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Abstract

Hadal sediments are hotspots of microbial activity in the deep sea and exhibit strong biogeochemical gradients. But although these gra-
dients are widely assumed to exert selective forces on hadal microbial communities, the actual relationship between biogeochemistry,
functional traits, and microbial community structure remains poorly understood. We tested whether the biogeochemical conditions in
hadal sediments select for microbes based on their genomic capacity for respiration and carbohydrate utilization via a metagenomic
analysis of over 153 samples from the Atacama Trench region (max. depth = 8085 m). The obtained 1357 non-redundant microbial
genomes were affiliated with about one-third of all known microbial phyla, with more than half belonging to unknown genera. This
indicated that the capability to withstand extreme hydrostatic pressure is a phylogenetically widespread trait and that hadal sediments
are inhabited by diverse microbial lineages. Although community composition changed gradually over sediment depth, these changes
were not driven by selection for respiratory or carbohydrate degradation capability in the oxic and nitrogenous zones, except in the
case of anammox bacteria and nitrifying archaea. However, selection based on respiration and carbohydrate degradation capacity did
structure the communities of the ferruginous zone, where aerobic and nitrogen respiring microbes declined exponentially (half-life
= 125419 years) and were replaced by subsurface communities. These results highlight a delayed response of microbial community
composition to selective pressure imposed by redox zonation and indicated that gradual changes in microbial composition are shaped
by the high-resilience and slow growth of microbes in the seafloor.

Keywords: microbial ecology, geomicrobiology, marine sediments, hadal zone, metagenomics, redox gradients, biogeochemistry,
CAZymes

gradients is crucial for gaining a mechanistic understanding of

Introduction

Marine sediments are among the largest pools of organic matter
on the planet [1]. The metabolic processes of ~10?° microbial
cells living within marine sediments determine whether organic
matter gets buried or mineralized in these systems and have
an impact on element cycles on a global scale [2-4]. Microbial
mineralization processes in sediments make organic matter more
recalcitrant and result in a decreasing availability of organic
matter with increasing sediment depth [5]. In parallel to this gra-
dient, microbial respiration sequentially depletes available elec-
tron acceptors with increasing sediment depth and causes the
development of a redox zonation [6, 7]. The resulting energetic
gradient from redox zonation and the increasing recalcitrance
of organic matter influence mineralization rates and impose
selective pressure on microbes [2, 8-10]. Understanding the rela-
tionship between microbial communities and such geochemical

the role of sediments in the cycling of carbon and other elements.

Reaching depths of 6000-11000 m below sea level and
stretching thousands of kilometers along subduction zones, hadal
trenches are the deepest parts of the ocean [11, 12]. Relative to
other deep-sea environments, they are characterized by even
greater hydrostatic pressure [13] and high depositional variability
[14], as frequent seismicity-driven turbidity currents can transfer
large amounts of sediment from the trench slopes to their
interiors [15, 16]. Also, the topographic shape of trenches in
combination with tidal-fluid dynamics leads to the focusing of
organic material in the basins of trenches, resulting in elevated
respiratory activities compared to adjacent shallower settings
[17]. Forinstance, in the sediments of the Atacama Trench, oxygen
is depleted by aerobic respiration within the 2.6-4.1 cm at hadal
depths, while in adjacent abyssal settings, oxygen penetrates ~22
cm into the sediment [18]. The oxic zone is succeeded by a zone
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of nitrate/nitrite and manganese respiration [19], here referred to
as the nitrogenous zone, and extends to a depth of ~8 cm into
the sediment [19, 20]. After the depletion of nitrate, ferrous iron
produced by iron reduction begins to accumulate [19], while a
buildup of hydrogen sulfide was despite the activity of sulfate
reducers not observed within the upper 40 cm of sediment [20]. In
continental sediments where a similar redox zonation is found,
sediment mixing by bioturbation blurs relationships between
community composition and redox gradients [21]. By contrast,
hadal trench sediments are hardly affected by bioturbation due
to the lack of burrowing macroinfauna [14, 22], which makes
them great model systems to explore the succession of microbial
communities and their functions alongside biogeochemical
gradients [23].

Despite the high hydrostatic pressure, hadal sediments are
inhabited by diverse microbial communities as indicated by 16S
rRNA gene sequencing and shotgun metagenomics [24-26]. Hadal
microbial communities exhibit high novelty on the species level,
yet mostly belong to well-described microbial phyla and classes
with the degree of phylogenetic novelty increasing over oceanic
depth [27]. However, most data on hadal sediments originated
from the Mariana Trench and may not be representative of the
entire hadal realm, which exhibits considerable topographic, envi-
ronmental, and biogeochemical variations [11, 18]. Microbial com-
munities in hadal sediments clearly differed from those in adja-
cent abyssal environments and showed strong downcore shifts in
community composition at the phylum and class levels that are
more extensive than those observed in abyssal sediments [24, 28].
Although data on 16S rRNA gene amplicons do not allow the iden-
tification of specific microbes that were actively thriving in these
systems, estimated absolute abundances derived by normalizing
these data with microbial cell counts suggested that the observed
community changes in hadal sediments could only be attributed
to the active growth and decay of microbes [28, 29].

It is plausible that these community changes are driven by the
changes in electron acceptor availability. This hypothesis would
predict that the well-defined boundaries of the oxic/nitrogenous/-
ferruginous zones are accompanied by changes in the respiratory
potential of the community. However, gradients in the availability
and reactivity of organic matter in parallel to redox zonation
could also be a possible explanation [8, 9]. Prediction of functional
potential for organic matter degradation from microbial genomes
[30-32] is complicated by the complex nature of organic matter in
marine sediments with a mixture of different types of molecules
such as nucleic acids, lipids, peptides, and carbohydrates [5]. In
addition, distinguishing between anabolic and catabolic enzymes
is not straightforward. Carbohydrate-active enzymes (CAZymes)
are often specific to particular glycosidic bonds within particular
substrates [33], and microbes that degrade complex polysaccha-
rides often possess large arsenals of CAZyme genes [34]. As a
significant fraction of organic matter in marine sediments are
carbohydrates [5], it is feasible that changes in microbial commu-
nity composition could be driven by the ability of microorganisms
to mineralize carbohydrates. However, we currently lack a clear
understanding of the CAZyme repertoires of benthic microbes
and the degree to which differences in carbohydrate utilization
potential may contribute to niche differentiation or otherwise
structure benthic microbial communities in hadal sediments.

Here, we explored how the unique conditions in the hadal
zone shape benthic microbial community composition in the
Atacama Trench. We tested whether selection due to electron
acceptor availability is reflected in the respiratory potential of
microbes present in the sediments and how important niche

differentiation by differential carbohydrate degradation poten-
tials is for community composition. For this, we produced
and genomically analyzed a collection of 1357 nonredundant
metagenome-assembled genomes (MAGs) from nine sites within
the Atacama Trench region.

Materials and methods
Sample collection and categorization

We collected sediment samples from the Atacama Trench region
with a multicorer during the SO261 expedition on the R/V Sonne. A
total of nine stations were targeted, two on the continental shelf
at bathyal (S1, 2560 m) and abyssal (S9, 4050 m) depths, one at
abyssal depths on the subducting plate (S7, 5500 m), and six hadal
sites along a 430 km long transect within the trench axis (7720-
8085 m depth). The recovered sediment cores were immediately
processed in a 4 °C cold room, using sterilized equipment and with
a vertical resolution of 1 cm down to 10 cm and 2.5 cm thereafter.
The final slice of each core was discarded to avoid potential
contamination. After homogenizing, samples were transferred
to 2 ml cryotubes, frozen to —80 °C, and shipped on dry ice to
the laboratory. We classified the samples as oxic, nitrogenous, or
ferruginous based on in situ oxygen data from the same locations
[18] and nitrate penetration depths measured from parallel cores
[19], as described previously [28].

DNA extraction, library construction, and
sequencing

DNA was extracted from ~0.25 g of sediment, using the DNeasy
PowerSoil Pro Kits (Qiagen, Hilden,Germany) according to the
manufacturer’s instructions and stored at —80 °C thereafter. The
NEBNext Ultra II DNA Library prep kit (New England Biolabs, MA,
USA) was used to construct libraries from 10 ng or less DNA
from each sample. After DNA quantification and quality control
of the library, 10 nM of each library was applied to cluster gener-
ation according to the Illumina Cbot User Guide (Part #15006165).
Sequencing of libraries was performed according to the Novaseq
6000 System User Guide Part #20023471 (Illumina, San Diego, CA,
USA) in paired-end mode (2 x 150 bp). For further details of library
preparation and sequencing, see Trouche et al. (2023).

Assembly, binning, and coverage estimation

We quality filtered the demultiplexed reads, using Illumina-
Utils python scripts [36] following previous recommendations
by Minoche and colleagues [37]. We then processed all samples
from each core using a premade Snakemake workflow [38]. This
workflow assembled each sample individually with a minimum
contig length of 1000 bp using Megahit [37] (v 1.1) and mapped
all reads from samples of the same sediment core against each
of its assemblies using bowtie? [39]. Based on these coverage
data, we grouped contigs for each sample into bins with concoct
[40], metabat2 [41], and maxbin?2 [42] and applied dasTool [43] to
aggregate the bins and minimize their estimated contamination
and maximize their completion. We then renamed all bins
from all samples and selected those that had an estimated
completeness of >75% and estimated contamination of <25%
contamination (CheckM) [44]. We used dREP [45] (0.98 average
nucleotide identity cutoff) to dereplicate the MAGs. Completeness
and redundancy of the dereplicated MAGs were then estimated
again by anvi'o [46] based on single-copy core gene collections
[47] and filtered to those with <10% estimated contamination.
We then again used a Snakemake workflow [38] to map all reads
from all samples against this MAG collection using bowtie2 [39].
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We used the fraction of the estimated mean coverage of each
MAG from the sum of all mean coverages within a sample as an
inference of the approximate relative abundance of each MAG.

Phylogenetic placements and taxonomic
annotations

We used the GTDB-tk classify_wf workflow [48] with the genome
taxonomy database (GTDB) database [49] (r207) to assign taxon-
omy to our MAG collection. We further used the alignment of the
53 and 120 marker genes of archaeal and bacterial MAGs, respec-
tively, generated during the de_novo_wf of GTDB-tk to reconstruct
maximum likelihood trees in IQTREE (v2.0.3) [50]. These trees used
the LG+ F+R7 (Archaea) and LG+ F+R10 (Bacteria) substitution
models [51] and were calculated with 1000 ultrafast bootstrap
[52]/SH-aLRT [53] replicates and then visualized using iTol [54].
At the same time, we imported the de novo trees from the GTDB-
tk workflow into R (v 4.2.0) [55] to quantify the phylogenetic
distances within each phylum using the pd command of the
picante package [56].

Functional annotations

We predicted open reading frames of the MAGs using prodi-
gal [57] and annotated predicted genes using KOfamscan [58]
and eggNOG-mapper [59] v2.1.2. To estimate respiratory capa-
bilities from the KOfamscan output, we identified MAGs with
the (i) aerobic respiration via presence/absence of cytochrome c,
cbb3-type, and bd oxidases (>50% Kyoto Encyclopedia of Genes
and Genomes, KEGG, module completeness); (i) nitrogen respira-
tion via presence/absence of nitrate reductases (napAB, narGHI),
nitrite reductases (nrfAH, nirBD, nirK/S), nitric oxide reductases
(norBC), nitrous oxide reductases (nosZ); and (iii) sulfur respi-
ration via presence/absence of dissimilatory sulfite reductases
(dsTAB). To identify potential iron/manganese reduction capabil-
ities, we searched for presence/absence of homologs of various
porin-cytochromes (FeGenie) [60]. The prediction of the eggNOG-
mapper was used to determine potential CAZymes [33] in the
dataset. These genes were subsequently scanned with SignalP 6.0
[61] to search for signal peptides for excretion.

Data analysis and visualization

We imported the resulting tables into R (v 4.2.0) for data manage-
ment, statistical analyses, and visualizations. For this, we used the
multiple packages of the tidyverse [62], as well as, ggVennDiagram
[63], ggpubr [64], viridis [65], data.table [66], ampvis2 [67], and
vegan [68].

Results

We obtained 153 metagenomes from sediment cores (2045 cm)
collected at nine sites in the Atacama Trench region (see
Schauberger et al)) [29]. The six hadal sites were located along
a 430-km transect along the trench axis and had depths ranging
from 7720 to 8085 m, while the abyssal site on the subducting
plate, abyssal site on the continental slope, and the one bathyal
site were located at 5500, 4050, and 2560 m, respectively (Sup-
plementary Fig. 1). The samples were taken from intact sediment
cores, which were sliced at high vertical resolution (see Materials
and Methods section). Our dataset consists of over 4 x 10%
quality-filtered paired-end reads, with a median of 130 million
read pairs per sample (Supplementary Fig. 2). Due to the size of
the dataset, we processed the data from each site individually
and binned a total of 11346 MAGs before dereplicating the entire
MAG collection with a 98% average nucleotide identity cutoff. The

final set of 1357 nonredundant MAGs used for further analysis
had a median estimated completeness of 90% (ranging between
75%-100%) and a median estimated redundancy (contamination)
of 3% (0%—-9.9%, Supplementary Fig. 1).

Hadal sediments are inhabited by diverse and
taxonomically novel microbial communities

We evaluated the taxonomic diversity of the 1357 nonredundant
MAGs using the GTDB toolkit [48]. The bacterial domain encom-
passed 1272 MAGs that spanned over 55 different bacterial phyla,
while 85 MAGs were classified into 8 archaeal phyla (Fig. 1). Atlow
taxonomic levels, most MAGs did not get classified by the GTDB
toolkit, leaving 97% of all MAGs without species classification and
57% without genus classification. However, at the family level,
most MAGs could be classified into known microbial lineages (16%
unknown). As six bacterial MAGs could not be classified at the
phylum level, we determined the phylogenetic affiliation of all
MAGs by using the alignment of the marker genes from the GTDB
toolkit and reconstructing phylogenetic trees for both bacteria
and archaea (IQTree). Within the bacterial tree, three of these
six previously unclassified MAGs (#10039, #10401, #10878) were
phylogenetically located within the phylum of UBA8248, which
is a close relative to Schekmanbacteria. Two MAGs (#4666, #4362)
were placed next to Phylum CGO03 and thereby close relatives of
Elusimicrobiota, and #8291 was placed next to a MAG classified as
a Desulfobacterota (polyphyletic in this tree) between Myxococcota,
and Myxococcota_A (Fig.1A).

To determine how much phylogenetic novelty our MAGs add
to the phylogenetic trees of the GTDB, we combined our 1357
nonredundant MAGs with those of the reference collection r207
and reconstructed phylogenetic trees (GTDB toolkit de_novo_wf).
With this, we extended the GTDB tree branch lengths by 2.2% in
the bacterial domain and 1.8% in the archaeal domain (Supple-
mentary Tables 1 and 2), revealing previously unknown parts of
the tree of life. Branch lengths increased by >20% for 14 bacterial
phyla and by >50% for six of these phyla. The greatest increases
in the bacterial diversity were within relatively unexplored micro-
bial lineages such as Nitrospinota, Schekmanbacteria, Zixibacteria.
Krumholzibacteria, Hydrogenedentota, Abyssubacteria, and SAR324.
The archaeal tree also expanded significantly, with six MAGs
adding >20% branch length to Hydrothermarchaeota. Despite being
the most diverse groups with highest number of taxa in our
dataset, Chloroflexota, Gammaproteobacteria, and Alphaproteobacteria
showed only modest increases in branch length of 6%, 2%, and
2%, respectively. Hence, although our study revealed significant
phylogenetic diversity within less explored microbial groups, most
MAGs showed a high phylogenetic similarity to the reference
collection.

Hadal microbial communities are ecologically
and genomically dissimilar to those of abyssal
and bathyal settings

To determine the relative abundances of MAGs, we conducted
a read mapping analysis, aligning all 153 metagenomes against
our dereplicated MAG collection. The MAG collection recruited
an average of ~36 +0.6% (mean =+ standard error) of the obtained
reads from the hadal samples (Supplementary Fig. 2). The 24
samples from the hadal nitrogenous zone recruited the highest
proportion of reads (42 +1%), followed by the 66 samples from
the ferruginous zone (36 £0.4%) and the 20 samples from the
oxic zone (30+1.4%). Read recruitment was lower in samples
from the abyssal (28 +£1% at S7 and 21+0.8% at S9) and bathyal
(14 £0.7% at S1) sites. Additionally, we observed higher densities
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Figure 1. Phylogenomic trees of bacterial (A) and archaeal (B) MAGs, based on the protein alignment of 120 and 53 marker genes, respectively; trees
were reconstructed based on maximum likelihood using IQTree and LG +F +R10 (bacteria) and LG +F +R7 (archaea) substitution models; labels show
bacterial phyla (Proteobacteria: class) classifications (A), and archaeal phyla and class classifications; (B) stacked bar plots of classified versus
unclassified bacterial (C) and archaeal (D) MAGs (x-axis) on different taxonomic levels (y-axis), based upon GTDB-TK and GTDB version 207.

of single nucleotide variants (SNVs) per mapped read in abyssal relative abundances within our MAG collection by dividing the
and bathyal sediments compared to hadal samples (Supplemen- mean coverage of each MAG by the sum of mean coverages of all
tary Fig. 2). Based upon these mapping results, we then estimated MAGs in each sample. Principal coordinate analysis of Bray—Curtis
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Figure 2. Heatmap of mean relative abundances of microbial phyla and proteobacterial classes (x-axis) across six hadal sites plotted against sediment
depth (y-axis) across six hadal sites; relative abundances of individual MAGs were estimated by dividing the mean coverage of each MAG by the sum of
mean coverage of all MAGs within a given sample; the x-axis was ordered by hierarchical clustering using Ward’s criterion on Euclidean distances of

median abundances.

dissimilarities of relative MAG abundances showed that microbial
community compositions in hadal sediments are clearly distinct
to those of abyssal and bathyal settings, even when only compar-
ing samples from the same redox zones (Supplementary Fig. 3).
Hence, the hadal community is dissimilar ecologically (relative
abundances) and genomically (SNVs) to those of abyssal and
bathyal sediments even under similar biogeochemical conditions.

Microbial communities in hadal sediments
change gradually over sediment depth, with the
ferruginous zones emerging as a hotspot of
microbial diversity

The changes in community composition were accompanied by
high-level taxonomic changes (phyla and classes) with sediment
depth (Fig. 2, Supplementary Fig. 3). MAGs belonging to Gammapro-
teobacteria (28 +1.0%, mean relative abundance =+ standard error),
Alphaproteobacteria (16 £1.0%), and Thermoproteota (15 1.4%)
dominated the oxic zone, whereas those MAGs associated with
Thermoproteota to a large extent consisted of putative ammonia
oxidizing Nitrososphaeria. From the surface to the nitrogenous
zone, the relative abundance of Gammaproteobacteria decreased to
19+ 1.5% (Welch’s t-test, p < .05), while the relative abundance of
Alphaproteobacteria increased to 23 +£1.6% (Welch's t-test,p < .05).
Thermoproteota decreased in abundance to ~5% (Welch'’s t-test,
p < .05) in the nitrogenous zone, while anaerobic ammonia-
oxidizing Brocadige (Planctomycetes) showed here its highest
relative abundances of ~5+0.9% (Welch'’s t-test, p < .05) before
disappearing again in the ferruginous zone. Chloroflexota were
the most abundant phylum in the ferruginous zone with only

16 +£0.6% relative abundance, while both Alpha- (9+0.9%) and
Gammaproteobacteria (7 +0.6%) remained moderately abundant.
This resulted in more evenly distributed rank abundance curves
in the ferruginous zone relative to the oxic and nitrogenous
zones, which were rather dominated by a few abundant microbial
lineages. The ferruginous zone harbors low-abundance groups,
many of which were barely present or undetectable at the
sediment surface but increased in relative abundance either
gradually over sediment depth or only after the beginning of either
the nitrogenous or ferruginous zones. Hence, the ferruginous zone
appears to offer niches for a wide range of diverse microbes rather
than selecting for few fast-growing lineages.

Community change within the oxic zone and
between oxic and nitrogenous zones is not due
to differences in terminal oxidases

The composition of microbial communities in hadal sediments
seems to be closely linked to the redox gradient and the acces-
sibility of electron acceptors [15]. We evaluated the correlation
between electron acceptor availability and the predicted res-
piratory capability of MAGs along the redox gradient in hadal
sediments based on the presence or absence of genes for key
enzymes involved in respiration and metal reduction. We focus on
mean abundances of MAGs with different predicted respiratory
capabilities within each sediment horizon across the six hadal
sites, while acknowledging potential biases from shifting redox
conditions (£ 2 cm).

There was no clear indication that the presence or concen-
tration of oxygen controlled the relative abundances of MAGs
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with genes for cytochrome c oxidases, cbb3-type cytochrome hadal sediment surface, MAGs with cytochrome c oxidases
c oxidases, and cytochrome bd ubiquinol oxidases (> 50% encompassed a relative abundance of 66 +0.7% (mean + standard
module completeness, Fig. 3A, Supplementary Fig. 4). At the error), those with cbb3-type cytochrome c oxidases 13 +0.4%, and
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those with cytochrome bd ubiquinol oxidases only 1.3+0.1%.
The Complex IV of chemolithoautotrophic ammonia-oxidizing
lineage Nitrosopumilaceae is dissimilar [69] to those of bacteria
and not covered with our 50% KEGG module completeness
cutoff. Considering that Nitrosopumilaceae account for ~20 +1.0%
of the relative abundance of the microbial community at the
sediment surface and adding that to the relative abundance
of microbes with cytochrome c (including cbb3-type) and bd
ubiquinol oxidases, we estimate that ~86 +0.4% of all microbes
at the sediment surface were capable of aerobic respiration.
Nitrosopumilaceae and Gammaproteobacteria had peak relative
abundances at the sediment surface and declined gradually with
sediment depth. However, the overall relative abundance of MAGs
with cytochrome c oxidases increased with increasing depth and
peaked at ~75 £+ 1.9% in the middle of the nitrogenous zone, before
decreasing exponentially in the ferruginous zone. This is likely
because ~63% of MAGs with cytochrome c oxidases also have the
capability for nitrogen respiration (Fig. 3D). MAGs that exclusively
contained terminal oxidases for aerobic respiration exhibited
similar relative abundance in the oxic and nitrogenous zones
(23+£0.8-25+1.6%, Welch'’s t-test, p = .2) compared to 11+1.0%
in the ferruginous zone. Microbes with annotated cytochrome
bd ubiquinol oxidases increased in relative abundance once
nitrate was depleted, mainly due to the increasing relative
abundance of Bacteroidetes. We did not observe any relationship
between the relative abundance of cbb3-type cytochrome c
oxidases—known for their high oxygen affinity [70]—and oxygen
concentrations. MAGs with cbb3-type cytochrome c oxidases were
more abundant in the nitrogenous zone (Welch’s t-test, p < .05)
than in the oxic and ferruginous zones, partially due to increases
in the chemolithoautotrophic, anaerobic ammonium-oxidizing
(anammox) lineage of Brocadiae Planctomycetes. Thus, the changes
in the microbial community composition occurring from the oxic
to the nitrogenous zone were not coupled to electron acceptor
availability for most lineages, except for chemolithotrophs such
as ammonia oxidizing archaea and anammox bacteria.

Aerobic and nitrogen respiratory capabilities
slowly decline in the ferruginous zone with
half-life times of centuries

The relative abundance of MAGs capable of nitrate reduction (>
2 genes of narGHI) peaked in the nitrogenous zone at a relative
abundance of 38 £1.6%, as did MAGs capable of reducing nitric
oxide (>1 gene of norBC) at 15+0.9% (Fig. 3B). This was mainly
driven by the rise in relative abundance of Alphaproteobacteria
and Planctomycetes (Brocadia) in the nitrogenous zone. Potential
nitrite reducers (>1 gene of nirK/S) decreased from the oxic to the
nitrogenous zones from ~32+0.6% to 27 +0.9% (Welch's t-test, p
< .05), while only a small number of microbes (72 MAGs) seemed
capable to reduce nitrous oxide (nosZ) with peaks in relative
abundance in the nitrogenous zone at around 6 4+ 0.9%. Only five
MAGs showed the capability to perform full denitrification.
Potential aerobic and nitrogen respiring MAGs declined expo-
nentially in relative abundance in the ferruginous zone. MAGs
with cytochrome c oxidases declined from 75+1.9% to 31+9%
relative abundance between 6 and 20 cm below the sea floor, while
those with narGHI declined here from 38+1.6% to 17 £4.6%. To
estimate the half-lifetime of cells (represented by MAGs) contain-
ing cytochrome c oxidases and narGHI, we fitted exponential func-
tions into the exponential decline of relative abundance of these
MAGs over sediment depth. This estimation assumed constant
total cell abundances across sediment depth [29] and relied on

sediment ages derived from lead-210-based annual sedimenta-
tion rates within the Trench sites, which varied from 0.29 mm/year
to 0.76 mm/year [14]. The estimated half-life times of the aero-
bic community ranged between 135 and 367 years, with similar
estimates for cells with narGHI at 154419 years (Supplemen-
tary Fig. 5). Thus, the change in electron acceptor availability
between nitrogenous and ferruginous zones imposed a selective
effect on the microbial community and led to gradual and steady
changes over sediment depth.

Potential fermenters replace the aerobic and
nitrogen respiring community in the ferruginous
zone

We estimated the potential for iron/manganese reduction by
the presence/absence of homologs of various porin-cytochromes
(FeGenie [60]). Most iron-reducing MAGs belonged to Zixibacteria
(26), Planctomycetota (21), Gammaproteobacteria (20), Desulfobacterota
(18), and Hydrogenedentota (15). Only 1.7 +0.1% of microbes on
the sediment surface were capable of metal reduction, but this
increased toward the nitrogenous zone to ~8+0.8% (Welch's
t-test, p < .05) mainly due to increases in some Woeseiales
(Gammaproteobacteria), Hydrogenedentota, and Marinisomatota.
These lineages disappeared toward the ferruginous zone and were
replaced with Zixibacteria, Abyssubacteria, and Desulfobacterota.
Similarly, the relative abundance of microbes with dsrAB
peaked in the nitrogenous zone due to Alphaproteobacteria.
Although this enzyme could be used in the reverse direction
to oxidize sulfur [71], the lack of free H,S in these sediments
(Supplementary Table 3) suggested that these genes might not
explain the high relative abundance of these microorganisms.
Sulfate reduction in the Atacama trench sediments was not
detectable in the nitrogenous zone (Supplementary Table 3).
However, the relative abundance of Desulfobacterota increased
from <1+0.4% in the nitrogenous zone to 13% in the ferruginous
zone (Welch's t-test, p < .05). Similarly, MAGs without any of the
here analyzed enzymes for respiration increased exponentially
in relative abundance to ~33+6.7% in the ferruginous zone,
replacing the aerobic and nitrogen respiring microbes. This
was mainly driven by Chloroflexota, Atribacterota, Acidobacteriota,
and Planctomycetes. We consider these MAGs with unclassified
respiratory pathways here as putative fermenters, yet they might
have the capability to use alternative respiratory pathways. It
is also possible that even MAGs with identified respiratory genes
may switch to a fermentative lifestyle when their favored electron
acceptor is depleted. Within the exponential growth phase of
putative fermenters between 6.5 and 9.5 cm, they double every
1.4 cm (1848 years) and dominate the ferruginous zone in relative
abundance, indicating that these microbes are highly competitive
once nitrate is gone.

Relative CAZyme abundances only change
alongside redox gradients

Most microbes in marine sediments are heterotrophs and a sig-
nificant fraction of organic material in marine sediments is car-
bohydrate [2]. We therefore assessed whether changes in micro-
bial community composition between redox zones—particularly
oxic and nitrogenous zones—can be explained by differences in
microbes’ genomic capacities for carbohydrate degradation [12,
23]. We assessed the distribution of CAZymes genes in our col-
lection of MAGs using sequence-based classification of glycoside
hydrolases (GHs) and polysaccharide lyases (PLs). Multiple GH
and PL, in conjunction with carbohydrate-binding modules, are
frequently combined to larger unified enzyme structures [72].
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Figure 4. (A) Relationship between the abundance of CAZymes and sediment depth; the plot displays the mean and standard error of the sum of
relative abundances of the 10 most abundant CAZymes within microbial genomes against sediment depth; continuous and dotted horizontal lines
represent oxygen and nitrate penetration depths, respectively; (B) PCA plot of relative CAZyme abundances across all samples; the colors indicate
redox zones, while the different symbol shapes represent the sampling locations; (C) relationship between number of CAZymes within microbial
genomes and sediment depth; the plot displays the mean and standard error of the sum of relative abundances of microbial genomes that possess
different numbers of CAZyme genes, ranging from zero to more than eight, against sediment depth; continuous and dotted horizontal lines represent
oxygen and nitrate penetration depths, respectively; (D) PCA plot of relative CAZyme composition within microbial genomes that possess more than
eight different CAZyme families; color indicates phylum classifications of genomes, while the dot-sizes reflects the size of microbial genomes.
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A potential caveat is the lack of differentiation between putative
anabolic and catabolic CAZymes, given the relatively unexplored
utilization of these enzymes by environmental microbes [73].
Because large, complex carbohydrates must be degraded extra-
cellularly, we therefore screened the identified CAZyme genes for
signal peptides indicative of secretion pathways. Approximately
46% of the enzymes encoded by 12358 CAZyme genes were pre-
dicted to have the potential to be excreted, primarily through the
Sec signal pathway (Supplementary Fig. 6).

We then surveyed the distribution of different CAZyme
genes by considering, for each CAZyme gene, the total relative
abundance of all MAGs containing that CAZyme gene. MAGs
containing the CAZyme genes of peptidoglycan lyases GH23,
GH103, and GH102, which have been demonstrated to be critical
in anabolic cell-wall synthesis for certain microbes [74], were
highest in relative abundance (Fig.4A). The CAZyme gene
abundance of GH23 and GH102 peaked in the nitrogenous zone
before steeply declining in the ferruginous zone, as did MAGs
containing GH103. The changes in CAZyme gene abundance of
GH23 and GH103 were mainly controlled by the abundance of
Alpha- and Gammaproteobacteria, while the relative abundance of
GH102-containing MAGs was mainly influenced by Planctomycetes
and Alphaproteobacteria. These three ubiquitous families of
peptidoglycan lyases were often the only potentially extracellular
CAZymes present in Alpha- and Gammaproteobacterial MAGs
in our dataset, indicating that niche differentiation between
Alpha- and Gammaproteobacterial MAGs was unlikely driven
by their potential for extracellular carbohydrate degradation.
Furthermore, this shows that the CAZyme gene downcore trends
may have been driven to a large extent by factors other than
those associated with carbohydrate degradation. Still, out of
108 different CAZyme genes found in this study, 78 peaked in
relative abundance in the ferruginous zone, many of which
are more certainly associated with catabolic processes [75, 76].
Thus, the ferruginous zone was enriched in MAGs which encoded
potentially extracellular CAZymes.

To determine if the relative CAZyme gene abundances and
their trends over sediment depth (Fig. 4, a) were unique to hadal
sediments, we performed a principal component analysis (PCA) on
Hellinger-transformed CAZyme abundances (Fig. 4B). Although
there was some separation between hadal, abyssal, and bathyal
samples, most of the dissimilarity between samples was mainly
associated with redox zonation. Changes in relative CAZyme gene
abundances only occurred when redox conditions changed. This
was not linked to organic carbon concentrations, as in fully oxic
abyssal plain sediments [18], CAZyme gene abundances were
constant even though organic carbon concentrations decreased
strongly with sediment depth [29] (Supplementary Fig. 7).

MAGs with a high number of excreted CAZymes
increase toward the ferruginous zone

The degradation of complex carbohydrate molecules usually
requires multiple CAZymes and even minor variations in the
number of CAZymes within a family can produce substantial
differences in carbohydrate degradation potential [26]. Thus, the
number of CAZyme genes in a MAG can be seen as an indicator
of its capacity for complex carbon degradation [77]. We divided
the MAGs into eight groups based on their number of CAZymes
with signal peptides for excretion (Supplementary Fig. 8). This
revealed three notable trends: (i) MAGs with two excreted
CAZymes were the most abundant group on the surface of
hadal sediments (Fig. 4C) but decreased with depth due to the
decreasing abundance of Alpha- and Gammaproteobacteria. (ii)

MAGs without any excreted CAZymes decreased toward the
nitrogenous zones at all sites, driven by changes in abundance
of Thermoproteota (Nitrosopumilaceae), before becoming the most
abundant group in the ferruginous zone due to Chloroflexota. (iii)
MAGs with more than eight excreted CAZymes steadily increased
in relative abundance with sediment depth at all hadal sites, as
well as the abyssal slope and bathyal site, but not in the fully oxic
abyssal plain site (Supplementary Fig. 9). These MAGs with high
numbers of distinct CAZymes were significantly more abundant
(Welch’s t-test, p < .05,) in the hadal ferruginous zone (12 £0.5%)
than in the bathyal ferruginous zone (8%) and often belonged
to deep-biosphere taxa within Planctomycetota, Zixibacteria, and
Hydrogenedentota [10, 21, 78].

Phylum-level dissimilarities in CAZyme contents
of MAGs that possess more than eight excreted
CAZymes

To determine potential niche differentiations between complex
carbohydrate degrading microbial phyla, we tested if the CAZyme
composition of MAGs was phylogenetically conserved via PCA of
the Hellinger-transformed CAZyme gene counts of MAGs with
over eight excreted CAZymes in their genomes (Fig. 4D, Supple-
mentary Fig. 10). Planctomycetota, Zixibacteria, and Bacteroidota were
the most prevalent phyla in this analysis, with 53, 26, and 19
MAGs, respectively, and their CAZyme compositions were signifi-
cantly dissimilar from each other despite large overlaps between
Planctomycetota and Bacteroidota (pairwise Permutational analysis
of variance, PERMANOVA, p < .05, p.adjust="fdr”). The CAZyme
composition of Zixibacteria was distinct from other microbial lin-
eages, mainly because they had many GH6 (cellulase) genes,
while dissimilarities between Bacteroidota and Planctomycetota were
mainly due to differences in their copy numbers of multiple GH
families. Also, Poribacteria differed from other microbial lineages
as it was enriched in GH15 (glucoamylase) genes. Hence, our data
indicated that, among lineages that degrade complex carbohy-
drates, CAZyme contents are phylogenetically conserved.

Discussion

Our results indicate that despite the high hydrostatic pressures
in the hadal realm, benthic microbial communities in hadal sed-
iments are diverse and span about a third of all known microbial
phyla. Widespread microbial lineages [8, 79, 80] such as Alphapro-
teobacteria, Gammaproteobacteria, and Chloroflexota, were the most
abundant and most numerous MAGs in our dataset. MAGs belong-
ing to these lineages were also the least phylogenetically novel,
indicating that they are closely related to organisms that have
already been sequenced and added to the GTDB [49]. In turn,
rarer lineages found in deeper sediment layers were most phy-
logenetically novel. Although subsurface sediments are probably
less well-covered in public databases than surficial sediments,
it is also possible that these lineages were only detectable in
our samples because of the unique biogeochemical conditions
in hadal sediments. Minimal bioturbation [14], centimeter-scale
redox zones [18, 35], and substantial organic carbon content in
anoxic layers [81] that are not sulfidic (Supplementary Table 3)
set hadal sediments apart from other marine sediments.

Still, ecological dissimilarity scaled with oceanic depth in this
dataset, a finding in agreement with previous 16S rRNA gene
amplicon studies [10, 11, 15], as well as with the density of
single nucleotide variations (SNVs) per mapped read. Although
the higher SNV densities in abyssal and bathyal MAGs may be
artifacts of read mapping, the systematic increase in SNV density
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with decreasing water depth suggests a selective effect of ocean
depth resulting in significant strain-level variations between
hadal microbes and their relatives from shallower environments.

We approximated the respiratory capabilities of the MAGs
based on sequence-based annotation of their terminal oxidase
genes as well as genes involved in terminal electron accepting
processes in anaerobic respiration. However, microbial respiration
is a complex process [82], and MAGs are incomplete represen-
tations of microbial genomes [83]. Furthermore, genes can be
mis-annotated [59], respiratory enzymes can serve multiple non-
respiratory functions [84], and microbes may switch to fermen-
tative lifestyles once their electron acceptors become depleted
[85]. Yet, although our estimates should not be seen as precise
predictions of the respiratory activity or capability of any specific
MAG, the high-level trends over the entire collection of 1357 MAGs
alongside the redox gradient should account for these uncertain-
ties.

Our data suggested that the gradual community change
between the oxic and nitrogenous zones was unlikely to be driven
by respiratory capacities, except for nitrifiers and anammox
bacteria, as most aerobic microbes were capable of nitrogen
respiration. Aside from potential biogeochemical reasons, e.g.
the onset of manganese reduction in the nitrogenous zone [35],
microbe-microbe interactions between chemolithoautotrophs
and symbionts [86] could also play a role for the community
changes between oxic and nitrogenous zones.

The strongest trend was the exponential decay of aerobic
and nitrogen-respiring microbes in the ferruginous zone with
estimated half-lives of centuries, and the parallel growth of
putative fermenters with estimated doubling times of several
decades. Interestingly, these gradual changes in microbial
community composition occurred without drastic changes in
microbial cell abundances [29] despite the stark energetic
differences between different respiratory pathways (e.g. aerobic
respiration vs sulfate reduction). Additionally, once the gradual
community shift had mostly ended within the ferruginous zone,
the microbial community did not grow to abundances greater
than ~5 x 107 cells/ml [29] despite stable redox conditions and
substantial amounts of organic carbon [29]. Overall, it appears
that the abrupt transition from the nitrogenous and to the
ferruginous zone produces a gradual change in community
composition and associated functions because microbes in hadal
sediments seem to grow slowly and seem to be highly resistant
to decay, resulting in a delayed response of the community
to shifting selective pressures. Delayed responses in microbial
community composition to changing redox conditions were
previously observed also in non-hadal sediments, as well as in
redox changes beyond those of oxic-nitrogenous—ferruginous
zones (e.g. sulfidic—methanic) [8, 87, 88]. An implication of such
resilience is that nutrients and building blocks for cellular mass
are locked away from the growing fermenting community, slowing
down their growth and thus mineralization rates of organic
matter.

Our results showed that the oxic and anoxic communities
in hadal sediments have different capacities for carbohydrate
utilization. The relative abundances of CAZyme families (based
upon MAG abundances) showed little variation with sediment
depth (see Fig. 4B, Supplementary Fig. 7) until nitrate was entirely
depleted. This was true even in the abyssal plains sediments
where there was a strong downcore gradient in organic carbon
concentration and availability within the oxic zone [18, 29]. This
could imply that the relative CAZyme family abundance is not
informative of the actual CAZyme activity in seafloor sediments

and/or that there is little selective pressure on genomic CAZyme
contents.

CAZyme composition and carbohydrate utilization capacity
only changed strongly from the top of the ferruginous zone. A
possible explanation for the apparent increased importance of
CAZyme versatility could be thatiron reduction in the ferruginous
zone releases carbohydrates bound to reactive iron phases [89],
which are abundant in hadal sediments and have been previ-
ously shown to bind about one-fifth of organic matter in marine
sediments [90]. In the ferruginous zone, the relative abundance
of putative complex carbohydrate degraders increased steadily
with depth. This suggests that, despite the energetic costs of
having a large repertoire of excreted CAZymes, it can still be
advantageous in environments where energy is severely limited
and where microbes are thought to streamline their genomes to
maximize efficiency [9, 10].

Our data highlight the importance of treading carefully when
linking changes in microbial community composition to con-
current biogeochemical conditions. Although the sediments of
the Atacama trench are inhabited by communities distinct from
those of adjacent abyssal sites, our data suggest that it would
be a mistake to attribute that distinction to a selective effect of
hydrostatic pressure alone—hydrostatic pressure does not appear
to be an evolutionary bottleneck overcome by only a few lineages.
Furthermore, our data highlight how changes in selective forces
do not always co-occur with the shifts in community composition
that they ultimately produce, nor do they take the same shapes.
In the Atacama trench, redox stratification between the oxic and
nitrogenous zones did not impose selective pressure on MAGs
based on their respiratory capabilities, as might be expected,
but respiratory capability was strongly selected upon in the fer-
ruginous zone. Similarly, carbohydrate degradation potential was
not selected upon in the nitrogenous or oxic zones but MAGs
with the potential to degrade complex carbohydrates (i.e. with
many excreted CAZymes) increased in relative abundance in
the ferruginous zone, where we also observed a potential deep-
rooting niche differentiation between phyla by CAZyme content.
This partial decoupling between biogeochemistry, function, and
community structure may be explained by the extremely long
generation times of the benthic communities. It takes centuries
for the aerobic and nitrogen respiring community to decay and
the fermenters to grow, smearing the abrupt transitions between
biogeochemical zones into smooth gradients in community com-
position.
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