
HAL Id: hal-04547915
https://hal.umontpellier.fr/hal-04547915

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-organization as a mechanism of resilience in dryland
ecosystems

Sonia Kéfi, Alexandre Génin, Angeles Garcia-Mayor, Emilio Guirado, Juliano
Cabral, Miguel Berdugo, Josquin Guerber, Ricard Solé, Fernando Maestre

To cite this version:
Sonia Kéfi, Alexandre Génin, Angeles Garcia-Mayor, Emilio Guirado, Juliano Cabral, et al..
Self-organization as a mechanism of resilience in dryland ecosystems. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 2024, 121 (6), pp.e2305153121.
�10.1073/pnas.2305153121�. �hal-04547915�

https://hal.umontpellier.fr/hal-04547915
https://hal.archives-ouvertes.fr


 

 

1 

 

 1 

Self-organization as a mechanism of resilience in dryland 2 

ecosystems 3 
 4 
Sonia Kéfi1,2,5*, Alexandre Génin1,3,11, Angeles Garcia-Mayor3,6, Emilio Guirado4, 5 

Juliano S. Cabral5,10, Miguel Berdugo6, Josquin Guerber1,12, Ricard Solé2,7,8, 6 

Fernando T. Maestre4,9 7 
 8 
1 ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France 9 
2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA 10 
3 Utrecht University, Environmental Sciences, Copernicus Institute of Sustainable Development, 11 
Postbus 80.115, 3508TC Utrecht, the Netherlands 12 
4 Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, 13 
03690 San Vicente del Raspeig Alicante, Spain 14 
5 Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of 15 
Würzburg, Würzburg, Germany 16 
6 Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University 17 
of Madrid, Madrid 28040, Spain 18 
7 Catalan Institution for Research and Advanced Studies-Complex Systems Lab, Universitat 19 
Pompeu Fabra, Barcelona 08003, Spain 20 
8 Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain 21 
9 Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 22 
03690 San Vicente del Raspeig, Alicante, Spain. 23 
10 School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, 24 
B15 2TT Birmingham, UK.  25 
11 Estación Costera de Investigaciones Marinas, Pontificia Universidad Católica de Chile, Las 26 
Cruces 2690000, Chile 27 
12 Centre d’Ecologie et des Sciences de la Conservation (CESCO), MNHN, CNRS, Sorbonne 28 
Univ., 75005 Paris, France 29 
 30 

* Corresponding author: Sonia Kéfi 31 

Email:  sonia.kefi@umontpellier.fr 32 
 33 
Author Contributions: Conceptualization: SK, AG; Methodology: SK, AG; Investigation: 34 

SK, AG, EG, MB, JG; Visualization: SK, AG, EG, RS; Funding acquisition: SK, FTM; 35 

Supervision: SK; Writing – original draft: SK; Writing – review & editing: SK, AG, 36 

AGM, EG, JSC, MB, JG, RS, FTM 37 
Competing Interest Statement: Authors declare that they have no competing interests.  38 
Classification: major: Biological sciences; minor: Ecology  39 
Keywords: drylands, self-organization, spatial patterns, desertification 40 
This PDF file includes: 41 

Main Text 42 
Figures 1 to 5 43 

 44 
 45 
 46 
 47 
 48 
 49 
 50 

mailto:sonia.kefi@umontpellier.fr


 

 

2 

 

 51 
 52 
Abstract 53 
Self-organized spatial patterns are a common feature of complex systems, ranging from microbial 54 
communities to mussel beds and drylands. While the theoretical implications of these patterns for 55 
ecosystem-level processes, such as functioning and resilience, have been extensively studied, 56 
empirical evidence remains scarce. To address this gap, we analyzed global drylands along an 57 
aridity gradient using remote sensing, field data and modeling. We found that the spatial structure 58 
of the vegetation strengthens as aridity increases, which is associated with the maintenance of a 59 
high level of soil multifunctionality, even as aridity levels rise up to a certain threshold. The 60 
combination of these results with those of two individual-based models indicate that self-organized 61 
vegetation patterns not only form in response to stressful environmental conditions but also provide 62 
drylands with the ability to adapt to changing conditions while maintaining their functioning, an 63 
adaptive capacity which is lost in degraded ecosystems. Self-organization thereby plays a vital role 64 
in enhancing the resilience of drylands. Overall, our findings contribute to a deeper understanding 65 
of the relationship between spatial vegetation patterns and dryland resilience. They also represent 66 
a significant step forward in the development of indicators for ecosystem resilience, which are 67 
critical tools for managing and preserving these valuable ecosystems in a warmer and more arid 68 
world. 69 
 70 

Significance Statement 71 

 72 
The spatial structure of vegetation in dryland ecosystems has long fascinated scientists due to its 73 
striking appearance. Through a combination of global field surveys, mathematical models, and 74 
remote sensing, we show that the mechanisms responsible for these patterns enable healthy 75 
dryland ecosystems to adapt to changing environmental conditions, including water shortages, by 76 
adjusting their spatial structure. Conversely, degraded ecosystems do not have this ability. Our 77 
findings underscore the critical role of spatial pattern formation in promoting resilience in dryland 78 
ecosystems. Moreover, these spatial patterns could serve as valuable indicators of ecosystem 79 
health under a changing climate, opening important perspectives for future research in this field. 80 
 81 
  82 
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Main Text 83 
 84 
Introduction 85 
 86 

Abrupt, irreversible changes in ecosystems are a serious concern given the forecasts for future 87 
environmental changes and their expected pace (1). Urgently needed tools are being developed to 88 
characterize and anticipate shifts in ecosystem functioning and stability. While many of these tools 89 
rely on analyzing temporal changes in ecosystem properties, the spatial structure of some 90 
ecosystems can also teach us about the way these ecosystems cope with stressors such as 91 
changes in climate (2–5). Indeed, interactions between species and their environment can generate 92 
emergent spatial patterns even in the absence of underlying heterogeneity, referred to as ‘self-93 
organized’ patterns (3, 6, 7). Drylands are one of the textbook examples of ecosystems showing 94 
such patterns, as their vegetation cover presents a striking spatial structure that displays well-95 
defined statistical properties across large spatial scales (2, 8–10). One of the most commonly 96 
hypothesized underlying mechanisms is that, in the harsh environmental conditions of drylands, 97 
established vegetation improves the local environmental conditions and alters the redistribution of 98 
resources – in particular water – from bare areas to vegetation patches, which promotes the spatial 99 
aggregation of plants (3, 7, 8, 11–14).  100 
 101 
Theoretical studies have long suggested that self-organized spatial patterns could increase overall 102 
ecosystem function and resilience (3, 4, 6, 11, 13). Indeed, the capacity of drylands to spatially self-103 
organize is predicted to allow them to maintain a higher productivity than what would be expected 104 
in the absence of spatial structure (3, 7, 11, 13). These self-organized patterns may change with 105 
environmental conditions, such as water shortage, giving drylands the ability to adapt and maintain 106 
productivity by adjusting their spatial structure (3, 11, 13). This is expected to lead to relatively 107 
stable levels of ecosystem functioning despite increasing stress, allowed by changes in spatial 108 
patterns. However, empirical support for this hypothesis is still elusive. Furthermore, spatial 109 
vegetation patterns can also hold the key to another generic phenomenon of interest: critical 110 
slowing down (5). Indeed, theoretical models have shown that self-organized spatial patterns could 111 
also be used as indicators of resilience loss because they reflect the speed required by the system 112 
to recover from perturbations (15): as a dynamical system approaches a point at which its stability 113 
changes drastically, it takes a longer time to recover from small perturbations, which leaves traces 114 
both in the temporal and in the spatial dynamics of the system (15, 16). As a consequence, spatial 115 
structure is expected to show increasing variance and auto-correlation (referred to as ‘spatial early 116 
warnings’) as the ecosystem loses resilience (meaning as its recovery capacity decreases) (5, 17).  117 
 118 
Previous empirical studies have analyzed changes in vegetation patterns along local gradients (2, 119 
18, 19) or in specific aspects of the vegetation patches across large spatial scales (9, 10, 20). 120 
However, building a robust predictive framework for dryland ecosystems requires going a step 121 
further by confronting theoretical predictions from mechanistic models to empirical observations 122 
covering large geographical scales and stress gradients. Doing so is essential to validate with 123 
confidence the causality of theoretical predictions about vegetation spatial patterns, their 124 
importance in maintaining dryland ecosystem resilience, and to evaluate whether and how spatial 125 
patterns can be used as early warning signals for the onset of desertification and abrupt ecosystem 126 
shifts (2–5, 11).  127 
 128 
Here, we provide novel empirical support for the hypothesis that changes in the spatial structure of 129 
vegetation lead to relatively stable levels of dryland ecosystem functioning despite increasing 130 
stress. We used a global data set of 115 dryland sites (Fig. 1), for which field and remotely-sensed 131 
data about their soil and vegetation features were gathered (21). After classifying the high 132 
resolution remote sensing images of our data set into presence/absence of vegetation, we 133 
estimated vegetation cover and quantified its spatial structure using relevant spatial metrics based 134 
on theoretical studies (5): patch-based metrics (number and size of the vegetation patches), 135 
hydrological connectivity (connectivity of the bare-soil area reflecting the overall potential of the 136 
landscape to redistribute or lose resources by runoff), and spatial early warnings (quantifying the 137 
resilience of the ecosystem) (see Materials and Methods). At the global scales, we directly 138 
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compared the observed trends in these metrics along an aridity gradient to those produced by two 139 
different theoretical models previously used to investigate the emergence of spatial patterns in 140 
drylands (8, 13). These models describe the spatio-temporal dynamics of the vegetation assuming 141 
local facilitation (i.e., plants improve their local environment thereby facilitating the recruitment of 142 
others in their direct neighborhood) and global competition for limiting resources such as water (see 143 
Materials and Methods). 144 

 145 
Results 146 
 147 
A two-dimensional clustering analysis of the vegetation cover and soil multifunctionality (i.e., an 148 
index derived from field measurements of carbon, nitrogen and phosphorus in the soil) of the field 149 
sites surveyed revealed that our dryland sites could be split into two distinct groups of relatively 150 
‘healthier’ (those with relatively high cover and soil multifunctionality) vs ‘degraded’ sites (those with 151 
relatively low cover and soil multifunctionality; Figs. 2 and S11). These two groups of sites differ 152 
significantly in all spatial metrics measured on vegetation cover but spatial auto-correlation (i.e., 153 
Spectral Density Ratio; Fig. 3). Compared to degraded sites, healthier sites have larger patches, 154 
less connected bare areas (i.e., lower flowlength) and an overall less fragmented vegetation cover 155 
(i.e., steeper slope of the patch size distribution) (Figs. 3 and 4).  156 
 157 
Across all the sites surveyed, the fragmentation of the vegetation cover increases with aridity, 158 
driving changes in patch-based metrics that match the expectation from theoretical models (Figs. 159 
5 A, B and S7 in SI D). As environmental conditions become more stressful, the loss and 160 
fragmentation of vegetation cover led to a change in the shape of the patch size distribution (2, 22, 161 
23) and to an increase in the connectivity of bare-soil areas, as shown by increased values of 162 
flowlength (24). These trends need to be compared to the expected changes caused by the loss of 163 
vegetation cover for random spatial structure, hereafter called null model (see Material & Methods), 164 
to assess whether the observed changes can be purely explained by a decrease in cover under 165 
more arid conditions. We found that the observed breakdown of the patch size distribution in field 166 
sites is weaker than expected in the null model (compare the colored and the grey points for patch-167 
based metrics in Figs. 5 A, B and S7). This means that vegetation in drylands is more spatially-168 
structured than expected and is growingly so as aridity increases.  169 

 170 
Separate analyses of healthier and degraded sites revealed that the relative increase in spatial 171 
structure with aridity mainly occurs for the healthier sites (Fig. 5 C left). These results indicate that 172 
healthier sites thereby keep adapting their spatial structure as environmental conditions worsen. 173 
For all patch-based metrics evaluated, the deviation from randomness increases with aridity. This 174 
result suggests an increasing role of mechanisms enhancing the spatial aggregation of plants along 175 
the aridity gradient (8) (Fig. S8, S9). Indeed, in the absence of such processes, spatial structure 176 
emerges in the two theoretical models but is not different from a null expectation (Fig. S8, 177 
S9). Possible underlying mechanisms to explain our results include positive plant interactions (7), 178 
eco-hydrological feedbacks driving resource (especially water) redistribution in the landscape (24, 179 
25), exogenous phenomena (e.g., spatial structure in soil moisture (26)), or a combination of these 180 
mechanisms. The nature of our survey and analyses does not allow us to strictly conclude on the 181 
presence and importance of such mechanisms. However, the fact that bare-soil connectivity 182 
increases with aridity in the healthier group of sites - as shown by a significant increase in flowlength 183 
- and the fact that it does so more than in the null model (Fig. 5 C left), suggests that at least water 184 
distribution within the ecosystem plays a role (25). Indeed, an increase in flowlength means that 185 
vegetation patches receive resources (e.g., water, nutrients) from a larger bare-soil area than would 186 
be expected with a randomized spatial structure.  187 
 188 
In the degraded sites, trends in patch-based and in hydrological connectivity metrics break down 189 
along the aridity gradient: all trends are weaker than those in the healthier group of sites – several 190 
being not significant -, and they are closer to the null expectation (Fig. 5 C right). These findings 191 
indicate that the ability of the sites to undergo spatial reorganization under stress diminishes, 192 
associated with a decline in functioning. This is evident from the significant decrease in soil 193 
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multifunctionality observed for these sites in response to increasing aridity (p=1.2 10-5, Fig. S13 in 194 
SI).  195 
 196 
For the healthier sites, since only spatial variance changes significantly but not spatial 197 
autocorrelation, the spatial early warnings suggest no sign of resilience loss as aridity increases 198 
(Fig. 5 C left). This is consistent with those sites showing limited signs of ‘suffering’ from increasing 199 
aridity: cover decreases significantly with aridity because of constraints in water availability (p=3.7 200 
10-7, Fig. S13 in SI), but functioning is maintained through the spatial reorganization of the cover 201 
(no significant decrease in soil multifunctionality with aridity; p=0.8, Fig. S13 in SI). However, in the 202 
degraded group of sites, spatial early warnings do suggest a loss of resilience as aridity increases 203 
(Fig. 5 C right), which probably reflects an overall physiological threshold of the vegetation at the 204 
end of the aridity gradient (27).  205 
 206 
 207 
Discussion  208 
 209 
Our results, using a thorough evaluation of multiple spatial metrics – which reflect different facets 210 
of ecosystem resilience – provide novel insights on how drylands cope with abiotic stress and how 211 
their spatial structure contributes to improve their resilience to increased aridity conditions. Despite 212 
the large environmental variability found across the different field sites studied, the overall 213 
consistency of the observed changes in spatial metrics along an aridity gradient with theoretical 214 
predictions is remarkable.  215 
 216 
In this work, we have considered two different minimal models of dryland dynamics that share local 217 
facilitation and non-local (long-range) effects as the two necessary drivers that generate self-218 
organized patterns with fat-tailed cluster distributions. Despite their differences, these two models 219 
successfully matched the repertoire of spatial patterns found in our data (2, 8, 22). This supports 220 
the idea of universality as defined in physics: macroscopic patterns in far-from-equilibrium systems 221 
can be accounted for from minimal interaction rules (28–30). In other words, simple mechanistic 222 
models can provide reliable predictions beyond the specific, low-scale details. It is noteworthy that 223 
other types of drylands than the ones studied here, such as semiarid savannas, have been found 224 
to exhibit a different type of behavior: available data (31) and a different class of stochastic models 225 
(26) indicate that their spatial patterns show broadly-similar features as those found in our data but 226 
are caused by exogenous phenomena associated with the formation of soil moisture islands that 227 
determine the spatiotemporal dynamics of tree clusters (26). In these latter systems, we do not 228 
expect the same trends in spatial metrics as those found here along an aridity gradient.  229 
 230 
Disentangling the mechanisms driving the self-organization and stability of drylands may require 231 
metrics grounded in empirically-proven mechanisms, such as eco-hydrological feedbacks 232 
evaluated in the field by the metric flowlength. The fact that bare-soil connectivity increases with 233 
aridity in the healthier group of sites, and that it does so more than in the null model (Fig. 5 C left), 234 
point towards the fact that such mechanism could include resource distribution within the 235 
ecosystem (25). The consequences of this process on ecosystem stability are thought to arise from 236 
two main eco-hydrological feedbacks of opposite signs in drylands (25). At a local (patch) scale, 237 
an increase in bare-soil connectivity leads to a redistribution of resources from bare areas to 238 
vegetation patches; this self-regulating (negative) feedback is overall stabilizing. At the ecosystem 239 
scale, bare-soil connectivity increases runoff and therefore the potential losses of resources from 240 
the ecosystem; this reinforcing (positive) feedback has been shown to be destabilizing (25). The 241 
balance between these two feedback loops determines the hydrological response of the ecosystem 242 
in terms of whether connectivity is overall stabilizing or destabilizing (25) and thus the ecosystem 243 
ability to maintain itself in a productive state, or degrade into a more barren, less productive state. 244 
In the healthier group of sites, the trends in spatial metrics found are consistent with the dominance 245 
of a stabilizing feedback: an increase in bare-soil connectivity leads to more resource redistribution 246 
from bare to vegetation areas, which leads to more vegetation patchiness (i.e., deviation from 247 
random structure) and a further increase in connectivity, which contributes to the overall higher 248 
functioning (i.e., higher soil multifunctionality) and cover of these sites compared to the degraded 249 
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sites. Conversely, the stabilizing feedback appears weaker in the degraded group of sites. Our 250 
findings thereby empirically support one key prediction of theoretical models, namely that resource 251 
redistribution from bare to vegetated patches, driven by bare soil connectivity, is a fundamental 252 
mechanism that determines the emergent spatial structure of arid ecosystems (14, 24, 25). 253 
 254 
Here, our analyses identified two alternative ways in which global drylands respond to increasing 255 
abiotic stress through self-organization: one in which the vegetation patterns are building resilience 256 
but also another in which this ability of the ecosystem is lost. In the first case, i.e., in self-organized 257 
ecosystems, spatial structure reinforces itself with increasing aridity (i.e., the deviation from a 258 
random structure increases). These changes in spatial structure, which are associated with 259 
maintaining soil multifunctionality, help to mitigate the increased stress despite a decrease in cover 260 
by allowing the ecosystem to retain enough water and maintain its overall functioning, which is 261 
consistent with the idea that spatial self-organization is a mechanism of resilience at the ecosystem 262 
scale (4). Importantly, we also found that failure to perform such changes in spatial structure, and 263 
thereby retain resources, in degraded sites leads to a loss in functioning and resilience. Our results 264 
empirically highlight the essential role of spatial patterns, and more specifically of the self-265 
organization process, for dryland functioning and resilience.  266 

It is noteworthy that if vegetation patchiness allows the maintenance of cover and functioning for a 267 
large range of aridity values, it only does so below an aridity threshold of 0.8 (Fig. 2). Indeed, there 268 
are no high cover, high soil multifunctionality sites above an aridity level of 0.8. Therefore, if aridity 269 
increases beyond that threshold in some of the sites of the healthier group, we expect them to 270 
eventually shift to the degraded group of sites, thereby losing their cover and soil multifunctionality. 271 
We expect sites to shift because there are only two (or maybe 3; see Fig. S11 in SI) groups of sites 272 
globally, meaning that there is a limited number of states for dryland ecosystems to be in. This 273 
aridity threshold of 0.8 corresponds to a known documented point at which drylands exhibit a 274 
dramatic loss of vegetation cover accompanied by a decrease in species richness as well as a 275 
change in plant leaf strategy from stress tolerance to stress avoidance (27).  276 
 277 
Recent studies have suggested that spatial self-organization does not only contribute to increase 278 
ecosystem resilience but can also allow them to evade tipping points (4). Interestingly, our results 279 
imply that we do not have evidence that the ecosystems studied here are evading a tipping point 280 
to desertification thanks to pattern formation (as suggested for regular vegetation patterns (4)). 281 
Indeed, the self-organization process seems to only be effective in healthier sites and up to a 282 
threshold level in aridity. It is however noteworthy that we are here comparing different ecosystems 283 
in space and not following the temporal dynamics of a given ecosystem in time, which could draw 284 
a different picture of an ecosystem response to increasing stress. Learning about whether the sites 285 
studied are approaching a tipping point or not would require temporal data, a matter for future 286 
research.  287 
 288 
The fact that the observed changes in spatial metrics along the aridity gradient in healthier sites 289 
are consistent with theoretical predictions is a crucial step in the development of reliable indicators 290 
of desertification in drylands. Theoretical studies have suggested for a long time that the spatial 291 
structure of vegetation patterns in drylands could be used to inform about the stress level 292 
experienced by dryland ecosystems (2, 3, 11). Patch-based and hydrological metrics inform about 293 
the ability of the ecosystem to adapt to increasing stress through self-organization (i.e., they inform 294 
about ‘ecological resilience’ sensu C.S. Holling (32)), while spatial early warnings inform about the 295 
recovery of the system after a perturbation (i.e., ‘engineering resilience’). Both types of metrics 296 
provide different but complementary information about the ecosystem’s ability to respond to 297 
increasing stress (Fig. S4). Finding consistent trends in spatial metrics in data and models is a 298 
significant progress, but a knowledge gap still remains before we can build reliable spatial indicators 299 
of ecosystem degradation, in particular indicators which can allow us to determine which 300 
ecosystems are more fragile than others. In particular, one of the issues is that we need to get a 301 
better understanding of how different mechanisms, e.g., due to the external pressures applied on 302 
ecosystems, can affect the spatial patterns and possibly blur the signals observed here (23, 33–303 
36). Explicit data on land use intensity is needed to be able to address that concern.   304 
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By combining remote sensing, field data, and model simulations, our study contributes to 305 
building a more robust framework to assess dryland degradation status. Our findings are relevant 306 
to help identifying which drylands are more fragile, and, therefore, where efforts to preserve them 307 
and prevent their degradation should be focused on. They also highlight the need for a system-308 
level, spatial picture of dryland vegetation, since spatial structure is both a driver of increasing 309 
resilience and an early warning indicator of future ecosystem changes. Such efforts are 310 
instrumental to avoid declines in ecosystem functioning that will reduce the delivery of essential 311 
ecosystem services, forcing dryland inhabitants (which are already vulnerable) to either migrate or 312 
change their livelihood drastically in the near future. 313 
 314 
 315 
Materials and Methods 316 
 317 
Data  318 
The field data set contains vegetation and soil data from for 115 dryland ecosystems located in 13 319 
countries (the data is described in details in (21)). The sites used (Fig. 1) differ widely in their abiotic 320 
(elevation, temperature and precipitation) and biotic (vegetation type, cover and number of species) 321 
characteristics (see database in figshare: https://figshare.com/s/3db3640a61ebc975bcda). 322 
At each site, a 30 m x 30 m plot representative of the vegetation present in that area was 323 
established in the field and plant cover was estimated using the line intercept method (see more 324 
details in (21)). Five soil cores (0-7 cm depth) were taken in areas devoid of perennial vegetation 325 
(to avoid implicit effects of vegetation cover within multifunctionality measurements) and 16 326 
variables were measured related to the carbon (C; organic C, -glucosidase activity, pentoses, 327 
hexoses, aromatic compounds, and phenols), nitrogen (N; nitrate, ammonium, total N, potential N 328 
transformation rate, aminoacids and proteins) and phosphorus (P; Available P, phosphatase 329 
activity, inorganic P and total P) cycles. Variables are considered to be critical determinants of 330 
ecosystem functioning in drylands. They were used to calculate a soil multifunctionality index, 331 
multifunctionality, obtained as the average Z-score across these variables (21). High values of soil 332 
multifunctionality have been associated with more functional ecosystems (20).  333 
Values of the aridity index (AI, precipitation/potential evapotranspiration) were obtained from Zomer 334 
et al. (37), who used the data interpolations provided by Worldclim (38). To facilitate the 335 
interpretation of the results, we calculated the aridity level of each site as 1 – AI (39). Indeed, as 336 
formulated, AI decreases when aridity increases, which is not intuitive; Using 1-AI instead of AI 337 
solves this issue as our proxy of aridity increases as aridity does (so higher values of this aridity 338 
level indicate drier conditions), which makes our results easier to understand.  339 
For each study site, remote sensing data was obtained from ref. (20). The data consists in Google 340 
EarthTM (https://earth.google.com/) or VirtualEarthTM (http://www.bing.com/maps) images of 341 
sufficient quality to visually identify vegetation patches. For each field site, three 50 m x 50 m 342 
images were collected, one of them was centered on the 30 m x 30 m plot surveyed in the field, 343 
and the other two were located nearby, avoiding strong slopes and man-made structures like roads 344 
or buildings. Each image was transformed to identify vegetation vs bare soil pixels: A k-mean 345 
classification approach implemented in Matlab (The MathWorks Inc., MATLAB v. 7.5.0.342, 346 
R2007b) was used to partition the pixels in clusters of luminance intensity (using a monochromatic 347 
version of the image) (see ref. (20) for details). The transformed images contain information about 348 
the presence or absence of vegetation in each pixel.  349 
As a surrogate of plant productivity, we used the Normalized Difference Vegetation Index (NDVI), 350 
which provides a global measure of the “greenness” of vegetation across the Earth’s landscapes 351 
and is positively linked with vegetation productivity (40). This data was retrieved from previous 352 
papers (20, 21) in which NDVI data for each plot was acquired using Landsat 5 TM and Landsat 7 353 
ETM+, at a 30 m × 30 m resolution (https://landsat.gsfc.nasa.gov/), i.e., at the resolution of the 354 
sampled plots. For each site, the mean annual NDVI for each year between 2000 and 2015 was 355 
calculated and then averaged for the entire period. 356 
 357 
Characterization of the spatial structure of the vegetation 358 
We computed the spatial metrics on the matrices of presence-absence of vegetation inferred from 359 
the satellite images using the R package spatialwarnings (v3.0.3) (41, 42). Self-organized systems 360 

https://figshare.com/s/3db3640a61ebc975bcda
https://earth.google.com/)
http://www.bing.com/maps)
https://landsat.gsfc.nasa.gov/
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exhibit common changes in spatial structure as they approach a transition (5, 41).We calculated 361 
the generic spatial early warnings that are known to capture such changes (5, 41): spatial variance, 362 
near-neighbor correlation (Moran’s I), and spectral density ratio (sdr). Spatial variance, spatial 363 
correlation, and sdr are expected to increase as a dynamical system approaches a transition (a 364 
“bifurcation” point) (see Fig. S6 and S7 for expected trends along a stress gradient based on model 365 
simulations) (5, 17, 43, 44). Indeed, as an ecosystem is approaching a transition, neighboring cells 366 
are expected to become more similar (5). In the results, we did not display Moran’s I as it was highly 367 
correlated with sdr (correlation=0.897).  368 
For spatial variance, the matrices of presence-absence of vegetation were coarse-grained using 4 369 
x 4 submatrices as explained in refs. (5, 18, 45). Note that this was not the case for spatial 370 
correlation which does not require coarse-graining. The principle of coarse-graining is that each 371 
matrix of dimension n x n is transformed into nonoverlapping submatrices of size s x s (with here 372 
s=4). Each submatrix is then replaced by its average to obtain a smaller ‘coarse-grained matrix’ of 373 
size cg x cg where cg=n/s (5). 374 
For each matrix, two pixels are assumed to be part of the same vegetation patch if they are 375 
neighbors (one of the four nearest neighbors, i.e., von Neumann neighborhood). We thereby 376 
calculated the size of all the patches in a given matrix and extracted a number of ‘patch-based 377 
metrics’. We fitted a truncated power law to the patch size distribution of each matrix and recorded 378 
the exponent and the cutoff of the fit. We also recorded the fraction of the image covered by the 379 
largest patch using log10(largest patch/image size), where ‘image size’ is the number of pixels (2, 380 
5, 20, 22). 381 
We calculated flowlength, a metric that measures the potential hydrological connectivity of runoff-382 
source areas (e.g., bare soil) according to the vegetation cover, its spatial structure and the 383 
topography (14). Flowlength is defined as the average length of all the potential runoff pathways in 384 
the plot. Thus, a higher value of flowlength indicates a higher hydrological connectivity of runoff 385 
source areas. Flowlength has been suggested to be an indicator of dryland functional status by 386 
assessing potential water and soil losses in patchy landscapes (14, 24). See SI B and Fig. S3 for 387 
additional information about flowlength calculations.  388 
To estimate whether the spatial metrics for each plot differ from what would be expected based on 389 
the amount of cover, null expectations for the values of each of the spatial metric were obtained by 390 
reshuffling the pixels of the transformed matrices 199 times (5, 18, 41). The number 199 is 391 
estimated to be sufficient in this case because subsequent analyses only depended on the means 392 
of the null distributions created. The reshuffling process removes any spatial structure from the 393 
original data while keeping the vegetation cover fixed. The same spatial metrics were then 394 
calculated on the reshuffled matrices. Note that this works well in the model, where each pixel is 395 
assumed to be a plant, but in the images, depending on the plant species, a pixel can contain many 396 
individuals or a plant (tree) can be composed of many pixels.  397 
Each of these metrics is quantified on the three matrices obtained for each field site (i.e., 345 398 
values), except for flowlength which could only be measured on the plot among the three that was 399 
centered on the field plot (i.e., 115 values) since the slope of the field site is required to calculate 400 
flowlength and that information was only available for the plots sampled in the field.  401 
 402 
Clustering analysis: splitting sites in groups 403 
Clustering analyses were performed to see whether the data set could be split in different groups 404 
of sites and, if so, in how many groups. We combined multiple clustering methods to build a 405 
consensus on the number of groups in the dataset as clustering results are sensible to the chosen 406 
method and the underlying assumptions. We started by clustering the distributions of vegetation 407 
cover and multifunctionality values in our dataset (i.e., two-dimensional clustering) using 408 
hierarchical clustering (hclust) based on a Euclidean distance matrix and a Ward distance, which 409 
is appropriate for globular clusters (using the stats package included in R v.4.2.0 (42)). Inspecting 410 
the resulting tree (see Fig. S11) suggested that the dataset could be well-described by either two 411 
or three groups, which was confirmed by the result of a permutation-based analysis carried out 412 
using the function simprof in the clustsig R package v1.1 (42, 46), suggesting three significant 413 
groups. We further investigated this pattern based on a Gaussian mixture approach, using the best 414 
number of clusters based on the Bayesian Information Criterion (BIC). This was done using the 415 
mclust R package v6.0.0 in R (42, 47). This latter approach suggested the split of the dataset into 416 
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two groups for all but one type of cluster shape, and in this specific case, only a small increase (<2) 417 
in BIC was found by going from two to three groups (see Fig. S11). We thus considered the 418 
consensus classification into two groups as the most relevant to characterize the distribution of 419 
cover and multifunctionality in our dataset but provide all analyses for three groups in Fig. S16-420 
S19. We used the two groups predicted by the original hierarchical clustering (Fig. S11 in SI), but 421 
those were in very close agreement (14 sites out of 345 are classified differently, 4%) with the 422 
clustering based on the Gaussian mixture approach. We refer to these two groups of sites as 423 
‘healthier’ (high cover – high soil multifunctionality) and ‘degraded’ (low cover – low soil 424 
multifunctionality).  425 
 426 
Identification of potential stable states  427 
We used a density-based approach to detect dominant modes, which potentially reflect alternative 428 
states of the ecosystem, along the aridity gradient evaluated (48–50). This approach is based on 429 
the relationship between the empirical distribution of a set observations of a dynamical system and 430 
its potential. Assuming the following dynamical system with a single state variable z, and dynamics 431 
defined by a potential U (i.e., dU/dz = - dz/dt) along with a Wiener process dW 432 
𝑑𝑧 = −𝑈’(𝑧)𝑑𝑡 + 𝜎𝑑𝑊 433 
where dW is a Wiener process and 𝜎 is the noise level, it can be shown (48–50) that there is a link 434 
between the empirical distribution of observations 𝑝𝑑 and U as 435 
 436 

𝑈 =
−𝜎2

2
𝑙𝑜𝑔(𝑝𝑑) 437 

 438 
𝑝𝑑 can be directly estimated from data using kernel density estimation. The above relationship 439 
formalizes the intuition that a dynamical system will tend to spend more time fluctuating around its 440 
stable equilibria, and away from its unstable equilibria. It gives a direct way to estimate what are 441 
assumed to be stable and unstable equilibria: the local minima of the potential or stable equilibria 442 
correspond to the local maxima of the density, and the local maxima of the potential or unstable 443 
equilibria correspond the local minima of the density.  444 
 445 
To estimate 𝑝𝑑 along a gradient of aridity, we used a rolling-window approach in which for each 446 
value of aridity, all observations of cover or multifuncionality are taken within a range of x – wdw/2 447 
and x + wdw/2, where x is the aridity value and wdw is the window size (here wdw = 0.15). These 448 
are used to compute the distribution 𝑝𝑑, and thus the hypothesized stable and unstable equilibria. 449 
Doing so for all values of aridity x provides a visualization of possible stable and unstable equilibria 450 
along the gradient and an estimation of the assumed potential. The distribution of states 𝑝𝑑 was 451 
estimated using a gaussian kernel density estimator of width 0.3 (function density() in base R). This 452 
analysis was used for Fig. 2 A, B.  453 
 454 
Slope of patterns along aridity & other statistical analyses 455 
For the variables for which there was no replicate per site, i.e., 115 values (meaning all the variables 456 
measured in the field and flowlength), comparisons among two groups were done with t-tests and 457 
comparisons among the three groups with one-way ANOVA with Bonferroni adjustments of P-458 
values.  459 
For all the spatial metrics for which there are three replicates per site (because of the three images), 460 
we used linear regressions to test the trends of the spatial metrics along the aridity gradient 461 
evaluated. To do so, we used a mixed-effect linear model with the site as random effect on the 462 
intercept and with either aridity or group (‘healthier’ or ‘degraded’) as the sole fixed effect. These 463 
models were fitted using the R package lme4 v1.1-29 (42). More specifically, for the analysis of the 464 
effect of aridity on spatial metrics, for example, the linear mixed model: I ~ Aridity + (1 | site) was 465 
fitted to the data for each spatial metric, I. Note that the theoretical predictions provide the expected 466 
directions of change in the spatial metrics along a stress gradient (i.e., increase or decrease). The 467 
significance of the fixed effect (either aridity or group) was tested by likelihood ratio test between 468 
the full model (with the fixed and the random effect) and a model without the fixed effect (i.e., with 469 
only the random effect). 470 
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The slope coefficient estimated for the fixed effect in this linear model indicates how the spatial 471 
metrics (observed or null) change along the aridity gradient (a positive slope means that the metric 472 
increases with aridity). To make the slopes easier to compare across indicators and to be 473 
represented in figures, we standardized the observed and null indicator values. We computed the 474 
mean and standard deviation of all observed and null values taken together, then subtracted this 475 
mean to both the observed and null values, and divided by the standard deviation, obtaining a 476 
standardized effect size. This yielded slopes that are within the same order of magnitude for all 477 
indicators, while still allowing the comparison of observed and null slopes for a given indicator. 478 
To obtain confidence intervals on the slope estimates (and thus test significant departure from 479 
zero), we used ordinary bootstrap in which the slope was reestimated based on 2999 resampling 480 
with replacement of the data used to carry out the fit. To determine confidence intervals using 481 
bootstrapping, we need a high number of resamples so that the tails of the resulting distribution of 482 
slopes are well-sampled; we used BOOTN=2999 based on recommendations in the literature (51).  483 
The flowlength metric had only one value per site, thus it did not require the use of mixed-effect 484 
modelling – for this spatial metric, we used a simple linear model but did use bootstrap to get 485 
confidence intervals on the slope. 486 
 487 
Spatial models of dryland vegetation dynamics 488 
We ran simulations from two mathematical models of the spatio-temporal dynamics of vegetation 489 
in dryland ecosystems. Only the results of Model 1 are displayed in the main text, while the results 490 
of Model 2 are in SI E.   491 
Model 1 (Kéfi et al. 2007). We simulated the spatio-temporal dynamics of a dryland ecosystem 492 
using a stochastic cellular automaton model that produces spatial structure of the vegetation like 493 
the one observed in empirical data (2, 5, 13, 22–24). In this model, an ecosystem is represented 494 
by a grid of cells, each of which can be in one of three states: vegetated, empty, or degraded (2). 495 
Empty cells represent fertile soil, whereas degraded cells represented eroded soil locations that 496 
are unsuitable for recolonization by vegetation. A key ecological mechanism is local facilitation, i.e., 497 
the positive effect of vegetation on its local neighborhood through increased regeneration of 498 
degraded cells. Because of this local facilitation, vegetated cells tend to form patches, i.e., sets of 499 
vegetated cells connected by a shared edge (von Neumann neighbors, i.e., the four nearest 500 
neighbors). When aridity increases, there is a point at which the vegetation dies out and the system 501 
becomes a desert through a saddle-node (or fold) bifurcation. The model exhibits bistability for a 502 
range of aridity values (parameter 1-b in the model, see SI A for a detailed model description), with 503 
the coexistence of a vegetated and a desert state (13). To evaluate the effect of the facilitation 504 
mechanism on the trends in spatial metrics observed, we also ran simulations without the facilitation 505 
mechanism. A more detailed description of the model as well as the parameter values used are 506 
available in SI A.  507 
Model 2 (Scanlon et al. 2007). We checked whether the results we obtained were similar in a 508 
second model (8), which is also a cellular automaton but considers only two possible states for the 509 
cells, namely trees and empty. The probability of establishment of new trees is assumed to increase 510 
with the neighborhood tree density, where the effect of the neighborhood tree density is a weighted 511 
as a function of the distance to the focal cell. Conversely, the probability of tree mortality increases 512 
with more empty cells in the neighborhood of a given tree. The model description, parameter values 513 
are in SI A and the results in SI E, Fig. S8 and S9.   514 
Simulations of the two models. We ran simulations on lattices of 100x100 cells. For each aridity 515 
level, we recorded the final landscape after 10000 timesteps (for which steady state in overall cover 516 
was typically reached). All spatial metrics and their corresponding null values were computed on 517 
these landscapes (transformed into matrices of presence/absence of vegetation, i.e., removing 518 
information about whether empty sites are fertile or degraded for Model 1) in exactly the same way 519 
as previously explained for the data. 520 
 521 
 522 
Acknowledgments and funding sources 523 

Data sharing:  524 
The code to reproduce the analyses of the paper is available on GitHub: 525 



 

 

11 

 

https://github.com/skefi/spatialews_biocom 526 
The data is in this folder and will be put on the GitHub repository once the paper is accepted: 527 
https://www.dropbox.com/sh/8j4y4zm9an32rlw/AACB2O3T9vZJNYtOaBSHssEQa?dl=0  528 
 529 
 530 
Funding:  531 
SK was supported by the Alexander von Humboldt foundation. This research was 532 

supported by the European Research Council (ERC Grant Agreements 242658 533 

[BIOCOM] and 647038 [BIODESERT]) and Generalitat Valenciana 534 

(CIDEGENT/2018/041). FTM acknowledges support from the University of Alicante 535 

(UADIF22-74 and VIGROB22-350) and the Spanish Ministry of Science and Innovation 536 

(PID2020-116578RB-I00). AG has received funding from the European Union’s Horizon 537 

2020 research and innovation programme under the Marie Sklodowska-Curie grant 538 

agreement no. 896159. MB acknowledges funding from Spanish Ministry of Science and 539 

Innovation through a Ramón y Cajal Fellowship (# RYC2021-031797-I). EG 540 

acknowledges support by the Generalitat Valenciana and European Social Fund grant 541 

APOSTD/2021/188. 542 
 543 
 544 
References 545 
 546 
1.  R. Solé, S. Levin, Ecological complexity and the biosphere: the next 30 years. 547 

Philosophical Transactions of the Royal Society B: Biological Sciences 377, 20210376 548 

(2022). 549 

2.  S. Kéfi, et al., Spatial vegetation patterns and imminent desertification in 550 

Mediterranean arid ecosystems. Nature 449, 213–217 (2007). 551 

3.  M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel, Self-Organized 552 

Patchiness and Catastrophic Shifts in Ecosystems. Science 305, 1926–1929 (2004). 553 

4.  M. Rietkerk, et al., Evasion of tipping in complex systems through spatial pattern 554 

formation. Science 374, eabj0359 (2021). 555 

5.  S. Kéfi, et al., Early Warning Signals of Ecological Transitions: Methods for 556 

Spatial Patterns. PLoS ONE 9, e92097 (2014). 557 

6.  J. van de Koppel, et al., Experimental Evidence for Spatial Self-Organization and 558 

Its Emergent Effects in Mussel Bed Ecosystems. Science 322, 739–742 (2008). 559 

7.  M. R. Aguiar, O. E. Sala, Patch structure, dynamics and implications for the 560 

functioning of arid ecosystems. Trends in Ecology & Evolution 14, 273–277 (1999). 561 

8.  T. M. Scanlon, K. K. Caylor, S. A. Levin, I. Rodriguez-Iturbe, Positive feedbacks 562 

promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007). 563 

9.  N. Barbier, P. Couteron, J. Lejoly, V. Deblauwe, O. Lejeune, Self-organized 564 

vegetation patterning as a fingerprint of climate and human impact on semi-arid 565 

ecosystems. Journal of Ecology 94, 537–547 (2006). 566 

10.  V. Deblauwe, N. Barbier, P. Couteron, O. Lejeune, J. Bogaert, The global 567 

biogeography of semi-arid periodic vegetation patterns. Global Ecology and 568 

Biogeography 17, 715–723 (2008). 569 

11.  J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of Vegetation 570 

Patterns and Desertification. Phys. Rev. Lett. 87, 198101 (2001). 571 

12.  C. A. Klausmeier, Regular and Irregular Patterns in Semiarid Vegetation. Science 572 

284, 1826–1828 (1999). 573 

https://github.com/skefi/spatialews_biocom
https://www.dropbox.com/sh/8j4y4zm9an32rlw/AACB2O3T9vZJNYtOaBSHssEQa?dl=0


 

 

12 

 

13.  S. Kéfi, M. Rietkerk, M. van Baalen, M. Loreau, Local facilitation, bistability and 574 

transitions in arid ecosystems. Theoretical Population Biology 71, 367–379 (2007). 575 

14.  Á. G. Mayor, S. Bautista, E. E. Small, M. Dixon, J. Bellot, Measurement of the 576 

connectivity of runoff source areas as determined by vegetation pattern and topography: 577 

A tool for assessing potential water and soil losses in drylands - Mayor - 2008 - Water 578 

Resources Research - Wiley Online Library. Water Resources Research 44 (2008). 579 

15.  C. Wissel, A universal law of the characteristic return time near thresholds. 580 

Oecologia 65, 101–107 (1984). 581 

16.  L. Dai, K. S. Korolev, J. Gore, Slower recovery in space before collapse of 582 

connected populations. Nature 496, 355–358 (2013). 583 

17.  M. Scheffer, et al., Early-warning signals for critical transitions. Nature 461, 53–584 

59 (2009). 585 

18.  S. Eby, et al., Alternative stable states and spatial indicators of critical slowing 586 

down along a spatial gradient in a savanna ecosystem. Global Ecology and Biogeography 587 

26, 638–649 (2017). 588 

19.  L. Rindi, M. Dal Bello, L. Benedetti-Cecchi, Experimental evidence of spatial 589 

signatures of approaching regime shifts in macroalgal canopies. Ecology 99, 1709–1715 590 

(2018). 591 

20.  M. Berdugo, S. Kéfi, S. Soliveres, F. T. Maestre, Plant spatial patterns identify 592 

alternative ecosystem multifunctionality states in global drylands. Nature Ecology & 593 

Evolution 1, 0003 (2017). 594 

21.  F. T. Maestre, et al., Plant Species Richness and Ecosystem Multifunctionality in 595 

Global Drylands. Science 335, 214 (2012). 596 

22.  S. Kéfi, et al., Robust scaling in ecosystems and the meltdown of patch size 597 

distributions before extinction. Ecology Letters 14, 29–35 (2011). 598 

23.  F. D. Schneider, S. Kéfi, Spatially heterogeneous pressure raises risk of 599 

catastrophic shifts. Theor Ecol 9, 207–217 (2016). 600 

24.  Á. G. Mayor, et al., Feedbacks between vegetation pattern and resource loss 601 

dramatically decrease ecosystem resilience and restoration potential in a simple dryland 602 

model. Landscape Ecol 28, 931–942 (2013). 603 

25.  A. G. Mayor, S. Bautista, F. Rodriguez, S. Kéfi, Connectivity-Mediated 604 

Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems 22, 1497–1511 605 

(2019). 606 

26.  I. Rodriguez-Iturbe, Z. Chen, A. C. Staver, S. A. Levin, Tree clusters in savannas 607 

result from islands of soil moisture. Proceedings of the National Academy of Sciences 608 

116, 6679–6683 (2019). 609 

27.  M. Berdugo, et al., Global ecosystem thresholds driven by aridity. Science 367, 610 

787–790 (2020). 611 

28.  J. M. Yeomans, J. M. Yeomans, Statistical Mechanics of Phase Transitions 612 

(Oxford University Press, 1992). 613 

29.   gnacio Rodríguez-Iturbe, A. Rinaldo, Fractal River Basins | Hydrology, 614 

hydrogeology and water resources (Cambridge University Press, 2001) (August 16, 615 

2023). 616 

30.  O. Artime, M. De Domenico, From the origin of life to pandemics: emergent 617 

phenomena in complex systems. Philosophical Transactions of the Royal Society A: 618 

Mathematical, Physical and Engineering Sciences 380, 20200410 (2022). 619 



 

 

13 

 

31.  A. C. Staver, G. P. Asner, I. Rodriguez-Iturbe, S. A. Levin, I. P. J. Smit, Spatial 620 

patterning among savanna trees in high-resolution, spatially extensive data. Proceedings 621 

of the National Academy of Sciences 116, 10681–10685 (2019). 622 

32.  C. S. Holling, Resilience and Stability of Ecological Systems. Annual Review of 623 

Ecology and Systematics 4, 1–23 (1973). 624 

33.  S. Sankaran, S. Majumder, A. Viswanathan, V. Guttal, Clustering and 625 

correlations: Inferring resilience from spatial patterns in ecosystems. Methods Ecol Evol 626 

10, 2079–2089 (2019). 627 

34.  G. R. Oñatibia, L. Boyero, M. R. Aguiar, Regional productivity mediates the 628 

effects of grazing disturbance on plant cover and patch-size distribution in arid and semi-629 

arid communities. Oikos 127, 1205–1215 (2018). 630 

35.  A. Génin, et al., Spatially heterogeneous stressors can alter the performance of 631 

indicators of regime shifts. Ecological Indicators 94, 520–533 (2018). 632 

36.  C. Boettiger, A. Hastings, From patterns to predictions. Nature 493, 157–158 633 

(2013). 634 

37.  R. Zomer, A. Trabucco, O. van Straaten, D. Bossio, “Carbon, land and water: a 635 

global analysis of the hydrologic dimensions of climate change mitigation through 636 

afforestation / reforestation” (International Water Management Institute, 2006) (October 637 

4, 2020). 638 

38.  R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis, Very high 639 

resolution interpolated climate surfaces for global land areas. International Journal of 640 

Climatology 25, 1965–1978 (2005). 641 

39.  M. Delgado-Baquerizo, et al., Decoupling of soil nutrient cycles as a function of 642 

aridity in global drylands. Nature 502, 672–676 (2013). 643 

40.  C. J. Tucker, C. Vanpraet, E. Boerwinkel, A. Gaston, Satellite remote sensing of 644 

total dry matter production in the Senegalese Sahel. Remote Sensing of Environment 13, 645 

461–474 (1983). 646 

41.  A. Génin, et al., Monitoring ecosystem degradation using spatial data and the R 647 

package spatialwarnings. Methods in Ecology and Evolution 9, 2067–2075 (2018). 648 

42.  R Core Team, R: A language and environment for statistical computing. R 649 

Foundation for Statistical Computing, Vienna, Austria. (2022). 650 

43.  V. Guttal, C. Jayaprakash, Spatial variance and spatial skewness: leading 651 

indicators of regime shifts in spatial ecological systems. Theoretical Ecology 2, 3–12 652 

(2009). 653 

44.  V. Dakos, E. H. van Nes, R. Donangelo, H. Fort, M. Scheffer, Spatial correlation 654 

as leading indicator of catastrophic shifts. Theor Ecol 3, 163–174 (2010). 655 

45.  S. Sankaran, S. Majumder, S. Kéfi, V. Guttal, Implications of being discrete and 656 

spatial for detecting early warning signals of regime shifts. Ecological Indicators 94, 657 

503–511 (2018). 658 

46.  K. R. Clarke, P. J. Somerfield, R. N. Gorley, Testing of null hypotheses in 659 

exploratory community analyses: similarity profiles and biota-environment linkage. 660 

Journal of Experimental Marine Biology and Ecology 366, 56–69 (2008). 661 

47.  L. Scrucca, M. Fop, T. B. Murphy, A. E. Raftery, mclust 5: Clustering, 662 

Classification and Density Estimation Using Gaussian Finite Mixture Models. R J 8, 663 

289–317 (2016). 664 

48.  M. Hirota, M. Holmgren, E. H. Van Nes, M. Scheffer, Global Resilience of 665 



 

 

14 

 

Tropical Forest and Savanna to Critical Transitions. Science 334, 232–235 (2011). 666 

49.  M. Scheffer, M. Hirota, M. Holmgren, E. H. Van Nes, F. S. Chapin, Thresholds 667 

for boreal biome transitions. Proceedings of the National Academy of Sciences 109, 668 

21384–21389 (2012). 669 

50.  V. N. Livina, F. Kwasniok, T. M. Lenton, Potential analysis reveals changing 670 

number of climate states during the last 60 kyr. Climate of the Past 6, 77–82 (2010). 671 

51.  T. J. DiCiccio, B. Efron, Bootstrap Confidence Intervals. Statistical Science 11, 672 

189–228 (1996). 673 
 674 
 675 
  676 



 

 

15 

 

Figure legends 677 
 678 
Figure 1. Location of the 115 plots in the global drylands data set used. Surveyed sites are 679 
colored in green for the healthier sites (high vegetation cover - high soil multifunctionality, MF) 680 
and yellow for the degraded sites (low vegetation cover - low multifunctionality, MF). Numbers 681 
reflect the number of sites in a given geographical area (characterized by the letters A-N), for 682 
which a corresponding zoom can be found in the panels above and below the map.   683 
 684 
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Figure 2. Dryland ecosystems were categorized into two groups using vegetation cover and 689 
soil multifunctionality data. (A) Cover and (B) soil multifunctionality (MF) along aridity for all 115 690 
sites colored by the two groups: healthier (high cover-high soil multifunctionality values; in green) 691 
and degraded (low cover-low soil multifunctionality values; in yellow). Aridity was calculated as: 1 692 
– Aridity Index (AI = precipitation/potential evapotranspiration), so that higher values indicate drier 693 
conditions. Colored points are the maxima of reconstructed stability landscapes based on potential 694 
analysis (i.e., possible attractors), while the white ones are the minima (see Materials and 695 
Methods). Small panels below A display examples of stability landscapes for aridity values 0.55, 696 
0.7 and 0.85, where valleys in the landscape are the colored points of panel A and the hills the 697 
white points (see Materials and Methods). (C and D) Densities of sites for each of the two groups 698 
for cover (C) and soil multifunctionality data (D).  699 
 700 
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Figure 3. Differences in the spatial structure of the vegetation cover between healthier (high 704 
cover - high soil multifunctionality) and degraded (low cover - low soil multifunctionality) 705 
drylands.  The spatial metrics are the proportion of the image covered by the largest vegetation 706 
patch (fmaxpatch, (largest patch/image size), with the y axis on a log scale), the slope of the patch 707 
size distribution, the cutoff of the patch size distribution, spatial variance, the Spatial Density Ratio 708 
(sdr), and the bare soil connectivity (flowlength). For all metrics but sdr, the differences between 709 
the two groups are significant (Table S3 in SI).  710 
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Figure 4: Examples of patch size distributions of a healthier site (A) and a degraded one 715 
(B). Sites are two grasslands (images 148-b and 192-c of the data set). Graphs display the 716 
fraction of patches larger than a certain size. Black points are observations from the image and 717 
grey curves are random expectations (based on 10 randomizations of the image). The red curve 718 
is the best fit. Snapshots on the top right are the images (black reflects vegetation).  719 
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Figure 5. Estimated slope of the trends in spatial metrics along the aridity gradient evaluated 724 
in the model (A), in all the field sites of the data set (B) and in the two groups of sites separately 725 
(C; healthier sites on the left and degraded sites on the right; MF stands for soil multifunctionality). 726 
Points reflect the value of the slope of the spatial metrics with aridity. Significant positive and 727 
negative slopes are in red and blue, respectively. Observed slopes are in color, while expected 728 
trends of randomized landscapes (keeping cover constant but with reshuffled image pixels) are in 729 
grey. See legend of Fig. 3 and Materials and Methods for definitions of the spatial metrics. See SI 730 
D for a discussion of the difference in the slopes of SDR in the model and in the data.  731 
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