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Abstract: The implementation of the cyclic cluster model
(CCM) for molecular mechanics is presented in the framework
of the computational chemistry program DEMON2K. Because the
CCM is particularly well-suited for the description of periodic
systems with defects, it can be used for periodic QM/MM ap-
proaches where the non-periodic QM part is treated as a defect
in a periodic MM surrounding. To this end, we present here the
explicit formulae for the evaluation of the Ewald sum and its
first- and second-order derivatives as implemented in DEMON2K.
The outlined implementationwas tested inmolecular dynamics
(MD) simulations and periodic structure optimization calcula-
tions.MDsimulationsof anargon systemwere carriedoutusing
the Nosé-Hoover chain (NHC) thermostat and the Martyna-
Tobias-Klein (MTK) barostat to control the temperature and
pressure of the system, respectively. For the validation of CCM
structure optimization a set of molecular crystals were opti-
mized using the Ewald method for the evaluation of the elec-
trostatic interactions. Two optimization procedures for the
determination of the atomic positions and CCM cell parameters
were tested. Our results show that the simultaneous optimiza-
tionof the atomicpositions andcell parameters ismost efficient.

Keywords: cyclic cluster model; molecular mechanics;
optimization

1 Introduction

With the rise of hybrid quantum mechanical/molecular
mechanical (QM/MM) schemes [1, 2] newatomistic approaches
for the simulation of condensed matter systems have become
available. In comparison to pure MM simulations, QM/MM
calculations permit the incorporation of chemical bond
breaking and forming in the QM region. Therefore, they are
very well suited for the study of chemical reactions in solu-
tions, on surfaces or in the bulk. For all these applications it is
beneficial to have QM regions as large as possible. Thus, the
QM method for such QM/MM applications must not only be
accurate and reliable but also computationally efficient. A
possible choice in this respect is auxiliary density functional
theory (ADFT) [3, 4] as implemented in DEMON2K [5]. This is one
of the main motivations behind the QM/MM implementation
efforts in DEMON2K over the last decade [6, 7]. For a compre-
hensive overview we refer the interested reader to [8].

Although polarizable force fields are implemented in some
versions of DEMON2K [7], we restrict ourselves for the here
describeddevelopment tonon-polarizable forcefields.With this
setup for the QM/MM methodology, we now need appropriate
models for the simulations. The droplet model, Figure 1 (left),
consisting of a QM and an MM region embedded into a polar-
izable continuum has gained much popularity in DEMON2K QM/
MM calculations. It is well suited for the simulation of solutions
where QM molecules, free or solvated, are embedded in MM
solvents [7, 9]. However, it is not suitable for the description
of solids or for NPT molecular dynamics (MD) simulations.

To overcome this limitation we are developing at Cin-
vestav the QM/MM cyclic cluster model (CCM) as depicted in
Figure 1 (right). In this model, the QM region, represented by
the ball-and-stick molecules in Figure 1, is a QM defect in a
periodic MM-CCM system. The CCM is an appropriate model
for systems where the periodicity has been lifted by local
defects because it avoids direct interactions between them
[10]. The computational structure of the CCM we use in this
work forMMsystems is closely related to the quasimolecular
large unit cell model of Dobrotvorskii and Evarestov [11]. A
detailed comparison of the two models is given in the liter-
ature [12, 13]. Although the CCMhas been implemented at the
semiempirical [14–17], ab initio [18], and density-functional
[19, 20] levels of theory, we are not aware of any
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implementation in the MM framework. Therefore, we pre-
sent here such an implementation in DEMON2K as thefirst step
towards a QM/MM-CCM methodology.

Thiswork is organized as follows. In Section 2, we present
the theory and implementation details of the CCM scheme for
the calculation of the energy and energy derivatives within
the MM branch of the DEMON2K program. In the next section,
we describe our Ewald sum implementation for the efficient
evaluation of long-range Coulomb interactions. This is an
essential part for the appropriate description of polar sys-
tems, and it represents the energy component that requires
most attention for its use in structure optimization methods
and MD simulations. Thus, we present explicit formulae for
the evaluation of analytic first- and second-order derivatives
of these sums. The computational methodology is presented
in Section 4. Finally, in Section 5, the here developedMM-CCM
methodology is validated for molecular dynamics and opti-
mization applications. To this end, MD simulations in the
isobaric-isothermal (NPT) ensemble of liquid argon and
structure optimizations of molecular crystals with MM-CCM
are presented and discussed. Final conclusions are given in
the last section of the article.

2 MM-CCM implementation

2.1 Molecular mechanics

The MM energy terms can be classified in two categories
depending on whether the interacting atoms are bonded or

not. Therefore, the information about the molecular con-
nectivity is required. In DEMON2K, this is either given by the
user in the input, or automatically generated from the dis-
tances between the MM atoms. The resulting MM energy is
given by:

EMM = Ebond + Ebend + Etors + Eitor + EvdW + EQQ (1)

The first four terms represent the bond stretching,
angle bending, torsion and out-of-plane (or improper) tor-
sion energies. The first two terms in eq. (1) are harmonic
potentials. The following two are periodic functions. For the
van der Waals and the point charge Coulomb energy terms,
the well-known 12-6 Lennard-Jones and Coulomb potentials
are used:

EvdW = 1
2
∑
A≠B

4ϵAB
σAB

|A − B|( )12

− σAB

|A − B|( )6⎡⎣ ⎤⎦ (2)

EQQ = 1
2
∑
A≠B

qAqB
|A − B| (3)

Throughout this work, capital latin letters, A, B, …
denote atoms. The corresponding bold letters are the atomic
position vectors.

As for the van der Waals interactions between MM
atoms, the coupling of the QM and MM subsystems in the
additive QM/MM scheme implemented in DEMON2K is also
modelled by eq. (2). In that case, the A and B indices repre-
sent QM and MM atoms, respectively. For the calculation of
the QM/MM ϵAB and σAB combination rules of atomic pa-
rameters, i.e. ϵA (QM atom) and ϵB (MM atom) as well as σA

Figure 1: Droplet (left) and CCM (right) models for QM/MM solution systems. A ball-and-stick representation is used for the QM molecules and a stick-
only representation for MM molecules.
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(QM atom) and σB (MM atom), are used [8]. Therefore, in QM/
MM calculations such force field parameters are required
for MM and QM atoms. In this work, these atomic parame-
ters are taken from the OPLS force field [21, 22], whereas
diatomic parameters are obtained through combination
rules which are given by a geometric average by default.
Thus, the epsilon parameter for the interaction between two
atoms is given by:

ϵAB = ̅̅̅̅
ϵAϵB

√
(4)

A similar formula is used for the σAB parameter.
Molecular dynamics and local optimization procedures

for the time propagation and structure relaxation of mo-
lecular systems, respectively, requirefirst- and second-order
analytic derivatives of all terms in eq. (1). Explicit formulae
for the implementation of this energy and its derivatives in
DEMON2K can be found in [8]. They can be used alone or in
combination with QM gradients and second-derivatives
for structure optimizations, MD simulations or molecular
property calculations. Simulations in the canonical (NVT)
ensemble are carried out using the extended systemapproach
with the Nosé-Hoover chain (NHC) thermostat [23, 24]. More
recently, the pressure-controlling algorithm from Martyna,
Tobias and Klein (MTK) [25] has been implemented in
DEMON2K, allowing simulations in the NPT ensemble, too. The
necessary volume definition for the barostat is provided by
the CCM cluster.

2.2 The cyclic cluster model

In DEMON2K, periodicity is introduced in the form of the cyclic
clustermodel (CCM) inwhich cyclic boundary conditions are
directly applied to a cluster. Thus, the system remains finite.
The CCM cluster must be a portion of a system that can be
used to generate its periodicity. In principle, a primitive unit
cell (PUC) can be used as CCM cluster, but for physically
meaningful results a large unit cell (LUC) or supercell is
usually considered. Therefore, electronic structure methods
developed for molecular quantum chemistry, i.e. for finite
systems, can be used in CCM calculations. The same applies
to MM methods.

For the case of systemswith defects, asmentioned above,
direct defect-defect interactions are excluded in the CCM by
construction. Consider Figure 2, where a two-dimensional
system with four atoms is shown. The central cell, with solid
black lines standing for the cell vectors ax and ay, represents
the cluster with real atoms denoted by red dots. The replicas
around the central cell contain translations of these atoms,
known as virtual atoms in CCM, depicted by blue dots. As is
shown in the figure, the interactions for atom A in the cluster

are limited to a region (shown in light green) formed by the
restriction that the projection of the distance vector between
twoatoms onto anedge of the cell is not allowed to exceed half
the length of that edge. Three cases are possible for the sur-
rounding atoms: (i) they are inside the interaction region; (ii)
they are on its edge; or (iii) they are outside the interaction
region. These are the cases of the B, C andD atoms in Figure 2,
respectively. No modification of the interatomic vector is
required in the first case. However, for the second and third
cases, these vectors need to be translated by the same trans-
lation vector as that of the cell containing the interacting
virtual atom. In addition, for the particular case of the AC
interaction, we observe that the real atom in cell 0 and the
virtual atom in cell 5 (indicated by the superscript in the
interatomic distance vectors in the figure) both fullfill the
interaction restriction. In order to avoid double counting of
interactions, it is possible to neglect one of them. However,
this will cause a dipole moment in ionic systems and lead to
unphysical results. To overcome this problem, we consider all
the interactions and then take an average as suggested in [15].
By imposing these restrictions, the interaction region around
each atom takes the shape of a Wigner-Seitz cell (WSC)
generated from the (large) unit cell. As a result, an atom
cannot interact with one of its translationally equivalent
atoms and, therefore, direct defect-defect interactions are
avoided.

Eq. (1) can be directly used in CCM by simply modifying
the interatomic distance vectors. For the case of ionic sys-
tems, where long-range Coulomb interactions need to be
calculated, the expression in eq. (3) will be replaced by the
corresponding Ewald sum, as discussed in Section 3, for its
efficient calculation. Besides this change, the expressions for

Figure 2: Two-dimensional CCM cluster (zero cell) with cell vectors ax and
ay containing four atoms (red dots). The CCM cluster replicas 1 to 8 with
virtual atoms (blue dots) are indicated by dashed lines. The light green
areamarks the interaction region for atom A. Interatomic distance vectors
are denoted by the letter R with a subindex indicating the start and end
atoms and a superindex indicating the cell to which these atoms belong.
Dashed interaction vectors are used to indicate that these vectors need to
be modified. See text for details.
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the energy, gradients and second-order energy derivatives
of eq. (1) can be directly used for MM-CCM systems. Only the
derivatives with respect to the cell parameters need to be
added as outlined in the following subsection.

2.3 Energy derivatives

In the following, we assume that each edge of the cell lies
along one of the Cartesian coordinate axes. Therefore, the
corresponding cell vectors in our setup have only one
non-vanishing component. For this reason, they will be
addressed using only one index. Furthermore, from here on
wewill use the term cell parameter to refer to the cell vectors
only component. Note that these cell parameters are also the
lengths of the cell. For the calculation of CCM energy de-
rivatives, wefirst define the relationship between the atomic
position vectors and the cell parameters of the CCM cluster.
This can be expressed as follows:

A = fAxax + fAyay + fAzaz (5)

In eq. (5), fAλ (λ = x, y, z) represent the components of the
atomic position vector A in the basis of the cell vectors ax, ay
and az, also known as fractional coordinates. Therefore, the
derivative of the atomic position vector with respect to a cell
parameter is given by the corresponding fractional coordi-
nate. In our setup, the fractional coordinates are simply the
ratio fAλ = Aλ/aλ, where aλ is the magnitude of aλ and Aλ the
corresponding component of the atomic position vector.
From this expression, one can obtain the derivative with
respect to an atomic coordinate in terms of a cell parameter
and vice versa. Therefore, we can expand energy derivatives
with respect to a cell parameter by the calculated atomic
gradient component and the corresponding fractional
coordinate:

∂E
∂aλ

= ∑
A

∂E
∂Aλ

∂Aλ

∂aλ
= ∑

A

∂E
∂Aλ

fAλ (6)

In our derivatives formulae Greek letters λ, η, …

denote the Cartesian coordinates x, y and z. Second-order
derivatives can be immediately obtained from the previous
equation by recognizing the first-order differential oper-
ator with respect to the cell parameter aλ in it and building
the second-order as:

∂
2E

∂aλ∂aη
= ∑

A,B

∂
2E

∂Aλ∂Bη
fAλfBη (7)

Finally, it is also possible to obtain mixed second-order
derivatives where the differentiation is with respect to one
atomic coordinate and one cell parameter. For this purpose,

we can start from eq. (6) and derive it with respect to an
atomic coordinate. This yields:

∂
2E

∂Aλ∂aη
= ∑

B

∂
2E

∂Aλ∂Bη
fBη (8)

Equations (6)–(8) can be applied to all terms in eq. (1) as
long as their dependency on the cell parameters is only
through the atomic positions. We will see in the next section
that this is not the case for the Ewald part of the energy.

3 The Ewald summation method

In order to extend the CCM to polar systems, long-range
Coulomb interactions must be added [16]. Unfortunately, eq.
(3) is only conditionally convergent when applied to periodic
(infinite) systems. Therefore, the summation order must be
defined first. A possibility is adding replicas in a spherical
way according to their distances to the central unit cell. This
definition makes it possible to transform the original sum in
eq. (3) into two rapidly and totally convergent sums using the
method of Ewald [26–32]. This changes the MM energy
expression to:

EMM = Ebond + Ebend + Etors + Eitor + EvdW + EEw (9)

The main idea of this approach is to place a charge
distribution at the location of every point charge qA, but with
opposite sign, see Figure 3, left.

The potential arising from the point charges and the
charge distributions can be rapidly calculated in direct
space. A second set of compensating charge distributions
needs to be added to recuperate the initial point charge
distribution (see Figure 3, right). This potential is then
evaluated in reciprocal space. This yields for the Ewald en-
ergy expression:

EEw = 1
2
∑
A≠B

∑
g

qAqB
|A−B+g|erfc(α|A−B+g|)

+ 2π
V

∑
k≠0

AkQ(k)Q*(k)− α̅̅
π

√ ∑
A
q2A − ∑

intra

A,B

qAqB
|A−B|

withAk = e
−k2/4α2
k2 ; Q(k) =∑

A
qAe

−ik⋅A ; Q*(k) =∑
A
qAe

ik⋅A

(10)

The first three terms in eq. (10) represent the direct
(Edir), reciprocal (Erec), and self-interaction (Eself) part of the
energy, respectively. The last term accounts for the intra-
molecular interactions, which are only allowed when the
atoms are separated bymore than three bonds. Thus, in this
sum, A and B are the end atoms of either a bond, an angle or
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a dihedral angle. Note that in Edir, the sum should not
include the term A = B for g = 0 to avoid divergence. The g
and k vectors in the direct and reciprocal space, respec-
tively, are given by:

g = mxax +myay +mzaz (11)

k = nxbx + nyby + nzbz (12)

Here mλ and nλ are integer numbers. The reciprocal
vectors, bλ, form a lattice in reciprocal space and fullfill the
condition aλ⋅bη = 2πδλη. The number of g and k vectors
needed for the convergence of eq. (10) is strongly depen-
dent from the α parameter. With α = ̅̅

π
√

/V 1/3, where V is
the volume of the cell, the direct and reciprocal sums
converge at the same rate [33]. In DEMON2K, this parameter is
calculated as α = κ/V1/3 where κ = 6 is chosen by default to
achieve convergence of Edir using only the central unit cell.
A different value of α, as well as the maximum values for
the mλ and nλ integer numbers in Eqs. (11) and (12), can be
given in the input. Note that the introduction of the Ewald
sum in eq. (9) in QM/MM methods requires point charges
for the replicas of the QM system as depicted in Figure 1,
right. To this end, we use the force field charges of the
corresponding MM atoms. Therefore, the necessary force
field parameters for a QM atom extend to ϵA, σA and qA in
this approach.

Depending on the system setup, other corrections must
be added to the Ewald energy. Because eq. (10) is derived
under the assumption that the system is surrounded by a
good conductor, a correction term needs to be added to
compensate for the dipolar layer formed on the surface of
the sphere arising from the summation definition. This
term is:

Edip = 2π
3V

∑
A
qAA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2 (13)

Another correction is the addition of a background
charge for charged systems [34]. This is given by:

Echg = π
3Vα2 ∑

A
qA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2 (14)

With this, the Ewald energy containing all its terms and
corrections is given by the expression:

EEw = Edir + Erec − Eself − Eintra + Edip − Echg (15)

First derivatives for the Ewald sums with respect to the
cell parameters have been reported previously [35],
although without the results for the correction terms. In the
following subsections we present all the terms for
completeness and as a basis for obtaining the second-order
derivatives. For this same reason, the derivatives with
respect to atomic coordinates are also given. The sum over
the direct space vectors, g, is omitted for compactness of the
resulting equations.

3.1 First derivatives

Note that in eq. (15), the self-interaction and charge correc-
tion terms do not depend on atomic coordinates. Thus, the
gradients of EEw, i.e. the energy derivatives with respect to
atomic coordinates, consist of four terms only. These are:

∂Edir

∂Aλ
= −∑

B

qAqB
|A − B|2

erfc(α|A − B|)
|A − B| + 2α̅̅

π
√ e−α

2 |A−B|2[ ]
3 Aλ − Bλ( ) (16)

Figure 3: One dimensional systemwith the charge density distributions used in the Ewaldmethod. Point charges and shielding charge distributions (left)
give rise to the direct part of the potential, while the compensating charge distributions (right) generate the part of the potential evaluated in reciprocal
space.
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∂Erec

∂Aλ
= 2π

V
∑
k≠0

Ak Q(k)eik⋅A − Q*(k)e−ik⋅A[ ]iqAkλ (17)

∂Eintra

∂Aλ
= − ∑

intra

B

qAqB
|A − B|3 (Aλ − Bλ) (18)

∂Edip

∂Aλ
= 4π
3V

qA∑
B
qBBλ (19)

Analytic gradients of the direct and reciprocal sums
have been reported previously in [16], where the deriva-
tions were performed with respect to components of the
interatomic vectors. Within QM/MM methods, analytic
derivatives of eq. (10) with respect to atomic coordinate
components can be found in [36].

Gradientswith respect to the cell parameters differ from
those of the other MM contributions in eq. (9) since the
dependency of EEw on the cell parameters is not only through
the atomic positions, but also through the volume, the α
parameter and the k vectors. In general, the derivative of the
Ewald energy with respect to a cell parameter component
can be written as:

∂EEw

∂aλ
= ∑

A

∂EEw

∂Aλ

∂Aλ

∂aλ
+ ∂EEw

∂V
∂V
∂aλ

+ ∂EEw

∂α
∂α
∂aλ

+ ∑
k≠0

∂EEw

∂kλ

∂kλ

∂aλ
(20)

By applying the chain rule, the cell parameter de-
rivatives of the different terms take the following explicit
forms:

∂Edir

∂aλ
= 1
2aλ

∑
A,B
qAqB

2α
3

̅̅
π

√ e−α
2 |A−B|2

− 1
2
∑
A,B

qAqB
|A − B|2

erfc(α|A − B|)
|A − B| + 2α̅̅

π
√ e−α

2 |A−B|2[ ]
Aλ − Bλ( )(fAλ − fBλ) (21)

∂Erec

∂aλ
= − 2π

Vaλ
∑
k≠0

AkQ(k)Q*(k) 1 + k2

6α2 −
k2
λ

2α2
− 2k2

λ

k2( ) (22)

∂Eself

∂aλ
= − α

3
̅̅
π

√
aλ

∑
A
q2A (23)

∂Edip

∂aλ
= − 2π

3Vaλ
∑
A
qAA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2 + 4π

3V
∑
A,B
qAqBfAλBλ (24)

∂Echg

∂aλ
= − π

6Vα2aλ
∑
A
qA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2 (25)

Note that the fractional coordinates, fAλ − fBλ, can be
written as the ratio of the corresponding atomic coordinates
and the cell parameter aλ, and implemented in this way, too.
Nonetheless, it is important to keep track of the fractional
coordinates for the following derivatives, in which they are
also kept constant. The derivatives of Eintra are not given
explicitly since they can be obtained using eq. (6). Thus, only
the derivatives with respect to atomic coordinates are
needed for this term.

3.2 Second derivatives

For structure optimization and characterization, second-
order energy derivatives are needed. As already explained
for the gradients only four terms in eq. (15) have second-
order non-vanishing derivatives with respect to atomic
coordinates. These are given by:

∂
2Edir

∂Aλ∂Bη
= (Aλ − Bλ)(Aη − Bη)

|A − B|4 qAqB
3 erfc(α|A − B|)

|A − B|[
+ 2α̅̅

π
√ (3 + 2α2|A − B|2)e−α2 |A−B|2]

− δλη
|A − B|2qAqB

erfc(α|A − B|)
|A − B| + 2α̅̅

π
√ e−α

2 |A−B|2[ ]
(26)

∂
2Erec

∂Aλ∂Bη
= 2π

V
∑
k≠0

AkqAqB e−ik⋅Aeik⋅B + e−ik⋅Beik⋅A[ ]kλkη (27)

∂
2Eintra

∂Aλ∂Bη
= − 3qAqB

|A − B|5 (Aλ − Bλ)(Aη − Bη) + δλη
qAqB

|A − B|3 (28)

∂
2Edip

∂Aλ∂Bη
= 4πδλη

3V
qAqB (29)

Analytic second-order derivatives, as well as analytic gra-
dients, of the direct and reciprocal termswith respect to atomic
coordinate components have been reported in the literature
[37]. In [38], derivatives of the dipole term are also given.

Second-order energy derivatives with respect to the cell
parameters are arising for all terms of eq. (15). The formulae
for the intramolecular part are not given explicitly as they
can be calculated from eq. (7). For the direct sum we find:

206 J.D. Samaniego-Rojas et al.: A molecular mechanics implementation of the cyclic cluster model



For the reciprocal energy term the result is:

And finally, for the self-interaction and correction terms:

∂
2Eself

∂aλ∂aη
= 1

3
+ δλη( ) α

3
̅̅
π

√
aλaη

∑
A
q2A (32)

∂
2Edip

∂aλ∂aη
= 2π(1 + δλη)

3Vaλaη
∑
A
qAA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2

−4π
3V

∑
A,B
qAqB

fAλBλ

aη
− δληfAλfBη( ) (33)

∂
2Echg

∂aλ∂aη
= 1

3
+ δλη( ) π

6Vα2aλaη
∑
A
qA

⃒⃒⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒⃒⃒
⃒⃒2 (34)

3.3 Mixed second derivatives

For the calculation of the full Hessian matrix, mixed second-
order derivatives with respect to atomic coordinates and cell
parameters are needed, too. To this end, we start from equa-
tions (21)–(25) and differentiate themwith respect to an atomic
coordinate. As explained in the derivation of the gradients,
neither the self-interaction nor the charge correction have any
dependency on the atomic coordinates. Therefore, only the
direct, reciprocal and dipole terms contribute to these de-
rivatives. For the direct energy term we have:

∂
2Erec

∂aλ∂aη
= 2π
Vaλaη

∑
k≠0

e−k
2/4α2
k2 Q(k)Q*(k) 1 + k2

6α2
− k2

λ

2α2 −
2k2

λ

k2( ) 1 + k2

6α2 −
k2
η

2α2 −
2k2

η

k2
⎛⎝ ⎞⎠

− 2π
Vaλaη

∑
k≠0

e−k
2/4α2
k2 Q(k)Q*(k) 1

3α2
k2

3
− k2

λ − k2
η( ) − 4k2

λk
2
η

k4

⎡⎣ ⎤⎦

+ 2πδλη
Vaλaη

∑
k≠0

e−k
2/4α2
k2 Q(k)Q*(k) 1 + k2

6α2 −
3k2

λ

2α2
− 6k2

λ

k2( )

(31)

∂
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∂aλ∂aη
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qAqB
|A − B|2 2α2 + 3

|A − B|2( ) 2α̅̅
π

√ e−α
2 |A−B|2(Aλ − Bλ)(Aη − Bη)(fAλ − fBλ)(fAη − fBη)

+ 1
2
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qAqB

3erfc(α|A − B|)
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qAqB
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The differentiation of eq. (22) with respect to an atomic
coordinate results in:

∂
2Erec

∂Aλ∂aη
= i2πqA

Vaη
∑
k≠0

Ak
k2
η

2α2 +
2k2

η

k2 − k2

6α2
− 1⎛⎝ ⎞⎠ Q(k)eik⋅A − Q*(k)e−ik⋅A[ ]kλ

(36)
And finally, for the dipole correction:

∂
2Edip

∂Aλ∂aη
= − 4π

3Vaη
qA∑

B
qBBλ + 4πδλη

3V
qA∑

B
qBfBη (37)

With these derivations, we can calculate the gradient
and Hessian for the optimization of periodic systems. Note
that the use of complex algebra is restricted to the calcula-
tion of the reciprocal energy term and its derivatives. Of
course, all energy derivatives are real in nature as it can be
shown by substituting the complex exponentials by cosine
and sine functions. The use of complex algebra in obtaining

Q(k), and the terms derived from it, permits a more efficient
calculation of eq. (10) and its derivatives by reducing a
double sum over the atoms to just one [29].

4 Computational methodology

The incorporation of temperature and pressure into an MD
simulation is based on the idea of modifying the equations of
motion (EOM) by coupling the system to controlling devices.
For temperature, the average value of the kinetic energy is
driven towards a target value using the Nosé-Hoover chain
(NHC) thermostat allowing simulations in theNVT ensemble.
A pressure-controlling device can also be coupled to the
volume of the system to drive its fluctuations towards the
desired average pressure value. The new general MD step

∂
2Edir

∂Aλ∂aη
= ∑

B≠A

3qAqB
|A − B|4

erfc(α|A − B|)
|A − B| + 2α̅̅

π
√ e−α

2 |A−B|2[ ](Aλ − Bλ)(Aη − Bη)(fAη − fBη)
+∑
B≠A

qAqB
|A − B|2

4α3̅̅
π

√ e−α
2 |A−B|2 (Aη − Bη)(fAη − fBη) − |A − B|2

3aη
[ ](Aλ − Bλ)

−∑
B≠A

δληqAqB
|A − B|2

erfc(α|A − B|)
|A − B| + 2α̅̅

π
√ e−α

2 |A−B|2[ ](fAη − fBη) (35)

Figure 4: General flowchart of the new DEMON2K MD step. A thermostat is used for the system and another for the barostat. The coupling of the
thermostat and barostat to the particle system is done through the modification of the equations of motion for the atomic positions (A) and momenta
(PA). A schematic representation of this coupling is shown in the upper right corner. A dot above a quantity indicates differentiation with respect to time.
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implemented in DEMON2K is shown in Figure 4. Here the
particle system collects all atom and cell parameter co-
ordinates. The barostat and thermostats are composed of
fictitious particles, each with a position and mass, and sub-
ject to forces, represented by the three symbols inside each
box. Only the equations of motion for the particle system are
given in Figure 4. The equations for the time propagation of
the positions and momenta of the barostat and thermostats
are not shown for brevity.

To validate our new CCM MD implementation we run
NPT simulations of 864 argon atoms inside a cubic box with
an initial length of 34.98 Å. Nosé-Hoover chains consisting
of three thermostats were coupled to this system and to the
barostat. The time step (Δt) was set to 5.0 fs. A first test of the
equivalence between the different ensembles was con-
ducted by 50 ps simulations. For the specific case of the
barostat implementation, simulations of 125 ps were car-
ried out under different temperatures and pressures, too.
The strength of the coupling of the thermostat and barostat
to the system is set by theirmasses (Mξ,Mϵ in Figure 4). These
are proportional to characteristic time scales for the parti-
cles and barostat, τp and τb. As suggested in [39], we set them
proportional to the time step to τp = 20 Δt and τb = 100 Δt.

The default structure minimization algorithm in
DEMON2K is based on quasi-Newton methods in which the
analytic Hessian or some approximation to it is used in
conjunction with an update algorithm [40]. External degrees
of freedom, particularly translational degrees of freedom for
periodic systems, need to be removed from the gradient
vector and the Hessian matrix. In DEMON2K, this is done

through a projector matrix as outlined in [9]. For the vali-
dation of the CCM structure optimization, we optimized the
molecular structure and cell parameters of molecular crys-
tals without any symmetry restriction using Cartesian
coordinates. In this way, the crystal structure was allowed to
change into a different spatial symmetry group during the
optimization.

Throughout this work the convergence tolerance for
the root mean square (RMS) of the forces was set to
3.0 × 10−4 a.u. and to 4.5 × 10−4 a.u. for themaximum force in
all optimizations. The maximum number of optimization
steps was set to 1000. Two different optimization proced-
ures were tested. The first one, which we name full opti-
mization, optimizes both kinds of degrees of freedom,
namely the atomic coordinates and the cell parameters,
simultaneously. The second one, named iterative optimi-
zation, optimizes atomic coordinates and cell parameters
independently from each other. Figure 5 shows schematic
diagrams for both approaches. Note that the mixed second-
order derivatives are never used in the iterative scheme.
These coupling terms represent the greatest difference
between the two approaches. As starting Hessian unit
matrices were used in both approaches. For the full opti-
mization a calculated start Hessian was tested, too.

5 Results

As a first test of the suitability of the implemented NVT and
NPT algorithms, the equilibrium properties obtained from

Figure 5: Diagram of the full and iterative optimization procedures. Here, x, g and H represent the optimization variables, their gradients and their
second derivatives, respectively.
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the NVE, NVT and NPT simulations of the 864 argon atom
system were compared. The same system setup as described
in the computational methodology section was used to this
end. In these simulations we recorded 50 ps trajectories.
First, an NVE simulation was performed. Average temper-
ature and pressure values were obtained from this simu-
lation and used for the generation of trajectories from NVT
and NPT runs. The results are summarized in Table 1. The
agreement between the different ensembles, especially
between the NVE and NPT, indicates that the implemented
constant-pressure algorithm is able to describe this system
accurately while conserving the total energy to a reason-
able degree.

Further MD simulations of the argon system in the NPT
ensemble were performed generating trajectories of 125 ps.
The temperature and pressure values were set according to
the experimental data reported in [41]. The selected volume
and pressure values from the experimental isotherms
shown in Figure 6 (left) are depicted on the graph on the

right part of the picture with colored dots. These pressure
values, together with the corresponding temperatures, were
used as the target conditions for the simulations. From these,
the final average volume was calculated and used to plot the
results shown in Figure 6 (right) by red squares. In general,
the volume is overestimated by the Lennard-Jones model of
argon. Good agreement with experiment is found for high
temperatures, whereas larger discrepancies appear when
the pressure is increased along the lower temperature
curves. This is in agreement with the ideal gas model.

To test the CCM optimization procedures described in
the previous section, a set of molecular crystals consisting
of eight crystals with orthorhombic unit cells, see Figure 7,
are optimized. These systems are acetic acid, ammonia,
benzene, cyanamide, α-oxalic acid, pyrazine, pyrazole and
urea. The startingmolecular structures and cell parameters
were taken from references [42–49] and correspond to the
experimentally determined crystalline structures which, at
room temperature and under ambient pressure, do not

Figure 6: Experimental (left) isotherms of argon. Some points (right) were picked from these isotherms. The red squares represent the calculated
volumes for each T, P pair chosen.

Table : Average property values obtained fromMD simulations of the argon system described in the text. The total energy (last column) is different for
each simulation due to the inclusion of the thermostats and barostat fictitious particles.

Simulation Property ⟨ETot⟩ (a.u.)

⟨T⟩ (K) ⟨P⟩ (bar) ⟨Box length⟩ (Å) ⟨EPot⟩ (a.u.)

NVE  ±   ±  . ± . −. ± . −. ±  × 
−

NVT  ±   ±  . ± . −. ± . −. ±  × 
−

NPT  ±   ±  . ± . −. ± . . ±  × 
−
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present polymorphism. The intermolecular interactions in
these systems include electrostatic, hydrogen-bond and
π-stacking, among others. In our MM treatment though,
only electrostatic and van der Waals interactions are
considered. In Table 2 the results from the optimization of
all systems are compared between the two approaches
depicted in Figure 5. As starting Hessian a unit matrix was
used for this comparison. Given the differences between
the two optimization procedures, we cannot expect to
obtain the same results for each system. Nonetheless, as it
can be seen from Table 2, the optimized cell parameters do
not differ by more than 1.0 Å between the two approaches,
except for system T01 which did not converge within 1000
steps using the iterative approach. The change in volume

and the decrease in energy follow the same trend in both
approaches, with a general tendency towards lower volumes
indicating a denser molecular packing in these systems.

Full optimizations were performed for all systems using
the analytic second-order derivatives matrix as starting
Hessian, too. Two optimization algorithms were tested. One
quasi-Newton method based on the BFGS update formula
[40], and a Newton restricted step method that calculates
second-order derivatives in each step. The number of opti-
mization steps to reach convergence is shown in Figure 8.
The use of the analytic Hessian accounts for a reduction in
the number of steps, although not as large aswhen switching
from the iterative to the full optimization procedure. An
exception is system T08 for which the use of the analytically

Table : Cell parameters (Å), change in volume (%) and decrease in total energies (a.u.) for the optimized test systems with a starting unit Hessian.

System Initial parameters Optimized (iter) ΔV ΔE Optimized (full) ΔV ΔE

T . . . . . . −. −. . . . −. −.
T . . . . . . −. −. . . . −. −.
T . . . . . . −. −. . . . −. −.
T . . . . . . +. −. . . . +. −.
T . . . . . . +. −. . . . +. −.
T . . . . . . −. −. . . . −. −.
T . . . . . . −. −. . . . −. −.
T . . . . . . −. −. . . . −. −.

Figure 7: Test set for optimization consisting of eight orthorhombic molecular crystals. Intramolecular and intermolecular interactions were modelled
according to eq. (9).
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calculated Hessian at each step of the optimization required
a larger number of steps. Closer inspection of the final
structure reveals aminimum lowest in energy by 0.0145 a.u.,
suggesting that a different optimized structure had been
reached. Finally, to illustrate the differences in the behav-
iour of the energy and forces between the two optimization
procedures, we depict the energy, as well as the RMS and
maximum forces, for the optimization of system T03 in
Figure 9. During the iterative optimization (left), oscillations
in the force curves can be observed. They arise because of
the independent optimization of the two degrees of freedom.

When one is optimized, the other is left constant, and thus
having minimized one kind of forces, the other kind are not
necessarily small. These oscillations are not present in the
full optimization (middle), in particular near convergence.
Besides the general decrease in the number of optimization
steps, a qualitative improvement can be seen (right) when
using the analytic Hessian in each optimization step. This
can be due to the different nature of the atomic coordinates
and cell parameters, which demands a more precise treat-
mentwhen the two are considered together, since, as for now,
the full optimization implemented in DEMON2K uses the same
step lenghts and tolerances for both degrees of freedom.

6 Conclusions

The cyclic cluster model has been implemented in the MM
branch of the DEMON2K program for orthorhombic systems.
For ionic systems, we use the Ewald method, for the
calculation of Coulomb interactions. The corresponding
analytic first- and second-order energy derivatives with
respect to both the atomic coordinates and cell parameters
have been derived and implemented. Molecular dynamics
simulations have been conducted in different ensembles,
using the NHC thermostat and the MTK barostat. The sim-
ulations show a good total energy conservation and cor-
respondence between the different methodologies. The
argon simulations show that the implemented equations of
motion are suitable for constant pressure and temperature
simulations. As expected, the Lennard-Jones potential with
the OPLS force field parameters give best results near the
ideal gas conditions for this system. Two CCM optimization
approaches have been presented, of which the full opti-
mization shows to be more convenient in terms of the
number of optimization steps over the iterative approach,

Figure 8: Number of optimization steps for the iterative and full
optimization procedures. HU indicates that the starting Hessian is the unit
matrix, whereas HA means that the start Hessian was analytically
calculated. In the quasi-Newton optimization the Hessian was updated
with the BFGS formula, whereas it was analytically (ANA) calculated in the
corresponding Newton method.

Figure 9: Profiles of the energy and the RMS andmaximum forces from the optimization of system T03 where oscillations in the forces are observed for
the iterative procedure (left). Smoother energy and force curves are obtained with the use of the analytic Hessian in each step of the full optimization
(right). See text for further details.
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with a considerable improvement in this respect even with
a starting unit Hessian. Inmost cases, the use of the analytic
second-order derivatives while optimizing both degrees of
freedom at the same time further reduces the steps to reach
convergence. The extension of this work to QM/MM is
currently under development in our laboratories.
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