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Abstract—GPUs are the prevailing solution to execute high-
performance tasks (e.g., machine learning training). As the peak
performance of modern GPUs increases with each generation, so
does their thermal design power (TDP). Hence, identifying energy
bottlenecks in the GPU architecture is crucial to designing more
efficient architectures in the future. However, due to the complex
proprietary nature of modern GPU architectures, providing a
detailed breakdown of the GPU energy consumption is not trivial.

The goal of this work is to estimate a lower bound for the
energy consumed by data movement and storage in modern GPU
architectures, leveraging internal power sensors. We establish a
basic energy model for modern GPUs, focused on data movement
to/from the hardware-managed caches and software-managed
memories. We propose a methodology to calibrate the energy
model using microbenchmarks, performance counters, and the
internal power sensor. We experimentally calibrate the model on
an A100 NVIDIA GPU. Then, we challenge the consistency of
the results by cross-validating with modified microbenchmarks
with additional instructions. Finally, we use the calibrated energy
model to evaluate breakdowns for workloads of increasing
complexity (e.g., a ResNet-50 training iteration with different
software optimizations). Our results show that data movement
dominates the dynamic energy consumption of the GPU (up to
84%), with DRAM accesses being the main contributor.

I. INTRODUCTION

Recent evolution of the GPU architecture (e.g., the addition
of tensor cores in 2017) drastically improved throughput
and latency, making GPUs the default solution for high-
performance tasks (e.g., machine learning training). Despite
these architectural innovations, GPUs still consume a consider-
able amount of energy (e.g., the NVIDIA A100 GPU features
a 400W TDP, while the TDP of the upcoming NVIDIA
Blackwell is estimated at 1000W). The design of energy-
efficient accelerators relies on a deep understanding of the
energy bottlenecks. However, modern GPU architectures are
proprietary and complex, and manufacturer-provided profiling
tools do not offer a detailed energy consumption breakdown.

Hence, architecture designers have to resort to simulation-
based approaches to estimate the energy consumption of the
inner GPU components [1]. This solution depends on the
precision of the models and the simulation time can be exten-
sively long for heavy workloads. Previous GPU power models
were proposed to isolate the power consumption of specific
GPU components using microbenchmarks [2]–[6]. However,
some of these approaches were either: performed on older
architectures and/or relied on external power measurement
tools, which is impractical when the GPU is not physically

accessible (e.g., cloud server); rely on analyzing PTX as-
sembly code, which is not applicable when using vendors-
provided precompiled libraries (e.g., cuDNN [7]); use Machine
Learning (ML) models to predict power consumption [8]–[13]
which obfuscates the power consumption details of the GPU
component behind trained weights; or, ignore crucial kernel
parameters that can influence the energy per access [3] (i.e.,
type of transaction, kernel dimensions, access pattern).

Our main goal is to propose a method that uses performance
counters and internal power sensors to estimate a tight lower
bound of the energy consumed by GPUs in data movement
and storage. To this end, we establish a basic energy model
of the GPU architecture, focused on data movement and
storage across the memory hierarchy. Then, we propose a
methodology to calibrate the proposed energy model for
modern GPUs. This methodology combines profiling-specific
microbenchmarks with tools that grant access to the GPU’s
performance counters and internal power sensors [14]. We
cater our methodology for assessing a lower bound on the
energy consumption of data movement and storage. We use our
methodology to evaluate the energy consumption for accesses
to shared memory, L1 and L2 caches, and DRAM of an
NVIDIA A100 GPU. We show that ignoring crucial kernel
parameters (e.g., kernel dimensions, access pattern) can lead
to a 15× overestimation of energy consumption. To cross-
validate the methodology, we challenge the energy evaluations
by performing the calibration on modified microbenchmarks
(i.e., adding compute instructions to the memory accesses).
Finally, we use our calibrated model to evaluate a breakdown
of the energy consumption of the A100 GPU for increasingly
complex ML workloads. Our results show that even a lower
bound estimation of the energy consumed by data movement
and storage remains a substantial portion of the total GPU
energy, with DRAM accesses being the main contributor.

In summary, this work makes the following contributions:

• We propose a basic energy model for modern GPU
architectures, focused on data movement and storage.

• We describe a methodology to calibrate the proposed
energy model using microbenchmarks to assess a lower
bound energy of data movement and storage.

• We calibrate our energy model on the NVIDIA A100 and
check the consistency of the energy evaluations.

• We show that our model can provide a detailed break-
down of the energy consumption of complex applications.



II. RELATED WORK

GPU power models were proposed in previous works, some
of which use microbenchmarks for calibration [2]–[4], [10],
[15], [16] and/or estimate either the total GPU power con-
sumption [6], [8]–[12], [16], [17] or a power breakdown [4],
[5], [16], [17]. We identify six main limitations of related
works and discuss how our methodology addresses them.
Overevaluation of the energy. Some works ignore crucial
kernel parameters [3] (i.e., transaction type, kernel dimensions,
access pattern). Others, use microbenchmarks to calibrate
power models and estimate the total power usage or provide a
power breakdown, with reasonable accuracy [16]. However,
these estimations can lead to overevaluation of the energy
by memory operations, which can complicate the ranking of
different options in the design space exploration.
Require access to PTX code. Some works rely on analyzing
the PTX assembly code of GPU benchmarks [6], [11], [12],
[17]–[19] or microbenchmarks [10]. These approaches are not
applicable when the PTX code of the targeted GPU workloads
is not accessible, which is the case in vendors-provided
precompiled libraries often used by ML applications (e.g.,
cuDNN [7] is used by TensorFlow [20] and PyTorch [21]).
DL-based models. Some works rely on using DL-based
models [8]–[13] trained to infer power predictions based on
performance counter values. While these models can provide
accurate power predictions, using DL models obfuscates the
power consumption details of the GPU component behind
trained weights. Hence, these models cannot provide a detailed
power breakdown of the GPU architecture.
Ignore memory operations. Some works evaluate the energy
cost for compute instructions but ignore memory instructions
altogether [2] (i.e., only evaluating the energy consumption
of compute operations). Similarly, some works focus only on
the software abstractions of the GPU memory hierarchy [15],
without distinguishing between the physical implementations.
This can lead to inaccurate evaluations if performed on modern
GPUs, which include hardware-managed cache hierarchies.
Require physical access. Some works [2]–[6] use external
power measurement tools [22], building testbeds to measure
the power consumption of the GPU. These methodologies are
not relevant when physical access to the GPU is not available
(e.g., cloud server). Other previous works have compared
internal power sensor readings to external solutions [2], [23],
showing that the error introduced by internal sensors can be
made negligible with simple processing of the measurements.
Dated GPU architectures. Some works are based on dated
GPU architectures [4]–[6]. These approaches are similar to
ours (e.g., microbenchmarks, counters), but do not apply to
modern GPUs with more complex memory hierarchies.

In contrast, we propose a methodology that takes into ac-
count major kernel parameters to provide a tight lower-bound
estimation of the energy consumed by memory operations
in the physical memory levels of modern GPU architectures
(i.e., making it easier to rank different design options). This
methodology does not require access to PTX code and can be
used with internal or external power measurement techniques.

III. BACKGROUND

A. GPU microarchitecture

GPUs execute kernel programs that detail the operations
to be performed by one thread, replicated and executed
in parallel in the GPU architecture. Threads are organized
in thread blocks, and distributed to the different Streaming
Multiprocessors (SM) cores of the GPU. When a thread block
is scheduled for execution in an SM, its threads are distributed
in groups of 32 (i.e., warps). Warp instructions can be issued
in an interleaved manner and executed in parallel.

Modern GPUs’ memory hierarchy is composed of several
levels of cache to try and reduce the latency (and energy
consumption) of memory accesses (i.e., LOADs or STOREs):
L1 cache (private to each SM), L2 cache (common to mul-
tiple SMs), and DRAM (global memory). Accesses to these
hardware caches are tagged as HIT or MISS depending on
whether the targeted data is present in the cache or not. These
hardware-managed caches are complemented by software-
managed caches (e.g., texture cache, constant cache, shared
memory) from (to) which a programmer can explicitly load
(store) data. Each access to a memory preloads a complete
cache line to be accessed by the threads before the next access
replaces it. The size of the cache line is known as the access
granularity of the memory (e.g., 32 bytes for NVIDIA A100).
The proposed energy model covers both types of memories.

B. GPU performance counters and internal power sensors

NVIDIA GPUs provide access to a set of performance
counters through the NVIDIA Nsight Compute (ncu) profiling
tool [24]. Performance counters are exposed to the user
through a set of metrics. A limited number of performance
counters can be observed during a profiling run, above which
multiple replays of the profiled kernels will be prompted by
the tool, adding profiling overhead. This work selects specific
metrics to evaluate the number of memory transactions at each
level of the GPU memory hierarchy (see Section V).

Modern NVIDIA GPUs provide access to an internal power
sensor using the NVIDIA Management Library (NVML).
Limitations of this sensor were detailed in previous works [23]
and evaluated against external power sensors [2], [23]. This
work builds upon the methodology from Burtscher et al. [23]
to collect power measurements. We provide more details on
our power measurement methodology in Section V.

IV. ENERGY MODEL OF DATA MOVEMENT IN GPUS

In this section, we propose an energy model to characterize
the energy consumption of data movement in the GPU memory
hierarchy, noted EMEMORY. We first provide background on the
different high-level components of the GPU energy model.
Then, we model data movement and storage based on our
analysis of modern GPU architectures. The proposed analytical
energy model covers software-addressed memory spaces and
hardware-managed caches. Finally, we discuss the influence
of parallelized transactions on the energy consumption of the
memory hierarchy.



A. Background on GPU energy models

The energy consumption of a GPU running a kernel can be
divided between static and dynamic energy components:

ETOTAL = ESTATIC + EDYNAMIC. (1)

The static energy is the part of the total energy consumed
by the GPU, which is constant (i.e., independent of the kernel
being executed). This static energy component is specific to
a given GPU model and influenced by the temperature, the
voltage, and the frequency of the GPU. The dynamic energy
is the additional energy (i.e., on top of the static energy)
consumed by the GPU when it is executing a kernel. This
dynamic energy component has been modeled in the past as
the sum of the energy consumed by the memory (EMEMORY)
and the energy consumed by the SMs (ECOMPUTE) [4], [25]:

EDYNAMIC = EMEMORY + ECOMPUTE. (2)

Static energy (ESTATIC) and compute energy (ECOMPUTE)
have been modeled further in the past [2], [4]. Our work
focuses on providing a tight lower-bound estimation of the
energy consumed in data movement and storage (EMEMORY).

B. Analytical energy model

We consider the energy spent moving data across the GPU
cache hierarchy as the sum of energy spent loading (storing)
data from (to) the memory levels, including both hardware-
managed (i.e., caches) and software-addressed memory spaces
(i.e., main memory and shared memory). Hence,

EMEMORY =
∑
MEM

EMEM. (3)

We define the energy spent by a given level of memory
(EMEM) as the number of accesses (noted #accesses) multi-
plied by the energy of one access to the memory (noted εMEM).
However, accessing a memory level also requires the activation
of the components of the memory level, which we evaluate as
an offset energy (noted ∆EMEM). In Section V, we propose
a methodology to isolate the energy cost of one HIT access
from the offset energy using linear regression:

EMEM = #accesses × εMEM +∆EMEM. (4)

In the case of hardware-managed caches (L1 to LLC), a MISS
will be matched to either a HIT at a lower cache level or access
to the main memory. Hence, for these memories, we restrict
the count of the number of accesses only to HIT accesses.

C. Influence of parallel accesses

The GPU architecture is intended to achieve better energy
efficiency in two ways: by accessing a given memory using
multiple threads at a time (i.e., parallel accesses) and/or by
amortizing the energy cost of loading a cache line with
subsequent memory accesses (i.e., coalescence). Hence, the
energy cost of one memory access (noted ε) to a given memory
level is influenced by three parameters: the number of threads
accessing the memory at a time (noted NT ), the coalescence of
these accesses and the access granularity of the memory (i.e.,

size of the cache line, noted C) [26]. Ideally, threads memory
operations are subsequent and fully coalesced and the number
of accesses can be defined as the number of entire cache lines
that a given amount of threads will load

#accesses =
⌈
NT

C

⌉
× C. (5)

In this case, better energy efficiency per access can only
be achieved by having enough threads to occupy all memory
ports in parallel, capitalizing even more on the energy cost of
activation of the memory,

ε =
EMEM −∆EMEM⌈

NT

C

⌉
× C

. (6)

In Section V, we increase the number of threads when
accessing a memory level to find the lower bound of Eq. 6.

V. METHODOLOGY

In this section, we describe a methodology to evaluate a
lower bound for the energy consumption of data movement
and storage in the GPU memory hierarchy (illustrated in
Fig. 1). The methodology is divided into 3 different phases:
identification of parameters of the device (V-A), calibration of
the energy model using microbenchmarks (V-B), and evalua-
tion of the energy breakdown of a new application (VI).

Fig. 1: Different phases of the methodology: (1) parameters
identification, (2) calibration, and (3) evaluation

A. Parameter identification phase

Calibrating the proposed energy model relies on two specific
sets of parameters, specific to the target GPU model. The first
input parameter is the list of performance counters that count
the number of accesses at each cache level (along with the
proportion of HITs and MISSes). This parameter is needed
as a safety check to ensure that the microbenchmarks are
targeting the right cache level during the calibration phase.
The second parameter is the list of sizes of each GPU cache
level. The size of the targeted GPU cache is needed as a direct
input for the microbenchmarks when calibrating the energy
model. The sizes of the GPU caches are typically shared by
the manufacturer in the GPU documentation (e.g., NVIDIA’s



whitepapers [27], [28]). However, the sizes of the GPU caches
can also be identified by evaluating the hit/miss rate of the
cache over a range of array sizes [29], [30].

For example, Fig. 2 shows the miss rate of the A100 GPU
L1 and L2 caches over a range of array sizes. L1 cache miss
rate increases as the array size passes 150kB and misses 100%
of the time for an array size of 190kB. L2 cache miss rate
increases as the array size reaches 15MB and misses 100% of
the time for an array size of 22MB. NVIDIA’s whitepaper [28]
states that shared memory and L1 cache share a configurable
192kB memory space. L2 cache is 40MB, divided into 2
partitions of 20MB each. The results of this evaluation are
consistent with the manufacturer’s documentation.

0%

L1 miss rate
L2 miss rate

Array size (bytes)

L1 range L2 range DRAM range

25%

50%

75%

100%
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Fig. 2: Miss rate of the L1 and L2 caches of the A100 GPU,
over a range of array sizes between 1kB and 1GB

B. Calibration phase

Once the parameters of the device are identified, we cali-
brate the energy model by running the microbenchmarks on
the target GPU, sweeping the number of memory accesses
while gathering the performance counters and power mea-
surements, for each memory level. Here, we describe the
microbenchmarks and important parameters of the calibration.
Microbenchmarks. We divide the proposed microbenchmarks
into two codebases (written in CUDA with inline PTX as-
sembly code): one for LOAD operations and one for STORE
operations. A simplified version of the LOAD microbenchmark
is shown in Listing 1. Both microbenchmarks are based on
the pointer-chasing algorithm used in previous works [3], [29],
which consists of a loop that iterates over an array of pointers,
each pointing to another element of the array, separated by
a given stride. The objective of the microbenchmarks is to
perform a large number of memory transactions on an array
of 64-bit unsigned integers (i.e., uint64_t), the size of the
array is chosen to fit on the targeted cache level according to
the identified parameters (see Fig. 2). Using pointer-chasing
allows for a higher ratio of memory transactions versus other
instructions when executing the microbenchmarks.

Listing 1 shows a typical microbenchmark containing two
loops: a warm-up loop and a measurement loop. The warm-
up loop (lines 13 to 17) is used to move the pointer-chasing
addresses from the GPU global memory to the targeted cache.
During the execution of this loop, all memory accesses to the
targeted cache level will be tagged as MISSes, as the data is
not yet cached. This example microbenchmark is designed to

target hardware-managed caches (i.e., L1, L2). However, it can
easily be adapted to target other memory spaces (e.g., shared
memory) by manually programming the filling of the targeted
memory space instead of the warm-up loop. In the case of the
DRAM, the warm-up loop is not needed as the data is already
in the DRAM memory.

The measurement loop (lines 18 to 27 in Listing 1) follows
the same pattern as the warm-up loop, however, we unroll
the loop to increase the ratio of memory instructions per
iteration, reducing the contribution of other instructions to the
total energy consumption. Additionally, we execute multiple
iterations of the measurement loop to increase the duration
of the microbenchmark, reducing the contribution of possible
ramp up and ramp down of the power consumption of the
GPU. Thanks to the warm-up loop, all memory accesses to
the targeted cache level should be tagged as HITs during the
execution of the measurement loop. For each measurement
point, we execute the microbenchmarks twice: once with
only the warm-up loop and once with both the warm-up and
measurement loops. Then, we isolate the energy consumption
and performance counter values of the measurement loop by
subtracting the corresponding values of the warm-up loop.

1 __global__ void load(uint64_t *array) {
2 // Get thread ID and block ID
3 uint64_t tid = threadIdx.x;
4 uint64_t bid = blockIdx.x;
5 // Compute thread start address
6 uint64_t *start = array + tid + (bid *

SUBTAB_SIZE / sizeof(uint64_t));
7
8 asm volatile(
9 [...] // Init registers
10 "{.reg .pred %p;\n"
11 ".reg .u64 %tmp;\n"
12 "mov.u64 %tmp, %0;\n\n"
13 // Warmup loop
14 "$warmup:\n"
15 "ld.global.u64 %tmp, [%tmp];\n"
16 "setp.ne.u64 %p, %tmp, %0;\n"
17 "@%p bra $warmup;\n"
18 // Measurement loop
19 [...] // Reset counter and address
20 "\n$measurement:\n"
21 "ld.global.u64 %tmp, [%tmp];\n" // 1st LOAD
22 [...] // unrolling X more LOADs
23 "setp.ne.u64 %p, %tmp, %0;\n"
24 "@%p bra $measurement;\n" // for SIZE/STRIDE
25 "add.u32 %k, %k, 1;\n"
26 "setp.lt.u32 %p, %k, %1;\n"
27 "@%p bra $measurement;\n" // for N_ITER
28 "}" : "+l"(start)
29 : "n"(N_ITER));
30 }

Listing 1: Simplified LOAD microbenchmark kernel code

Access granularity and access pattern. Ideally, optimized
kernels should exploit the cache line locality by accessing
the memory in a coalesced and parallel way across multiple
threads. Hence, using a single thread at a time to access
memory can lead to overestimation of energy consumption
per access. The proposed methodology assumes such ideal
memory usage and is designed to assess a lower bound energy
consumption for memory accesses. As mentioned in Sec-



tion IV-C, to evaluate this lower bound, we have to take into
account two effects: multiple threads accessing the same cache
line in parallel and/or each thread accessing the elements of
the cache line in a subsequent coalesced way.

Different memory levels can have different access granular-
ities. For example, the granularity of the A100’s L2 cache can
be configured to 32, 64, or 128 bytes. This must be taken into
account to prevent the generation of undesired HITs when
targeting hardware-managed caches. To have consistently-
strided accesses, we set the minimum stride of the pointer-
chasing algorithm to the access granularity size of the targeted
memory level. For example, the A100 GPU has a LOAD
access granularity of 32 bytes (i.e., a sector, 4 uint64_t
elements). Hence, we run the microbenchmarks with a stride
of 32 bytes to access the array.

However, with this stride, using only 1 thread per thread
block would underuse the sector, loading only a fraction of
the accessed elements (see Fig. 3a). As each LOAD operation
of one thread will trigger a different memory access, this
could lead to an unrealistically high energy consumption per
access. Typically, multiple GPU threads should access the
same sector at the same time (in our case, 4 threads to
access a sector of 32 bytes to amortize the energy cost of
accessing a sector, see Fig. 3b). Past this point, increasing
the number of threads per block (see Fig. 3c) could still help
reduce the energy consumption per memory transaction for
two reasons: (1) it provides greater opportunities to parallelize
memory transactions, thereby using multiple memory ports
and reducing the execution time of the microbenchmark, and
(2) it facilitates leveraging the fixed energy cost of using the
targeted cache level (i.e., activating the necessary components
to access the cache level).

The increase in the number of parallel accesses can also be
achieved by increasing the number of thread blocks, leading
to a further reduction in energy consumption per memory
transaction. From a practical point of view, using more threads
also increases the dynamic energy of the GPU, ultimately in-
creasing the signal-to-noise ratio of the power measurements.
Hence, in our experiments, we sweep the number of blocks and
the number of threads per block until we reach a low saturation
point for the energy per access. This evaluates the lower bound
of the energy consumption of memory transactions.
Performance counters. The theoretical number of accesses
during one iteration of the microbenchmarks is the array size
divided by the stride size and the number of threads executed.
Practically, we evaluate it using the following formula:

#accesses =
arraysize ×#blocks ×#threadsperblock

stride × access granularity
. (7)

As described in Section IV, the total energy spent increases lin-
early with the number of accesses but also hides a static offset
energy resulting from the activation of auxiliary components
(e.g., memory controllers, SMs, etc.). Hence, we evaluate the
total energy for multiple amounts of memory accesses and use
linear regression to separate this energy offset from the energy
cost of each memory transaction. For each measurement point,
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Fig. 3: Thread accesses of the microbenchmarks for different
numbers of threads per block, adapting the stride accordingly

we run the profiling once and use the performance counters as
a safety check to ensure that two conditions are met. First, we
verify that the memory accesses are performed on the targeted
memory level, by checking that the hit rate of the target cache
level is 100% during the measurement loop. Second, we verify
that the counted number of memory accesses is consistent with
Eq. 7. Any difference in the evaluated number could indicate
changes in the microarchitecture. Thus, parameters would have
to be changed accordingly.
Power measurements. We manually add delays in the CPU
code before and after the execution of the kernel to ensure
we measure the static power consumption of the GPU during
a period of inactivity (i.e., idle). While we use the internal
power sensor of the GPU in our implementation of the
methodology, external power tools could also be used with
this alignment technique using delays. In Fig. 4, we show a
typical power trace of the A100 GPU, using base clock (1065
MHz), executing a kernel that is representative of the proposed
microbenchmarks in its power consumption (i.e., multiply-add
operations on a vector with millions of values), during 10
seconds. The power trace is annotated with markers (t0 to
t5), separating the different phases of execution. Between t0
and t1, no kernel is executing and no memory is allocated on
the GPU, the GPU is in a sleep state (≃ 55 W for the A100).
Between t1 and t2, the memory is allocated on the GPU
global memory and the GPU enters an idle state. During this
idle phase, we measure the static power consumption of the
GPU. Between t2 and t3, during the 10s of kernel execution,
the power consumption of the GPU increases depending on
the kernel’s load. During this phase, we identify the energy
consumption above the idle power level as the dynamic energy
(i.e., green zone in Fig. 4). We identify the rest of the
energy consumption as the static energy (i.e., red zone in
Fig. 4). When executing the microbenchmarks, the duration of
this phase can be influenced by increasing or decreasing the
number of iterations executed during the measurement loop.
Kernel execution ends at t3, and the GPU returns to an idle
state. Finally, at t4, the memory is deallocated and the GPU



goes back to a sleep state until the end of the run at t5.
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Fig. 4: Power trace of a 10s kernel execution on the A100
GPU with base clock, annotated with markers

Experimentally, we use the NVIDIA Management Library
(NVML) to collect power measurements from the GPU and
run each measurement point multiple times (at least 3). Using
base clock, we observe no difference in power consumption
between the sleep and idle phases. However, this is not the
case when using boost clock, where we observe a rise in the
idle phase to around 80W and a cooldown phase at t4, where
the power gradually lowers down to the power value observed
in the sleep phase. Hence, we lock the GPU clock at base
clock (1065 MHz) to help prevent power fluctuations that can
arise from thermal throttling or changes in power modes.

C. Evaluation phase

Once the energy consumption per memory access is isolated
for each level of the memory hierarchy, the calibrated energy
model can be used to provide energy breakdowns for new
applications. To this end, the new application has to be
profiled with the same tools used during the calibration phase.
However, while the calibration phase needs multiple runs
of profiling (i.e., for n_accesses and for n_runs in
Fig. 1), the evaluation phase only needs two runs, one for
each profiling tool (i.e., NCU profiling and energy profiling).
Our calibration methodology provides a lower-bound evalua-
tion of the energy consumption and covers only the energy
consumption of the data movement and storage. Hence, the
measured dynamic energy will be higher than the sum of
the energy consumption of the different memory levels. This
difference includes the energy of the compute instructions
(i.e., ECOMPUTE in Section IV) and additional energy from
memory accesses exceeding the lower bound. In Section VII,
we identify this difference as the remaining component of the
dynamic energy (i.e., “Dyn. (rest)” in Figs. 9 and 10).

VI. IMPLEMENTATION

Using the methodology described in Section V, we calibrate
the proposed energy model for the NVIDIA A100 GPU.

A. Experimental setup

We use the NVIDIA CUDA Toolkit 12.1 to compile our
microbenchmarks and run our experiments on a cloud server
equipped with A100 paired with AMD EPYC 7343. We
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Fig. 5: Calibration traces of the L1 cache LOAD microbench-
mark with (a) one thread per block, (b) 1024 threads per block

use the NVIDIA Management Library (NVML) to read the
internal power sensor measurements and lock the clock fre-
quency of the GPU to 1065 MHz (i.e., base clock). We use
NVIDIA Nsight Compute CLI (ncu) to read the performance
counters. We calibrate the energy model for the L1 cache,
L2 cache, DRAM, and shared memory, using only the LOAD
microbenchmark. We consider the energy of a STORE access
energy consumption as the same as a LOAD access to a given
memory. This respects our lower bound assumption, as the
energy consumption of a STORE access is usually higher than
a LOAD access [31]. For each measurement point, we run at
least 3 iterations and report the average energy consumption,
standard deviation, and minimum/maximum values.

B. Parameter identification

According to the manufacturer’s whitepaper [28], the A100
GPU is equipped with 108 SMs (each with 4 SMSPs), 80
GiB of HBM2 memory, 40 MiB of L2 cache, and 192 kiB
of combined shared memory/L1 cache. In Section V, we
show that MISSes can occur with smaller array sizes than
the cache size. Hence, we choose the array sizes for our
microbenchmarks small enough to fit in the targeted cache:
150 kB for the L1 cache, 250 kB for the L2 cache, and 50
MB for the DRAM. For shared memory, we use a 48 kB array
size, as it is the maximum static allocation size per block on
the A100 GPU [32].

C. Calibration

Fig. 5 shows the total energy consumption of the A100
GPU when running the LOAD microbenchmark with a varying
number of memory accesses, targeting the L1 cache (i.e., 150
kB array size), using (a) one thread per block and (b) 1024
threads per block. We observe that the energy consumption
increases linearly with the number of memory accesses. We
use linear regression to calibrate the energy model and evaluate
the energy consumption of each memory access. Linear regres-
sions achieved r-squared scores of 0.96 and 0.99 for 1 and
1024 threads per block, respectively. The standard deviation
of our measurements shows a maximum value of around 6 J,
which is acceptable relative to the total energy consumption.
Thus, we observe a higher precision of the calibration when
using a higher number of threads per block.
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Fig. 6: L1 (a) and L2 (b) cache LOAD calibration results

Using the slope of the linear fit, we can estimate the energy
consumption of each memory access, which is around 1600
pJ for the L1 cache using one thread per block and 107 pJ for
1024 threads per block. As described in Section V, the energy
consumption of one memory access can vary depending on the
number of threads per block. Hence, we repeat this calibration
process for the L1 and L2 caches using multiple threads per
block, up to 1024 threads per block (i.e., the maximum number
of threads per block on the A100 GPU for 1D grids). We
present the results of this calibration in Fig. 6a, along with the
L2 cache calibration (Fig. 6b). We can see that below 4 threads
per block, the evaluated energy per access is similar (nearly
1600 pJ). With a low number of threads per block, we observe
high signal-to-noise, hence the variation of the projections
for the L2 cache (ranging between 8490 and 4260 pJ). As
mentioned in Section V-B, due to the access granularity, using
less than 4 threads per block the proposed microbenchmark
will always prompt the same number of sector accesses. When
increasing the number of threads per block, we observe a
plateau in the evaluated energy consumption of each memory
access decreasing to around 107 pJ for L1 and 378 pJ for
L2. These results show that ignoring multithreaded memory
accesses leads to near 15× overevaluated energy per access
(from 1600 to 107 pJ). We consider the lower bound of the
energy consumption (i.e., 107 pJ for L1 and 378 pJ for L2).

We repeat this calibration process for DRAM and shared
memory (i.e., 50 MB and 48 kB array size, respectively) using
multiple threads per block. We present the calibration results
in Fig. 7, showing the projection of the energy consumption
of each memory access for different numbers of threads per
block. Similarly to the L1 cache calibration, we observe that
the energy consumption per access decreases when increasing
the number of threads per block, for all memory levels. We
evaluate the lower bound of the energy consumption of one
access at a given memory level by taking the minimum value
across all evaluated numbers of threads per block. Hence, we
evaluate the minimum energy consumption of a sector access
(i.e., 32 bytes) to the shared memory, L1 cache, L2 cache, and
DRAM to be: 82.1, 107, 368 and 2090 pJ, respectively.

The difference in power consumption between L1 and
shared memory (located on the same physical memory) can be
explained by the difference in how the memory is addressed
(i.e., shared memory is directly addressed, L1 cache has a tag
stage checking if the data is present in the cache).
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D. Cross-validation of the calibration results

The DRAM memory of the A100 uses HBM2 technology.
Previous works estimate HBM2 memory energy consumption
at 500 pJ per 32B access [31]. With our methodology, we
evaluate this energy for the A100 at 2090 pJ. Considering
additional energy overhead from DRAM and cache controllers,
we consider this value consistent with the literature.

To challenge the consistency of our results, we use a
modified version of the LOAD microbenchmark, with a sup-
plemental DIV instruction after each memory access (i.e.,
LOAD+DIV), and perform the same calibration. We select the
DIV instruction as it consumes significant energy compared
to other compute instructions [2], making it simpler to isolate
from the noise of the measurements. We evaluate the differ-
ence in energy consumption between the LOAD calibration
and the LOAD+DIV calibration for the L1, L2, and DRAM
memory levels. We present the results in Fig. 8.

We observe some variations in the evaluated energy con-
sumption of the DIV instruction when using a small number
of threads per block (i.e., with the highest signal-to-noise
ratio). Above 8 threads per block, we observe that the energy
consumption of the DIV instruction is consistent at around 2
nJ per instruction. This value is consistent with the literature,
as the energy consumption of an unsigned division instruction
was evaluated around 3.9 nJ on previous NVIDIA GPUs [2].

VII. EVALUATION OF COMPLETE APPLICATIONS

We use the calibrated model to evaluate energy breakdowns
for two real-world applications with increasing complexity:
a matrix multiplication (MatMul) and a training iteration of a
deep learning model (i.e., ResNet-50). We perform 10 runs for
each application and report less than 1% of standard deviation.
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A. Matrix multiplication

We use a reference MatMul implementation from the CUDA
samples (which does not use the tensor cores [19]). We
evaluate the energy consumption for multiple square matrix
sizes (from 512 to 4096) and show the breakdowns in Fig. 9.

We observe that while the energy consumed during the
execution of the kernel increases with the size of the matrices,
it is dominated by the static energy consumption of the GPU
(i.e., > 50%). When ignoring the static energy consumption,
we observe that a major part of the energy is consumed by
moving data across the memory hierarchy (i.e., > 50% of
the dynamic energy), with the shared memory being the most
energy-consuming memory component.

The largest tested matrix multiplication (i.e., 4096× 4096)
has an arithmetic intensity of 1365 FLOPS/byte, which makes
it compute-bound for the A100 GPU (i.e., arithmetic intensity
≫ 1 FLOP/byte). Nevertheless, we observe that the energy
consumption of data movement is still significant, representing
around 30% of the total energy consumption of the kernel. This
simple example shows the significant energy consumed in data
movement and storage in the A100, even for a lower-bound
evaluation of compute-bound workloads.

B. ResNet-50 training iteration

We use a reference implementation of ResNet-50 from the
TensorFlow model garden [33] and evaluate the breakdown
of the energy consumption of one training iteration using the
A100 GPU. We run the training iteration comparing multiple
software optimizations (i.e., full precision (FP32) vs. mixed
precision (FP16), and eager execution vs. just-in-time (JIT)
compilation using XLA) using batches of 512 images. We
present the results of this evaluation in Fig. 10.

We make four observations from these results. First, the
kernel’s static energy is around 40% of its total energy con-
sumption, regardless of the software optimization used. Sec-
ond, data movement is the most energy-consuming component,
representing the majority of the dynamic energy consumption
(i.e., between 60% and 84%), except for the AMP eager
execution (i.e., only 29%). Third, both of the tested software
optimizations reduce the energy consumption of the kernel,
showing a potential drop of 90 J going from full-precision ea-
ger to mixed-precision XLA JIT compilation. However, these
optimizations influence the energy consumption breakdown
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Fig. 10: Energy breakdown and throughput of ResNet50 using
multiple software optimizations, executed using TensorFlow

differently. On the one hand, going from full-precision to
mixed-precision greatly reduces the energy of data movement
and storage. When using eager execution it represents a drop
from 80% to 29% of the dynamic energy, and a drop from 83%
to 60% when using XLA JIT compilation. On the other hand,
XLA JIT compilation increases the proportion of memory en-
ergy consumption. It represents an increase from 29% to 60%
of the dynamic energy consumption with mixed-precision,
and from 80% to 84% when using full precision. Finally, we
observe that DRAM greatly dominates the energy consumption
of the memory hierarchy (above 70%). In contrast, the L2
cache represents between 2% and 8% of the total energy
consumption. The L1 cache is negligible, representing less
than 1% of the total energy consumption, except for the AMP
XLA JIT compilation, where it represents around 5%. Shared
memory is also negligible, representing less than 2% of the
total energy consumption for all tested configurations.

While the proposed methodology evaluates a lower bound of
the data movement and storage energy, our results show that it
still represents a significant part of the total energy consump-
tion of the GPU, even for compute-bound workloads. On the
one hand, the calibration results highlight the importance of
exploiting data locality when aiming for energy-efficient GPU
applications. On the other hand, the energy breakdown results
show that even a well-optimized deep learning model, exploit-
ing data locality and reduced precision, is still dominated by
the energy consumption of data movement.

VIII. CONCLUSION

In this work, we propose a methodology to estimate a
lower bound of the energy consumed by data movement and
storage. The proposed methodology, which we implement and
verify on an NVIDIA A100 GPU, uses microbenchmarks and
performance counters, and identifies the energy consumption
of accesses to shared memory, L1 and L2 cache, and DRAM
memory. We evaluate breakdowns of the energy consumption
for increasingly complex GPU workloads: a MatMul kernel
with varying matrix sizes, and a training iteration of an ML
model (i.e., ResNet-50) with different software optimizations.
Despite optimizations lowering the total energy consumed, we
show that data movement is dominant in the GPU dynamic
energy consumption, with DRAM as the main contributor.
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