticles (Figure 4). The IONP/OA/OAm nanoparticles are quasi-spherical in shape 
and present a size of 26 ± 2 nm (Figure S10, ESI). In TEM, the electron density is responsible 
for the contrast of the objects observed. Thus, in Figure 4a, the Fe3O4 nanoparticles appear 
dark due to their electronic density compared to that of the carbon support of the grid 
used. To obtain the TEM image depicted in Figure 4b, negative staining was employed. 
This consists of applying an electronically dense molecular contrast agent, which increases 
the image contrast by darkening the area in which it is located. The experimental protocol 
followed here (see Materials and Methods) makes it possible to visualize the electronically 
dense Fe3O4 nanoparticle within the micelles, which appear light in colour, the contrast 
agent used for the negative colouring being located around the micelles. 

  
Figure 4. Transmission Electronic Microscopy images of: (a) IONP/OA/OAm, (b) IONP@Coum-C11-
PPhOx27-PMOx59 nano-objects. 

3.3. Magneto- and Photothermal Heating 
The magneto- and photothermal capacities of the IONP@Coum-C11-PPhOx27-PMOx59 

nanoparticles were evaluated by measuring the temperature elevation of the aqueous col-
loidal solutions under both an applied AMF and laser irradiation at 808 nm. 

The magnetothermal properties were investigated by using a previously described 
home-assembled device with a 20 mT/342 kHz field [43]. Temperature elevations of ΔT = 
10.4 °C were observed after 15 min of exposure for an iron concentration of 0.637 
mgFe.mL−1 (Figure 5a). Note that the P2 solution (free of IONPs) used as a reference here 

Figure 4. Transmission Electronic Microscopy images of: (a) IONP/OA/OAm, (b) IONP@Coum-C11-
PPhOx27-PMOx59 nano-objects.

3.3. Magneto- and Photothermal Heating

The magneto- and photothermal capacities of the IONP@Coum-C11-PPhOx27-PMOx59
nanoparticles were evaluated by measuring the temperature elevation of the aqueous
colloidal solutions under both an applied AMF and laser irradiation at 808 nm.

The magnetothermal properties were investigated by using a previously described home-
assembled device with a 20 mT/342 kHz field [43]. Temperature elevations of ∆T = 10.4 ◦C were
observed after 15 min of exposure for an iron concentration of 0.637 mgFe.mL−1 (Figure 5a).
Note that the P2 solution (free of IONPs) used as a reference here provides a temperature
increase of only 1.7 ◦C in the same conditions. The estimation of the SAR value was performed
by using a phenomenological model grounded in the Newton temperature law, incorporating a
thermal exchange function (see ESI for details) [45,46]. Typically, SAR values are used to evaluate
the magnetothermal performance of magnetic nanoparticles by quantifying the generated heat
power under an applied AMF [18]. The energy exchange function developed with the second-
order Taylor series provided the best fit for the time dependence of temperature elevation curve
(Figure 5a red solid line), allowing extraction of a SAR value of 240 ± 3 W.gFe

−1. This value is
in the range of previously published ones obtained for efficient spherical IONPs working in
water [43].

The photothermal properties of the IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles
were investigated in aqueous colloidal solutions under an 808 nm laser irradiation with
a power of 2.58 W cm−2. The temperature of the colloidal solutions was monitored by
using both an optical fibre immersed in the solution and a thermal camera. An important
temperature increase of ∆T = 13.0 and 10.3 ◦C was observed under irradiation after 8 min
with concentrations of 0.637 and 0.478 mgFe.mL−1, while no obvious heating effect was
detected in the water without nanoparticles (∆T = 0.8 ◦C) (Figure 5b). The photothermal
conversion efficiency, η, for the photothermal experiments was calculated by fitting the ∆T
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vs. time curves for both concentrations using a model built in the COMSOL software [44].
The absorption, the thermal flux exchange and the thermal efficiency were optimized in
the fitting processes. The fitting details are given in the Materials and Methods section, as
well as in Figures S11–S13 (ESI). The obtained η value (for both concentrations) stands at
68 ± 3%, positioning it in the higher end of values previously reported for IONPs [47].
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3.4. Luminesence and Luminescent Thermometry

The photoluminescence of the IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles was
investigated in water and compared with that of the copolymer micelles of Coum-C11-
PPhOx27-PMOx59 in their non-dimerized (P1) and dimerized forms (P2). The room tem-
perature emission spectrum of IONP@Coum-C11-PPhOx27-PMOx59 performed in water
under excitation at 323 nm exhibits a broad band at 383 nm ascribed to a Coum-C11-
PPhOx27-PMOx59-characteristic emission (Figure 6). This result indicates that despite
the presence of a relatively strong absorption of IONPs in the UV region, after encapsu-
lation, the IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles preserved the copolymer-
characteristic emission, confirming successful coating with IONPs. The excitation spectrum
of IONP@Coum-C11-PPhOx27-PMOx59 displays a single band at 323 nm (Figure 6) observed
before or after dimerization under UV light. In contrast, the IONP-free micelles of Coum-
C11-PPhOx27-PMOx59 show two bands at 270 nm and 351 nm in its non-dimerized form (P1)
and one band at 336 nm in its dimerized (P2) state (Figure 1). This effect could be explained
by the modification of the coumarin’s conformation in Coum-C11-PPhOx27-PMOx59 during
the IONP coating process. Indeed, considering the fact that PPhOx27-PMOx57 was not
able to provide stable IONP coating, we concluded that the presence of coumarin provides
additional stabilization for IONP encapsulation.
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Figure 6. Excitation (green) and emission spectra (red) of aqueous colloidal solution of IONP@Coum-
C11-PPhOx27-PMOx59 nanoparticles (λexc = 323 nm, λem = 383 nm) recorded at room temperature.

Secondly, luminescence was investigated in water in the 20–60 ◦C temperature range in
order to demonstrate the potential of these nanoparticles for temperature sensing. Figure 7a
shows the temperature-dependent spectra of IONP@Coum-C11-PPhOx27-PMOx59 under
323 nm excitation and Figure 7b demonstrates the temperature dependence of the main
intensity (I383) taken as an integrated area in the 370–500 nm range. The obtained intensity is
linearly dependent on temperature, which confirms the possibility to use it for temperature
sensing. The temperature dependence of Sr is shown in the insert in Figure 7b. The
maximum on this curve (Srmax) estimated from the calibration data is equal to 1.53%·◦C−1

at 60 ◦C, which places these nanoparticles among the luminescent thermometers with a
high relative thermal sensitivity (~1%·◦C−1) [23]. Moreover, this value is coherent with
the better Srmax values obtained for nanoparticles containing luminescent thermometers
based on organic dyes working in water [48]. The measured thermal uncertainty of 0.82 ◦C
is satisfactory. The thermometric parameters for IONP@Coum-C11-PPhOx27-PMOx59
nanoparticles are gathered in Table 2.
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Figure 7. (a) Emission spectra of IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles (λexc = 323 nm)
recorded between 20 and 60 ◦C; (b) Temperature dependence of the luminescent intensity with the
integrated area 370–500 nm for IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles. The solid line
represents a linear fitting. Inset: temperature dependence of Sr. The error bars correspond to standard
error of mean determined from three consecutive temperature cycles.
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4. Conclusions

In summary, in this work, we reported on the synthesis and investigation of new
multifunctional heater@thermometer nano-objects obtained by coating magnetic IONPs
with luminescent coumarin-bound amphiphilic copolymer and which combine magneto-
or photothermal heating with luminescent thermometry. Firstly, amphiphilic coumarin
and polyoxazoline-based block copolymers, Coum-C11-PPhOx27-PMOx59 (P1 and P2 in its
non- and dimerized forms) and Coum-C11-PButOx8-PMOx42 (P4 and P5 in its non- and
dimerized forms) copolymers, as well as a coumarin-free copolymer, PPhOx27-PMOx57,
were synthesized and evaluated for their utility as luminescent thermometers. All of
them present temperature-dependent bright luminescence at 383 nm. Their temperature-
dependent luminescence is well pronounced and displays a linearity (for all except P4),
making them attractive as luminescent thermometers. Their maximal relative sensitivity
values (Srmax) in the range 1.92–2.71%·◦C−1 (at 60 ◦C) are rather satisfactory and indicate
that these copolymers can be used for efficient temperature measurements. Secondly, the
capacity of these copolymers to encapsulate spherical IONPs of 26 nm was investigated.
Successful encapsulation was obtained only in the case of Coum-C11-PPhOx27-PMOx59.
The as-obtained IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are well dispersible
in water, while the pristine IONPs immediately aggregate in water. The TEM images
demonstrate the presence of single IONP core enwrapped by a shell of copolymer. The
presence of a copolymer shell is also proved by the presence of a copolymer-characteristic
bright luminescence at 383 nm.

The obtained IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are able to provide a
macroscopic heating triggered by an AMF with satisfactory SAR values of 240 W.g−1 or by
light irradiation with photothermal efficiency of 68%. On the other hand, they exhibit the
temperature-dependent luminescence of a coumarin-based copolymer shell, offering the
function of luminescent thermometer at 383 nm in the 20–60 ◦C range in water, displaying
a maximal relative thermal sensitivity of 1.53%·◦C−1 at 60 ◦C.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14110906/s1. Figure S1. 1H NMR spectra of Coum-C11-
PPhOx27-PMOx59, Coum-C11-PButOx8-PMOx42 and PPhOx27-PMOx57. Figure S2. GPC trace of
(a) PPhOx27-PMOx57, (b) Coum-C11-PPhOx27-PMOx59 and (c) Coum-C11-PButOx8-PMOx42. Figure S3.
Schematic representation and representative photographs for different steps in the preparation of Coum-
C11-PPhOx27-PMOx59 (P1) amphiphilic copolymer micelles. Figure S4. Schematic representation of
Coum-C11-PPhOx27-PMOx59 amphiphilic copolymer dimerization (P2) under UV irradiation. Figure S5.
(a) Correlation curve and (b) Dynamic light scattering (DLS) for Coum-C11-PPhOx27-PMOx59 am-
phiphilic copolymer before P1 (orange line) and after dimerization (P2) under UV irradiation (blue line),
(c) TEM image for Coum-C11-PPhOx27-PMOx59 copolymer after dimerization (P2) showing the micelle
formation. Figure S6. Dynamic light scattering (DLS) for copolymers P3 (a) and P4 (b); (c) Representative
TEM image for P4 showing cylindrical/vermicular shape of micelles. Figure S7. (a) Emission spectra
recorded in the temperature range 20–60 ◦C in water for amphiphilic copolymers: (a) P3 (λex = 323 nm),
(b) P4 (λex = 351 nm), (c) P5 (λex = 336 nm). Figure S8. Temperature dependence of the luminescent
intensity I384 with the integrated area 350–500 nm in the temperature range 20–60 ◦C for: (a) P3, (b) P4,
(c) P5. The solid line represents a linear fitting. Inset: temperature dependence of Sr. Figure S9. Dynamic
light scattering (DLS) measurements for IONP@Coum-C11-PPhOx27-PMOx59 nanoparticles after the first
(black curve) and the third (red curve) washing cycles. Figure S10. Size distribution for IONP/OA/OAm
(n = 300). Figure S11. Simulated light density power of the 808 nm LASER used for the fit of the
photothermal experiment for the 0.637 mg/mL (a) and 0.478 mg/mL (b) concentrations. Figure S12.
Simulated temperature obtained during the fit of the photothermal experiment for the 0.637 mg/mL
concentration at 10 s (a) and 900 s (c) and the 0.478 mg/mL concentration at 10 s (b) and 900 s (d).
Figure S13. Simulated natural convection obtained during the fit of the photothermal experiment for the
0.637 mg/mL concentration at 10 s (a) and 900 s (c) and the 0.478 mg/mL concentration at 10 s (b) and
900 s (d).
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