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Abstract

This paper analyzes the determinants of asset replacement investment decisions
with maintenance and operating cost uncertainty governed by a mixed modified
fractional Brownian motion. It addresses an important issue in investment decision-
making and offers an innovative approach using mixed modified fractional Brownian
motion. The contingent claims method from the real options literature providing
techniques needed to incorporate uncertainty into replacement investment decisions.
Following Mauer et Ott [4], we note that the optimal time of replacement of the
fixed assets in a firm depends on the policy of optimal replacement which is a critical
level of the costs of maintenance and exploitation. The optimal replacement policy is
obtained as a function of the present average value of the maintenance and operating
costs of the assets. By assuming that the cost of operating and maintenance assets
follow a Mixed Modified Fractional Brownian Motion (MMFBM) [6], the optimal
replacement policy is minimal and therefore it encourages the firm to replace more of
its assets and spend less their maintenance, depending on the MMFBM parameters
such as Hurst coefficient. At the end we notice that when the Hurst parameter
increases, the optimal replacement policy and the maximum value of the present
average value function of asset costs decrease.

Keywords : Real Option, Replacement; Maintenance Costs; Operational Costs; Mixed

Modified Fractional Brownian Motion; Investment Decision; Hurst parameter; Optimal

replacement policy.

1 Introduction

The asset curve in the financial market describes the relationship between the local mar-

ket trend and market volatility. This is a most important concept in pricing options in a

market. Investors have a lot of interest in researching this curve and fundamental data,
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hence researching how to optimize investments on these actions has become an impor-

tant question in the literature. So, calculating the optimal time between replacements of

fixed assets in businesses has been and will continue to be a very relevant issue in asset

valuation. In the financial market, there are several finance models including cooperative

finance which was created in 1958 thanks to the various works and achievements made

by Modigliani and Miller [19].They established an independent investment and financing

decisions of a company within the framework of perfect capital markets. In their analysis,

they demonstrated that the firm is a portfolio of investment projects, generating random

income on which each investor has the same information. Over time, financial markets

have evolved and become increasingly complex and risky. In finance, investment consists

of immobilizing capital, that is to say, incurring an immediate expense, with the aim of

obtaining a gain over several successive periods. This expense can be incurred by the

company for different reasons: launching new products, increasing production capacity,

improving the quality of products and services, reducing production costs, etc... Thus we

distinguish several types of of investments according to their objectives,namely modern-

ization or productivity investments which allow the company to increase its production

by introducing modern and refined equipment; replacement or renewal investments which

aim to maintain the firm at its current level; capacity or expansion investments which

make it possible t increase the production capacity of the company by, for example, adding

production units, whether of an already existing product( quantitative expansion ) or of

a new product (qualitative expansion)etc... The last two types of investments are in prac-

tice very useful for entrepreneurs because we always seek to determine the best period

to replace worm out assets and this is what is common in all production plants.Investors

are not often indifferent to the presence of uncertainty. Since it is difficult to account

for uncertainties, existing methods for analyzing the determinants of investment decisions

lead to erroneous results. McDonald and Siegel [17] show that increasing uncertainty also

increases the option value of waiting to invest and this discourages current investments.

In 2013, Mauer and Ott [4] analyze the determinants of replacement investment deci-

sions in a contingent claims model with uncertainty linked to the maintenance and oper-

ating cost. However, they propose a model dependent on the maintenance and operating

cost (Ct) which follows a standard Brownian motion (Bt) representing the disturbance of

the share price in the financial market. This model is defined by:

dCt = µCtdt+ σCtdBt, (1)

where µ et σ are respectively the instantaneous drift and volatility of the process {Ct, t >
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0}.
In their analyzing, they show that cost uncertainty increases the replacement expec-

tation value and subsequently discourages replacement investments.

However, the model proposed by Mauer and Ott [4] does not make it possible to

property minimize the maintenance and operating costs of assets in companies an despite

everything the interest of the process which drives their model, it presents limits in par-

ticular because that it does not have any long-term dependence(i.e does not allow us to

properly model the behavior of long-term phenomena).

In this context, the problem of taking into account cost uncertainty assets, the notion

of long memory an self-similar processes in investment is a mojor concern and and essential

criterion for success and analysis replacement investment decisions. It is with this in mind

that this article.

It will be a question for us in this paper to propose a model whose process which

governs the cost of maintenance and operating has the properties of self-similarity and

long memory.

This article uses the contingent claims method from the literature on real options which

provides the techniques necessary to incorporate uncertainty into replacement investment

decisions.

The objective is to determine the optimal replacement policy and to deduce the asset

replacement cycle in a company in order to make a comparison of results with those found

by Mauer and Ott [4].

2 Preliminaries on investment strategies in a com-

pany

This section is essentially based on recalling a few notions concerning investment strategies

and the contingent claim method in the litterature.

Definition 1 (Investment) Investment is a commitment of funds intended to acquire

assets(tangible/intangible)with the aim of obtaining a satisfactory future income.

Definition 2 (Flow) The flow is the set of real and monetary exchanges occurring be-

tween the various agents of economic life.

Definition 3 (Depreciation) Depreciation is an accounting term defining the loss of

value of a company’s fixed asset.
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Definition 4 (Portfolio) A portfolio is the set of financial assets (options, stocks,

bonds, etc) held by investors.

Definition 5 (Discount rate) The discount rate is the weighted average cost of capital

of the investment; It is the average of cost of the different financing used by the company.

Definition 6 ( Discounted Average Cost Function Function) We call Discounted

Average Cost Function, the total cost of obtaining the service required to operate equip-

ment.

Proposition 1 The Discounted Average Cost Function of equipment is given by:

Fm(x) = E
[∫ ∞

0

e−ltxtdt|x0 = x

]
, (2)

where x0 is the state of the asset at time zero, which may or not be the initial state, x

the cost of maintaining the equipment? and l the appropriate risk-adjusted discount rate

associate with the cost x.

Definition 7 (Contingent claim method) The contingent claim method is considered

a generalization of option pricing theory with the aim of specifying a framework within

which all contingent claims can be valued.

It is based on three simple principles:

• The value of liabilities derives from assets;

• Liabilities have different seniority and therefore have different risks linked to their

seniority;

• The existence of an element of randomness to how the vale of assets changes over

time.

3 Mixed modified fractional Brownian motion

This section recalls the Mixed Modified Fractional Brownian Motion(MMFBM) which is

the modification of the mixed fractional Brownian motion and the basic notions of options

theory. These different notions recalled in this part are contained in [6], [29] and [14].
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Definition 8 [6]

Let H ∈ ]
1

2
, 1[ and λ > 0. A process MMFBM parameters a, b, λ and H, denoted

MH,λ,a,b = (MH,λ,a,b
t )t∈[0,T ] = (MH,λ

t )t∈[0,T ] is a linear combination of process B and process

BH,λ, defined on (Ω,F , (Ft)t≥0,P) by

∀ t ∈ [0, T ], MH,λ
t := MH,a,b,λ

t = aBt + bBH,λ
t . (3)

In (3), the process BH,λ is the mixed fractional Brownian motion and the parameter λ is

the adjustment coefficient for the time between two quotes on the financial market.

Using the differentiation formula for Fractional Brownian motion introduced by [15], we

have:

dBH,λ
t = µϕλ

t dt+ λµdBt, (4)

which leads to the following lemma:

Lemma 1 [29]

Let H ∈ ]
1

2
, 1[. For any λ > 0, the Mixed modified fractional Brownian motion (MMFBM)

is the continuous Ft-semi-martingale with the following decomposition :

MH,λ
t = b

∫ t

0

µϕλ
sds+

(
a+ bλµ

)
dBt. (5)

where

ϕλ
t =

∫ t

0

(t− s+ λ)µ−1 dBs. (6)

The following lemma studied the convergence of the process defined by (3) in space L2(Ω).

Lemma 2 [6]

The process MH,λ
t converges towards MH

t in space L2(Ω) for any t ∈ [0;T ], when λ → 0.

Definition 9 [6] Let H ∈ ]
1

2
, 1[ and λ > 0. A MMFBM is a process of a model in which

the price of the underlying asset noted Sλ
t is described by the SDE

dSλ
t = µSλ

t dt+ Sλ
t σdM

H,λ
t , Sλ

0 > 0, (7)

where MH,λ
t is defined by (3).

Remark 1 For H ∈ ]
1

2
, 1[ and λ > 0, the model defined by (7) is without arbitrage in the

market M.
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Theorem 1 [6] Let H ∈ ]
1

2
, 1[ and T > 0,under the assumptions (H1) and (H2), the

equation (7) admits a unique solution for any t ∈ [0, T ].

Theorem 2 [6]

Let H ∈ ]
1

2
, 1[ and λ > 0. The solution of equation (7) is:

Sλ
t = Sλ

0 exp

{
µt− 1

2

(
a+ bλµ

)2
σ2t+ σMH,λ

t

}
. (8)

4 Decision to replace a process with memory

4.1 Motivation

The evolution of financial markets has revealed probability theory as the fundamental

tool of financial mathematics. In this paper, we analyze the determinants of replacement

investment decisions with uncertainty in maintenance and operating costs governed by a

mixed modified Fractional Brownian motion.

Consider a firm F operating an asset A which produces a fixed level of production for a

maintenance and operating cost C that varies over time. Let CN denote the initial cost of

maintaining and operating the asset. C is a measure of deterioration of the asset which

evolves over time in the form of a geometric mixed modified Fractional Brownian motion

whose equation is given by:

dCt = µCtdt+ σCtdM
H,λ
t , (9)

where:

• µ is the instantaneous drift rate;

• σ is the instantaneous volatility rate;

• dMH,λ
t is the increment of the mixed modified Fractional Brownian motion;

• H the Hurst parameter belonging to the interval ]
1

2
, 1[.

The model (9) is obtained by substituting model (10) for model (12). This new basic

model highlights:

• maintenance and operating cost;

• salvage value;

• tax effects.
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4.2 Old results oriented

In 2019, Djeutcha et al. [6] proposed a self-similar process defined by:

MH,λ
t := MH,a,b,λ

t = aBt + bBH,λ
t , (10)

where t ∈ [0, T ]; a, b, λ are constants; H is Hurst coefficient parameter; Bt is standard

Brownian motion and BH,λ
t is the modified Fractional Brownian motion.

Lemma 3 [6] The geometric Fractional Brownian C = (Ct)t∈[0,T ] defined by:

C0
t = CN exp

{
µt− 1

2

(
a+ bλµ

)2
σ2t+ σMH,λ

t

}
, (11)

is solution of the FSDE (9), where µ = H − 1

2
.

The two constants σ and µ are deterministic functions defined on R∗
+.

In 2013, Mauer and Ott [4] propose a model dependent on the maintenance and

operating cost (Ct) which follows a standard Brownian motion (Bt) representing the

disturbance of the stock price in the financial market. This model is defined by:

dCt = µCtdt+ σCtdBt, (12)

where µ and σ respectively the drift and the instantaneous volatility of the process

{Ct, t > 0}.
In their analysis, they show that cost uncertainty increases the expected replacement

value and subsequently discourages replacement investments.

However, the model proposed by Mauer and Ott [4] does not make it possible to

properly minimize the costs of maintenance and operating assets in companies and despite

all the interest in the process that drives their model, it has limitations, particularly due

to the fact that it does not have long-term dependence(i.e it does not allow the behavior

of long-term phenomena to be well modeled).

4.3 New results

In the model (9), we assume that all assets have the same maintenance and operating cost

and we admit that the firm concentrates on operating stochastically equivalent assets. In

this condition, the remaining tax book value of asset A is given by the following result:
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Proposition 2 The remaining tax book value of asset A which depreciates exponentially

over time at depreciation rate δ is given by:

Vr = P (1− φ)e−δt, (13)

or P is the initial cost of a new asset and φ the investment tax credit.

Proof : The net purchase price of asset A is given by:

pn = P − φP = P (1− φ),

which here represents the decreasing annuity.

Given that the asset depreciates exponentially at rate δ, then the declining rate at

time t > 0 is given by:

td = eδt.

So, the remaining tax book value of asset is then:

Vr =
pn
td

=
P − φP

eδt

= P (1− φ)e−δt.

Thus Vr = P (1− φ)e−δt.

Given that C is the measure of deterioration of asset A ( i.e. it characterizes the state

of A)then, the fundamental result below gives the time of passage from the initial measure

of deterioration to the measure of deterioration at time t.

Theorem 3 Using the equation (11) of lemma (3), the first expected transition time of

the asset deterioration measure from of asset level CN to level Ct is given by:

E[ t ] = Z−1ln

(
Ct

CN

)
, (14)

with Z = µ− 1

2
σ2(a+ bλµ)2.

Proof : It is a question for us of determining the average time spent by the process

C, when it passes from CN to Ct.

Now the first time of passage from CN to Ct of the process C is given by:

inf
{
t > 0;C0

t ≥ Ct

}
,
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where C0
t is the solution of the equation (9).

So, we have:

inf
{
t > 0;C0

t ≥ Ct

}
= inf

{
t > 0;CN exp

{
µt− 1

2

(
a+ bλµ

)2
σ2t+ σMH,λ

t

}
≥ Ct

}
= inf

{
t > 0; exp

{
µt− 1

2

(
a+ bλµ

)2
σ2t+ σMH,λ

t

}
≥ Ct

CN

}
= inf

{
t > 0;µt− 1

2

(
a+ bλµ

)2
σ2t+ σMH,λ

t ≥ ln

(
Ct

CN

)}
= inf

{
t > 0;µt− 1

2

(
a+ bλµ

)2
σ2t+ σE(MH,λ

t ) ≥ ln

(
Ct

CN

)}
= inf

{
t > 0;µt− 1

2

(
a+ bλµ

)2
σ2t ≥ ln

(
Ct

CN

)}
= inf

{
t > 0;

((
a+ bλµ

)2
σ2
)
t ≥ ln

(
Ct

CN

)}

= inf

t > 0; t ≥
ln
(

Ct

CN

)
µ− 1

2
(a+ bλµ)2 σ2


= inf

{
t > 0; t ≥ (µ− 1

2

(
a+ bλµ

)2
σ2)−1ln

(
Ct

CN

)}
= inf

{
t > 0; t ≥ Z−1ln

(
Ct

CN

)}
,

with Z = µ− 1

2

(
a+ bλµ

)2
σ2.

Then we have:

E[ t ] = Z−1ln

(
Ct

CN

)
.

Hence the result.

An immediate consequence of the above result makes it possible to obtain the approx-

imate tax book value of asset A which is defined by:

Corollary 1 The tax book value of asset A obtained in equation (14) of theorem (3) be

approximated by:

Va = P (1− φ)

(
Ct

CN

)− δ
Z

. (15)

Proof : Using the theorem 3 above and replacing in equation (13) of proposition (2)
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the time t by E[ t ] obtain in equation (14) of theorem (3) , we have:

P (1− φ)e−δt = P (1− φ)e−δE(t̄)

= P (1− φ)e
−δZ−1ln

(
Ct
CN

)

= P (1− φ)e
− δ

Z
ln
(

Ct
CN

)

= P (1− φ)e
ln
(

Ct
CN

)− δ
Z

= P (1− φ)

(
Ct

CN

)− δ
Z

So the approximate tax book value is:

Va = P (1− φ)

(
Ct

CN

)− δ
Z

.

Hence the result.

Remark 2 : Although Equation (15) of corollary (1) is an approximation of the true

tax book value found at (13) in proposition (2), the importance of this approach is that it

reduces the number of state variables in the determination problem analysis of the present

value function of costs.

Now, it is a question for us of defining the tax shield for the depreciation of asset A.

It is important to know that the tax shield is achieved in an infinitely short time. Hence

the following result:

Proposition 3 Te tax shield for depreciation of asset A in interval [t, t + dt] is defined

by:

Bf = τδP (1− φ)(
Ct

CN

)−
δ
Z dt. (16)

Proof : The depreciation tax shield of asset A in the time interval [t, t+ dt] is equal

to the product of the Reference Tax Income(RTI) of asset A in the time interval [t, t+dt]

by the depreciation rate δ.

Furthermore, the RTI of asset A in the interval [t t+dt] is the product of the remaining

tax book value of asset A at time t, the length ∆t of the interval [t, t + dt] and the tax

τ on its performance.

So, we have:
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Bf = RTI × δ

= Vr × (τ)× (δ)×∆t

= Vr × (τ)× (δ)(t+ dt− t)

= P (1− φ)(
Ct

CN

)−
δ
Z × (τ)× (δ)× (dt)

= τδP (1− φ)(
Ct

CN

)−
δ
Z dt

Hence we obtain:

Bf = τδP (1− φ)(
Ct

CN

)−
δ
Z dt,

where τ is the tax levied on the return of A and δ is the depreciation rate.

Since we said above that the after-tax cost C changes over time following a Mixed

Modified Fractional Brownian Motion, then when C reaches some unknown level, the firm

will stop operating or using the asset A, will sell it on a secondary market and replace

it with another stochastically equivalent asset A′ with the same initial maintenance and

operating cost CN . In this case, the company’s problem is to minimize the after-tax cots

operating costs of the asset by determining this unknown level of C denoted C which is

defined here as the optimal replacement policy.

If we denote for example Vm(C) the average present value of the after-tax costs resulting

from the optimal replacement policy, we have according to Mauer and Ott [4], the following

result:

Proposition 4 The average present value of the after-tax costs resulting from the optimal
replacement policy is given by:

Vm(C) = min
C

{
E

[∫ ∞

0
e−ξt

{
Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

}
dt|C0 = C

]}
, (17)

where ξ is the appropriate risk-adjusted discount rate for the cost, and
C0,state of the asset at time zero, which may or may not be CN .

Proof : The present value function of the after-tax costs of an asset is given by:

K(C) = E
[∫ ∞

0

e−ξtB(C, t)dt|C0 = C

]
, (18)

where B(C, t) is the net cost of operating an asset less the tax effect on this cost.

Determine B(C,t).
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The maintenance and operating cost of an asset is given by:

C(1− τ),

where C is the net maintenance an operating cost of asset and τ the tax levied on its

performance.

Furthermore , the tax effect of asset is given according the equation (16) of proposition

(3) by:

τδP (1− φ)

(
Ct

CN

)− δ
Z

.

Ths we have:

B(C, t) = Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

. (19)

Replacing (19) in (18), we obtain:

K(C) = E

[∫ ∞

0
e−ξt

{
Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

}
dt|C0 = C

]
. (20)

Given that company’s problem is to minimize the after-tax operating
and maintenance costs of asset, the average present value of the after-value
costs resulting from the optimal replacement policy is given by:

Vm(C) = min
C

K(C). (21)

Replacing (20) in (21), we obtain :

Vm(C) = min
C

{[∫ ∞

0
e−ξt

{
Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

}
dt|C0 = C

]}
. (22)

Hence the result. Using the computational techniques proposed by Pindyck[22] to

eliminate the appropriate risk- adjusted discount rate for the cost ξ, we have the following

result:

Theorem 4 The average discounted value Vm(C) of the after-tax costs resulting from

the optimal replacement policy is solution of the non-homogeneous differential equation

defined by:

1

2
σ2
HC

2VCC + µ∗CVC + C(1− τ)− τδP (1− φ)

(
C

C0
N

)− δ
Z

− rV = 0, (23)

where σ2
H =

(
a+ bλH− 1

2

)2
σ2; µ∗ = µ − ηρσ is the risk-adjusted cost drift rate and r is

the risk-free interest rate of asset A.
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Proof :

Let asset A whose cost C follows the model equation (9), rC be the expected return

adjusted according to of the risk on C.

We have:

rC = r + ηρσ, (24)

where η is the market price of the risk; ρ the instantaneous correlation between cost

and the systematic pricing factor; r the risk-free interest rate and σ the instantaneous

volatility rate.

Consider a portfolio whose holding of the investment opportunity has a value of V (C),

and that n units of assets of this portfolio have been sold short with a maintenance and

operating price C. The value of this portfolio is given by:

ϕ = V (C)− nC. (25)

Since the expected growth rate of C is strictly less than the expected risk-adjusted

return on C, then the short position will require a payment flow between times t and

t+ dt defined by

φ(t) = n(rC − µ)Cdt, (26)

and holding the investment opportunity must involve a payment flow over time denoted

B(C, t) which is the net cost of the portfolio less the tax effect on this cost. It is defined

by:

B(t, C) = C(1− τ)− τδP (1− φ)

(
C

CN

)− δ
Z

. (27)

The infinitesimal variation of this portfolio is given by:

dϕ = dV − ndC − φ(t) +B(C, t)dt. (28)

According to the fractional lemma of Itô, we have :

dV =

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt+ σC

∂V

∂C
dMH,λ

t . (29)

Replacing (29), (26) in (28), we have:

dϕ = dV − ndC − φ(t) +B(t, C)dt

=

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt+ σC

∂V

∂C
dMH,λ

t

− n(µCdt+ σCdMH,λ
t )− n(rC − µ)Cdt+B(t, C)dt.

13



So, we obtain :

dϕ =

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt+ σC

∂V

∂C
dMH,λ

t

− n(µCdt+ σCdMH,λ
t )− n(rC − µ)Cdt+B(t, C)dt. (30)

To eliminate the risk of portfolio, we set:

n =
∂V

∂C
. (31)

Replacing (31) in (30), we obtain:

dϕ =

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt+ σC

∂V

∂C
dMH,λ

t

− n(µCdt+ σCdMH,λ
t )− n(rC − µ)Cdt+B(t, C)dt

=

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt+ σC

∂V

∂C
dMH,λ

t

− ∂V

∂C
(µCdt+ σCdMH,λ

t )− ∂V

∂C
(rC − µ)Cdt+B(t, C)dt. (32)

On the other hand, the return of portfolio is defined by:

E[dϕ]. (33)

Replacing (32) in (33), we obtain:

E[dϕ] = E
[[(

a+ bλH− 1
2

)2 ∂2V

∂2C
σ2C2 + µC

∂V

∂C

]
dt

]
+ E

[
σC

∂V

∂C
dMH,λ

t

]
− E

[
∂V

∂C
(µCdt+ σCdMH,λ

t )

]
− E

[
∂V

∂C
(rC − µ)Cdt

]
+ E [B(t, C)dt]

=

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 − rCC

∂V

∂C
+B(t, C) + µC

∂V

∂C

]
dt.

Thus, we obtain:

E[dϕ] =

[(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 − rCC

∂V

∂C

]
dt

+

[
B(t, C) + µC

∂V

∂C

]
dt. (34)

Furthermore, the portfolio risk being eliminated , it becomes risk-free and its return

earns a constant interest rate proportional to its value i.e

E[dϕ] = rϕdt. (35)

By substitution of (34) for (35), we have:

E[dϕ] = rϕdt
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i.e (
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 − rCC

∂V

∂C
+B(t, C) + µC

∂V

∂C
= r(V − C

∂V

∂C
).

i.e (
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + (µ− ηρσ)C

∂V

∂C
+B(t, C)− rV = 0. (36)

Replacing (19) in (36), we have:(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + (µ− ηρσ)C

∂V

∂C
+B(C, t)− rV = 0

i.e(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + (µ− ηρσ)C

∂V

∂C
+ Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

− rV = 0

i.e(
a+ bλH− 1

2

)2 ∂2V

∂2C
σ2C2 + (µ− ηρσ)C

∂V

∂C
+ Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

− rV = 0

Hence

1

2
σ2
HC

2VCC + µ∗CVC + Ct(1− τ)− τδP (1− φ)

(
Ct

CN

)− δ
Z

− rV = 0,

with σ2
H = σ2

(
a+ bλH− 1

2

)2
and µ∗ = µ− ηρσ.

The general solution of equation (23) is given by the following fundamental result:

Theorem 5 The solution to non homogeneous differential equation (23) is the discounted

average value of the after-tax costs Vm(C) resulting from the optimal replacement policy.

It is defined by:

Vm(C) = K1C
β+

+K2C
β−

+
C(1− τ)

r − µ∗ +
θCε

Φ(ε)
, (37)

where K1 et K2 are constants and β+ and β− are respectively defined by:
β− =

1

2
− µ∗

σ2
H

−

√√√√[( µ∗

σ2
H

− 1

2

)2

− 2r

σ2
H

]

β+ =
1

2
− µ∗

σ2
H

+

√√√√[( µ∗

σ2
H

− 1

2

)2

− 2r

σ2
H

] (38)

Proof : The equation (23) of the proposition (4) is a differential equation of order

2 with non-homogeneous second member.
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Let 

θ = −τδP (1− φ)(CN)
δ
Z

ε = −(
δ

Z
)

Φ(ε) = r − µ∗ε− 1

2
σ2
Hε(ε− 1)

V 0 =
C(1− τ)

r − µ∗ +
θCε

ϕ(ε)

(39)

Let’s check that V 0 is a particular solution of equation (23) of the proposition (4) .

Just check that:

1

2
σ2
HC

2V 0
CC + µ∗CV 0

C + C(1− τ)− τδP (1− φ)

(
C

CN

)− δ
Z

= rV 0, (40)

i.e:

1

2
σ2
HC

2V 0
CC + µ∗CV 0

C − rV 0 = τδP (1− φ)

(
C

CN

)− δ
Z

− C(1− τ). (41)

Then, we have :

V 0
C =

(1− τ)

r − µ∗ +
εθCε−1

ϕ(ε)
(42)

and

V 0
CC =

ε(ε− 1)θCε−2

ϕ(ε)
(43)

So :

1

2
σ2
HC

2V 0
CC + µ∗CV 0

C − rV 0 =
1

2
σ2
HC

2

[
ε(ε− 1)θCε−2

ϕ(ε)

]
− r

[
C(1− τ)

r − µ∗ +
θCε

ϕ(ε)

]
+ µ∗C

[
(1− τ)

r − µ∗ +
εθCε−1

ϕ(ε)

]
=

1
2
σ2
Hε(ε− 1)θCε

ϕ(ε)
+

µ∗C(1− τ)

r − µ∗ +
µ∗εθCε

ϕ(ε)

− rC(1− τ)

r − µ∗ +
rθCε

ϕ(ε)

=
1
2
σ2
Hε(ε− 1)θCε + µ∗εθCε − rθCε

ϕ(ε)

+
µ∗C(1− τ)− rC(1− τ)

r − µ∗

=
1
2
σ2
Hε(ε− 1) + µ∗εθCε − r

ϕ(ε)θCε
+

C(µ∗ − r)(1− τ)

r − µ∗

= −θCε − C(1− τ)

= τδP (1− φ)

(
C

CN

)− δ
Z

− C(1− τ).
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Then V 0 is a particular solution of (23).

The homogeneous equation associated with (23) is:

1

2
σ2
HC

2VCC + µ∗CVC − rV = 0. (44)

Let’s solve the equation (44).

Let’s {
C = et

U(t) = V (et)
(45)

and {
U ′(t) = etV ′(et)
U ′′(t) = etV ′(et) + e2tV ′′(et)

(46)

So, the equation (44) is rewritten as follows:

1

2
σ2
He

2tV ′′(et) + µ∗etV ′(et)− rV (et) = 0. (47)

Then expressing V ′′(et) and V ′(et) in terms of U ′′(t) and of U ′(t), we obtain:{
V ′(et) = e−tU ′(t),
V ′′(et) = e−2t[U ′′(t)− U ′(t)].

(48)

By introducing (48) into equation (47), we have :

1

2
σ2
He

2tV ′′(et) + µ∗etV ′(et)− rV (et) = 0 ⇐⇒ 1

2
σ2
He

2t
[
e−2t (U ′′(t)− U ′(t))

]
+ µ∗et(e−tU ′(t))− rU(t) = 0

⇐⇒ 1

2
σ2
H (U ′′(t)− U ′(t)) + µ∗U ′(t)

− rU(t) = 0

⇐⇒ 1

2
σ2
HU

′′(t)− 1

2
σ2
HU

′(t) + µ∗U ′(t)

− rU(t) = 0

⇐⇒ 1

2
σ2
HU

′′(t) + (µ∗ − 1

2
σ2
H)U

′(t)

− rU(t) = 0.

So:
1

2
σ2
HU

′′(t) + (µ∗ − 1

2
σ2
H)U

′(t)− rU(t) = 0. (49)

The equation (49) is an ODE of order 2 with constant coefficient, function of U which

has the characteristic:
1

2
σ2
HR

2 + (µ∗ − 1

2
σ2)R− r = 0. (50)
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To solve the equation (50), we find the discriminant ∆, then :

∆ = (µ∗ − 1

2
σ2
H)

2 − 4(
1

2
σ2
H)(−r)

= σ4
H(

µ∗

σ2
H

− 1

2
)2 − 2rσ2

H

= σ4
H

[
(
µ∗

σ2
H

− 1

2
)2 − 2r

σ2
H

]
. (51)

The square root of the discriminant is:

√
∆ = σ2

H

√[
(
µ∗

σ2
H

− 1

2
)2 − 2r

σ2
H

]
. (52)

So the solutions of equation (50) are given respectively by R1 and R2 defined by:

R1 =

−(µ∗ − 1
2
σ2
H)− σ2

H

√[
( µ∗

σ2
H
− 1

2
)2 − 2r

σ2
H

]
σ2
H

=
1

2
− µ∗

σ2
H

−

√[
(
µ∗

σ2
H

− 1

2
)2 − 2r

σ2
H

]
, (53)

and

R2 =

−(µ∗ − 1
2
σ2
H) + σ2

H

√[
( µ∗

σ2
H
− 1

2
)2 − 2r

σ2
H

]
σ2
H

=
1

2
− µ∗

σ2
H

+

√[
(
µ∗

σ2
H

− 1

2
)2 − 2r

σ2
H

]
. (54)

Then the solution of equation (49) is the continuous function with respect to t defined

by:

U1(t) = K1e
R1t +K2e

R2t, (55)

where K1 anK2 are constants.

Given that C = et; we have: t = ln(C), we deduce that the solution of (49) is the

function of the form:

V 1(C) = K1e
R1ln(C) +K2e

R2ln(C)

= K1e
ln[(C)R1 ] +K2e

ln[(C)R2 ]

= K1C
R1 +K2C

R2

= K1C
β+

+K2C
β−
, (56)
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with R1 = β+ et R2 = β−.

The general solution pf equation (23) is the sum of the particular solution and the

solution of the homogeneous equation (49). i.e

V (C) = K1C
β+

+K2C
β−

+
C(1− τ)

r − µ∗ +
θCε

Φ(ε)
. (57)

Our objective now is to determine the constants K1 and K2 of (37) and then to

calculate the optimal replacement policy C.
For this, we adopt the approach of Dixit [5] and Sick [24], by imposing three boundary

conditions on V(C) of equation (37) namely:
(C1): When replacing asset A, the average present value of after-tax costs before replace-
ment is equal to the average present value of after-tax costs after replacement plus the
price of a new asset less the value of post-tax recovery of the old asset i.e:

V (C) = V (CN ) + P (1− φ)−

S(C)− (τ)

S(C)− P (1− φ)

(
C

CN

)− δ
Z

 , (58)

where

• V (C) is the average present value of efter-tax costs before replacement,

• V (CN) is the average present value of after-tax costs after replacement,

• P (1− φ) is the price of a new asset,

•

[
S(C)− (τ)

(
S(C)− P (1− φ)

(
C

CN

)− δ
Z

)]
is the salvage value of

the old asset.
(C2): To exclude the case that an old asset may have a lower mainte-
nance an operating cost than a stochastically equivalent new asset, it
makes sense to place a reflective barrier at the initial level of process
C.

The reflective barrier on C is satisfied when Vm(C) satisfies the fol-
lowing equation:

∂V

∂C
|C=CN

= 0. (59)

(C3): To determine the optimal policy C which makes it possible to
minimize the discounted average value of after-tax costs V (C), we
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pass equation (37) through the smooth bonding boundary condition
which consists of deriving the first boundary condition.

So we obtain:

∂V

∂C
|C=C =

δ

Z
(τ)P (1− φ)(

1

CN
)

(
C

CN

)− δ
Z−1

− S ′(C) (1− τ) . (60)

Remark 3 • It should be noted that equations (58) and (59) are suffi-
cient for the calculation of K1 and K2 based on the optimal replace-
ment policy C,

• According to the principle of contingent claim method, we set the resale
price of an asset in the secondary market

S(C) =
ϱ

C
,

where ϱ is the systematic pricing factor of the asset.

Substituting equation (37) into the previous equations (58), (59) and (60),
we obtain the following system:

β+Cβ+−1
N K1 + β−Cβ−−1

N K2 +
(1− τ)

r − µ∗ +
εθCε−1

N

Φ(ε)
= 0

K1(C)β
+

+K2(C)β
−
+

(C − CN)(1− τ)

r − µ∗ +
θ
(
(C)ε − (CN)

ε
)

Φ(ε)
− Cβ+

N K1 − Cβ−

N K2

+
ϱ(1− τ)

C
+ P (1− φ)

(
−1 + τ(CN)

δ
Z (C)−

δ
Z

)
= 0

β+C
β+−1

K1 + β−C
β−−1

K2 +
(1− τ)

r − µ∗ +
εθC

ε−1

Φ(ε)
− τ

δ

Z
P (1− φ)(CN)

δ
Z (C)−

δ
Z−1

−ϱ(1− τ)

(C)2
= 0

(61)
The system (61) is a nonlinear system with three unknowns K1, K2 and
C.

Accepting the parameters r; α; σ; η; ρ; α∗; CN ; P ; φ; τ ; δ; a; b; λ and
H, solving the system (61) gives us the full value of the discounted average
cost function Vm(C) as well as that of the optimal replacement policy C.
Considering only the equations (58) and (59), we have the following system:
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

β+Cβ+−1
N K1 + β−Cβ−−1

N K2 +
(1− τ)

r − µ∗ +
εθCε−1

N

Φ(ε)
= 0

[
(C)β

+ − Cβ+

N

]
K1 +

[
(C)β

− − Cβ−

N

]
K2 +

(C − CN)(1− τ)

r − µ∗ +
θ
(
(C)ε − (CN)

ε
)

Φ(ε)

+
ϱ(1− τ)

C
+ P (1− φ)

(
−1 + τ(CN)

δ
Z (C)−

δ
Z

)
= 0

(62)
By fixing C, the system (62) becomes a linear system of two equations with
two unknowns K1 and K2.

By substitution, we have:

K1 =
( 1−τ
r−µ∗ )

(
β−Cβ−−1

N (CN − C)− (Cβ−

N − C
β−

)
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )

+

θ
Φ(ε)

(
β−Cβ−−1

N (−Cε
N + C

ε
) + εCε−1

N (Cβ−

N − C
β−

)
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )

+
β−Cβ−−1

N

(
ϱ(C)−1(−1 + τ)− τP (1− φ)(CN)

−ε(C)ε
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )
(63)

and

K2 =
( 1−τ
r−µ∗ )

(
−β+Cβ+−1

N (CN − C) + (Cβ+

N − C
β+

)
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )

+

θ
Φ(ε)

(
−β+Cβ+−1

N (−Cε
N + C

ε
)− εCε−1

N (Cβ+

N − C
β+

)
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )

+
β+Cβ+−1

N

(
−ϱ(C)−1(−1 + τ) + τP (1− φ)(CN)

−ε(C)ε
)

β−Cβ−−1
N (C

β+

− Cβ+

N ) + β+Cβ+−1
N (−C

β−
+ Cβ−

N )
. (64)

Replacing the K1 and K2 values in equation (37), we obtain the complete
solution of equation (23) dependent on model parameters and the optimal
replacement policy.

Hence the result. The time between replacements of assets is function of C and

it is given by the following result:
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Proposition 5 The optimal average time between replacements of assets (measured in

years) is given by:

T =
ln(C)− ln(CN)

(µ− 1
2
σ2
H)

− 1

2

(
σH

µ− 1
2
σ2
H

)2
1− ( C

CN

)(1− 2µ

σ2
H

)
 . (65)

Proof : The time between replacements is given by:

T = E[ t ]− ω, (66)

where ω is a value which allows T to be adjusted taking into account the reflective barrier.

In effect, the time between replacements T is identical to the first passage time calcu-

lated in (14) of theorem (3) with the only difference of the value ω seen as the probability

distribution of the first passage.

Let us determine the of ω.

The new value of ω is defined by:

ω =
1

2

σ2
H

(µ− 1
2
σ2
H)

2

[
1− exp

(
− 2

σ2
H

(µ− 1

2
σ2
H)

2E[ t ]

)]
=

1

2

σ2
H

(µ− 1
2
σ2
H)

2

[
1− exp

(
− 2

σ2
H

(µ− 1

2
σ2
H)

2Z−1
(
ln(C)− ln(CN)

))]
=

1

2

σ2
H

(µ− 1
2
σ2
H)

2

[
1− exp

(
(
−2µ

σ2
H

+ 1)ln

(
C

CN

))]

=
1

2

(
σH

µ− 1
2
σ2
H

)2
1− ( C

CN

)(1− 2µ

σ2
H

)
 .

Thus:

ω =
1

2

(
σH

µ− 1
2
σ2
H

)2
1− ( C

CN

)(1− 2µ

σ2
H

)
 . (67)

By replacing (14) of theorem 3 and (67) in (66), we obtain:

T = E[ t ]− ω

= Z−1ln

(
C

CN

)
− 1

2

σ2
H

(µ− 1
2
σ2
H)

2

[
1− exp

(
− 2

σ2
H

(µ− 1

2
σ2
H)

2E[ t ]

)]

=
ln(C)− ln(CN)

(µ− 1
2
σ2
H)

− 1

2

(
σH

µ− 1
2
σ2
H

)2
1− ( C

CN

)(1− 2µ

σ2
H

)
 .

Hence the result.
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4.3.1 Parameters of the discounted average cost function

The data used in this subsection are a combination of parameters from the calibration of

the (9) model and the parameters proposed by Mauer and Ott [4].

In this paper, we extend the process used by Mauer and Ott to make a comparison of

the results.

We summarize this data in the following table which will be readjusted as our work

progresses depending on the type of need.

Parameters value
Risk-free interest rate r = 0.07

Interest rate of the nerlying µ = 0.15
Volatility of the underlying σ = 0.10

Market price at risk η = 0.40
Correlation between cost and systematic

pricin factor ρ = 0
Adusted interest rate of the underlying µ∗ = 0.15
Initial cost of maintenance and operating CN = 1

Purchase price of a new asset P = 10
The systematic pricing factor ϱ = 8
Resale price of an ol asset S(C) = 8C−1

Credit investment rate φ = 0
Rate tax τ = 0.30

Depreciation rate δ = 0.50

Table 1: Basic Parameters

Table 1 shows a set of basic parameter values proposed by Mauer and Ott [4].

In this table, the annualized risk-free interest rate r is 7% and te annualized drift rate

and cost volatility rate σ are 15% and 10%, respectively. We estimate the market price of

risk η to be 0.40. We assume that the correlation between cost and the systematic pricing

factor ρ is zero and therefore the risk-adjusted drift rate α∗ is equal to 15% per year. We

set the initial cost of maintaining and operating a new asset CN equal to 10. The basic

tax parameters include an investment tax credit φ=0, a corporate tax rate τ=30% and a

depreciation rate δ=50%.

An investment tax credit of zero and a corporate tax of 30% are consistent with cur-

rent US tax law. The authors assume that the systematic pricing factor ϱ is equal to 8.

Thus, a newly purchased asset could be sold immediately at 80% of its purchase price

and when the cost of maintenance and operating increases, this salvage value decreases.
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We take Mauer and Ott’s table 1 above and complete it wit three new parameters,

hence the following new table:

Parameters value
Risk-free interest rate r = 0.07

expected return rate of the underlying µ = 0.15
Volatility of the underlying σ = 0.10

Market price at risk η = 0.40
Correlation between cost and systematic

pricing factor ρ = 0
Adjusted interest rate of the underlying µ∗ = 0.15
Initial cost of maintenance and operating CN = 1

Purchase price of a new asset P = 10
The systematic pricing factor ϱ = 8
Resale price of an ol asset S(C) = 8C−1

Credit investment rate φ = 0
Rate tax τ = 0.30

Depreciation rate δ = 0.50
Hurst parameter H=0,75

The coefficient of adustment of the time between

two quotations on the financial market λ ∈ { 1

24
,
1

23
,
1

22
,
1

21
}

Parameters of MMFBM a= 1.75 ,b=0.5

Table 2: Basic parameters

The new table 2 presents a set consisting of basic parameter values proposed by Mauer

and Ott [4] and those of three adjusted parameters.We take te Hurst parameter H equal

to 0.7, the adjustment coefficient of the time between two quotes on the financial mar-

ket is λ ∈ { 1

24
,
1

23
,
1

22
,
1

21
} and we choose the parameters a and b respectively 1.75 and 0.5.

The objective now is to determine the replacement optimal policy C for each value of

λ ∈ { 1

24
,
1

23
,
1

22
,
1

21
} when we replace the parameters of equation (37) by the values given

in table 2.

Thus , by replacing the parameters of system (61) by the values given in table 2, we obtain

the following system to the first value of λ:
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

(−3.25 +
√
14.0625)K1 + (−3.25−

√
14.0625)K2 +

1− 0.3

0.07− 0.15
+

1267500

60229
= 0

K1(C)(−3.25+
√
14.0625) +K2(C)(−3.25−

√
14.0625) +

(C − 1)(1− 0.3)

0.07− 0.15

+
25350

4633

(
(C)−

50
13 − 1

)
−K1 −K2 +

8(1− 0.3)

C
+ 10(1− 0)

(
−1 + 0.7(C)−

0.5
0.13

)
= 0

(−3.25 +
√
14.0625)C

(−4.25+
√
14.0625)

K1 + (−3.25−
√
14.0625)C

(−4.25−
√
14.0625)

K2

+
(1− 0.3)

0.07− 0.15
+

1267500

60229
C

− 50
13

−1 − 0.3
0.5

0.13
(10)(1− 0)(C)−

0.5
0.13

−1 − 5.6(C)−2 = 0.

(68)

ie:

(−3.25 +
√
14.0625)K1 + (−3.25−

√
14.0625)K2 +

740496.25

60229
= 0

K1(C)(−3.25+
√
14.0625) +K2(C)(−3.25−

√
14.0625) −K1 −K2 − 8.75C

+
57781

4633
(C)−

50
13 + 5.6(C)−1 − 63572.25

4633
= 0

(−3.25 +
√
14.0625)K1(C)(−4.25+

√
14.0625) + (−3.25−

√
14.0625)K2(C)(−4.25−

√
14.0625)

+
7443150

782977
(C)−

63
13 − 5.6(C)−2 − 8.75 = 0.

(69)

Using the two first equations, we obtain the values of K1 and K2 respectively defined in

(63) and (64).

By replacing the values of K1 and K2 in the third equation, we obtain an equation

with a single unknown C.
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Let C=X, we have:

30.625X
50
13

+2
√
14.0625 − 30.625X

63
13

+2
√
14.0625 − 8.75(−3.25 +

√
14.0625)

+ 8.75(−3.25 +
√
14.0625)X

50
13

+2
√
14.0625 +

975

46.33
(−3.25−

√
14.0625)X2

√
14.0625

+
975

46.33
(−3.25 +

√
14.0625)X

50
13

+2
√
14.0625 + 19.6X

37
13

+2
√
14.0625 + 10.5X2

√
14.0625

− 975

46.33
(−3.25 +

√
14.0625)X

7.75
13

+2
√
14.0625 − 30.625X

50
13 + 30.625X

63
13

+ 8.75(−3.25−
√
14.0625)X

7.75
13

+
√
14.0625 − 8.75(−3.25−

√
14.0625)X

50
13

+
887.25

46.33
X

50
13 − 887.25

46.33
− 975

46.33
(−3.25−

√
14.0625)X

50
13 +

975

46.33
X

7.75
13

+
√
14.0625

− 5.6(−3.25−
√
14.0625)X

37
13

+2
√
14.0625 +

975

46.33
(−3.25 +

√
14.0625)X3.25+

√
14.0625

− 975

46.33
(−3.25 +

√
14.0625) + 5.6(−3.25 +

√
14.0625)X

37
13

− 975

46.33
(−3.25−

√
14.0625)X3.25+

√
14.0625 − 150

13
(−3.25 +

√
14.0625)X3.25+

√
14.0625

+
150

13
(−3.25 +

√
14.0625)− 150

13
(−3.25−

√
14.0625)X2

√
14.0625

+
150

13
(−3.25−

√
14.0625)X3.25+

√
14.0625 − 5.6(−3.25 +

√
14.0625)X

79.25
13

+
√
14.0625

+ 5.6(−3.25−
√
14.0625)X

79.25
13

+2
√
14.0625 − 19.6X

37
13 − 10.5 = 0 (70)

Soving equation (70) manually is extremely tedious. We use Maple software to find the

approximate value of X and we obtain the value 1, 619.

The Maple code used for this calculation is available in the appendix to this paper.

Thus the optimal replacement policy C = 1.619.

Using the 5, we have :
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T =
ln(1.619)− ln(1)

(0.15− 1
2
× 0.04)

− 1

2

(
0.02

0.15− 1
2
× 0.04

)2
[
1−

(
1.619

1

)(1− 2×0.15
0.04

)
]

= 2.574.

Using the principle of the contingent claim method, we have: For λ =
1

24
, S(C) = 4, 941.

For a another value, we have by using the same method,the following summary table:

λ New Results Old Results[4]

λ =
1

24
C 1.619 2.736

λ =
1

24
T 2.574 6.700

λ =
1

24
S(C) 4.941 2.923

λ =
1

23
C 2.720 3.847

λ =
1

23
T 3.685 7.811

λ =
1

23
S(C) 5.152 3.134

λ =
1

22
C 3.831 4.958

λ =
1

22
T 4.796 8.922

λ =
1

22
S(C) 6.263 4.245

λ =
1

21
C 4.941 5.149

λ =
1

21
T 5.807 9.133

λ =
1

21
S(C) 7.374 5.356

Interpretation of results and discussions
The results we obtained are different from those obtained by Mauer and
Ott [4] who in their article, use Standard Brownian motion to perturb the
cost of maintenance and operating of assets in a company. Compared to
the results found by Mauer and Ott, the optimal replacement policy is
minimal.We deduce from these results that when the maintenance cost is
disturbed by a mixed modified fractional Brownian motion, the company
replaces more assets and spends less on the maintenance of the latter. We
find that when a firm replaces an asset with a new stochastically equivalent
asset then it could sell the old asset at almost 50% of its initial purchase
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price which will allow it to invest in other assets or to increase its economy.
In conclusion, in terms of business management, the mixed modified

fractional Brownian motion that we used is better suited to minimize the
cost of maintenance and operating of assets compared to that used in the
literature.

4.3.2 Evolution of the discounted average cost function

In this subsection, we analyze the evolution of the optimal replacement
policy and the discounted average cost function as the Hurst parameter
increases.

We summarize in the following table the different values of C for H =
0.75; 0.80 and 0.90 , as well as those of Vm(C).

The Maple codes used to calculate C for these different values of H are
in the appendix to this report.

H C K1 K2 Vm(C)

0.75 1.619 23.82 −3.58 23.82C−3.25+
√
14.0625 − 3.58C−3.25−

√
14.0625 − 8.75C − 25350

4633
C− 50

13

0.8 1.383 22.08 −2.78 22.08C−3.44+
√
15.568 − 2.78C−3.44−

√
15.568 − 8.75C − 4.58C− 500

131

0.9 1.203 20.22 −2.02 20.22C−3.66+
√
17.333 − 2.02C−3.66−

√
17.333 − 8.75C − 3.05C− 500

132

Table 3: Impact of the self-similarity parameter on C

Table 3 above examines the effect of the self-similarity parameter H

on the optimal replacement policy. It is seen that as the self-similarity
parameter increases, the optimal replacement policy decreases hence the
firm replaces more of its assets.

For example, if the Hurst parameter increases by 20%, the optimal re-
placement barrier decreases by approximately 25 %, resulting in the com-
pany spending less on maintenance its assets.

The 2D simulation of the function Vm of equation (37) of theorem 5 for the
different values of H with Maple allows us to obtain the following figure:

Interpretation of numerical results

Figure 1 examines the evolution of te average discounted value function
asset maintenance and operating costs.

Curse (a) shows the evolution of Vm for H = 0.75. We notice that
in the interval [1; 1.619[, the average discounted value function of costs is
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(a) H = 0.75 (b) H = 0.80 (c) H = 0.90

Figure 1: The Evolution of Vm for H = 0.75, H = 0.80 and H = 0.90

increasing and reaches its maximum at point M1(1.619; 14.5) where 1.619
is the threshold value of the maintenance and operating cost and 14.5 is
the precise value of Vm at this critical level of C. From C = 1.619, the
value of the discounted average value function of costs decreases, this is
due to the fact that the company replaces the old asset with a new asset
which will have an initial maintenance and operating cost equal to CN = 1.

Curve (b) has the same behavior as (a), the only differences are located
at the level where it reaches its maximum at point M2(1.383; 12.45). We
deduce that for H = 0.80, Vm(C) = 12.45 where C is the policy of optimal
replacement for H = 0.80.

Curve (c) shows us the evolution of V (C) for H = 0.90. We note that it
follows the same pace as (a) and (b), except that it reaches its maximum
at point M3(1.203; 11.58) where 1.203 is the barrier optimal replacement
when we take H = 0.90.

Looking at the analysis of these three curves, it appears that when the
self-similarity parameter of the process increases, the optimal replacement
policy decreases and the maximum value of the value function discounted
average asset costs decrease.

Compared to the result found by Mauer and Ott [4], we conclude that
the model proposed in this thesis allows, thanks to its process which has
good properties, to minimize the maximum value of the expected value
function of asset costs, therefore allows the firm to spend less on the main-
tenance of its assets, something that all production plants are looking for.

5 Conclusion

In this work, it was a question for us of analyzing the determinants of
replacement investment decisions with uncertainty linked to the cost of
maintaining and operating the assets. For carry out our analysis, we used
the contingent claims method from the real options literature which pro-
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vides the techniques needed to incorporate uncertainty into replacement
investment decisions.

By perturbing the cost of assets by a mixed modified fractional Brownian
motion and from our basic model, we obtained the present average value of
assets costs. Then, based on this average value, we successively determined
the optimal replacement policy C, the time between the replacements of
the assets T and the resale value of the assets on the secondary market
in order to examine the impact of the parameters of the mixed modified
fractional Brownian motion on investment decisions.

The optimal replacement policy being characterized by a critical level
(the optimal replacement barrier) at which the company must replace an
existing worn-out asset with another stochastically equivalent asset, we
note that when the cost of maintaining and operating the assets is governed
by a mixed modified fractional Brownian motion, the minimum optimal
replacement policy and this encourages new investments. We notice that
when we use mixed modified fractional Brownian motion to perturb the
cost of maintaining and operating assets in a company, the company spends
less on maintaining its assets.

We presented the analytical approach of determining the discounted
average value of asset costs without considering the effect of technological
uncertainty and tax policy. In our next research, we intend to extend our
studies to:

• The inclusion of asset capacity adjustments using the same model,

• The numerical determination of the expected value function of costs
using the modified explicit finite difference method Hull et White [9],

• The effect of technological uncertainty and tax policy on replacement
investment decisions using the modified fractional mixed model.
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