Trends in the effects of kelp removal on kelp populations, herbivores, and understory algae

Supplementary material

Table S1. Studies included in the meta-analyses. *The former species Lessonia nigrescens was split in Lessonia berteroana in northern Chile and Lessonia spicata south of the biogeographic break at 30°S along the Chilean coast (Tellier et al. 2009; González et al. 2012). The broad geographic extent of the surveys in one study did not allow to distinguish if the targeted species was the northern or the southern Lessonia.

Study	Authors and	Title	Country	Targeted kelp
#	year			species*
1	Bularz et al.,	Effects of harvesting on subtidal	Chile	Lessonia
	2022	kelp forests (Lessonia		trabeculata
		trabeculata) in central Chile		
2	González-	Exploring the role of access	Chile	Lessonia
	Roca et al.,	regimes over an economically		berteroana,
	2021	important intertidal kelp species		Lessonia spicata
3	Gouraguine	The intensity of kelp harvesting	Chile	Lessonia
	et al., 2021	shapes the population structure		trabeculata
		of the foundation species		
		Lessonia trabeculata along the		
		Chilean coastline		
4	Wernberg et	Disturbance intensity,	Australia	Ecklonia radiata
	al., 2020	disturbance extent and ocean		
		climate modulate kelp forest		
		understory communities		
5	Norderhaug	Ecosystem-level effects of large-	Norway	Laminaria
	et al., 2020	scale disturbance in kelp forests.		hyperborea
6	Ulaski et al.,	Seaweed Reproduction and	USA	Nereocystis
	2020	Harvest Rebound in		luetkeana,
		Southcentral Alaska:		Saccharina
		Implications for Wild Stock		latissima
		Management		
7	Vega et al.,	Abundance and population	Chile	Lessonia
	2019	structure of two benthic fishing		berteroana
		resources outside and inside a		
		port maritime concession area		
		in Caldera, Region of Atacama,		

		Chile		
8	Schiel, 2019	Experimental analyses of diversity partitioning in southern hemisphere algal communities	New Zealand	Durvillaea poha
9	Vega and Toledo, 2018	The chemical composition of Lessonia berteroana (ex L. nigrescens) in kelp harvest management and open access areas near Coquimbo, Chile	Chile	Lessonia berteroana
10	Schiel et al., 2018	Ecological tipping points for an invasive kelp in rocky reef algal communities	New Zealand	Durvillaea antarctica
11	De Leij et al., 2017	The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats	UK	Laminaria digitata, Saccharina latissima, Saccorhiza polyschides
12	Pérez-Matus et al., 2017	Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile	Chile	Lessonia trabeculata
13	Leclerc et al., 2015	Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests	France	Laminaria hyperborea
14	Vega et al., 2013	Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure	Chile	Former Lessonia nigrescens
15	Borras- Chavez et al., 2012	Testing sustainable management in Northern Chile: harvesting Macrocystis pyrifera (Phaeophyceae, Laminariales). A case study	Chile	Macrocystis pyrifera
16	Engelen et al., 2011	Spatial and temporal patterns of recovery of low intertidal Laminaria digitata after experimental spring and autumn removal	France	Laminaria digitata

17	O'Connor and Anderson, 2010	Consequences of habitat disturbance and recovery to recruitment and the abundance of kelp forest fishes	USA	Macrocystis pyrifera
18	Wernberg and Connell, 2008	Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity	Australia	Ecklonia radiata
19	Siddon et al., 2008	Community level effects of Nereocystis luetkeana in southeastern Alaska.	USA	Nereocystis luetkeana
20	Toohey et al., 2007	Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests	Australia	Ecklonia radiata
21	Schmidt and Scheibling, 2007	Effects of native and invasive macroalgal canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae	Canada	Laminaria digitata, Saccharina longicruris
22	Kennelly and Underwood, 1993	Geographic consistencies of effects of experimental physical disturbance on understorey species in sublittoral kelp forests in central New South Wales	Australia	Ecklonia radiata
23	Reed, 1990	An experimental evaluation of density dependence in a subtidal algal population.	USA	Pterygophora californica
24	Kennelly, 1987	Physical disturbances in an Australian kelp community. 2. Effects on understorey species due to differences in kelp cover.	Australia	Ecklonia radiata
25	Kennelly, 1987	Physical disturbances in an Australian kelp community. 1. Temporal effects		
26	Reed and Foster, 1984	The effects of canopy shadings on algal recruitment and growth in a giant kelp forest.	USA	Pterygophora californica
27	Dayton, 1975	Experimental evaluation of ecological dominance in a rocky intertidal algal community.	USA	Hedophyllum sessile, Lessoniopsis littoralis

Table S2. Target kelp species and locations (number of articles in each country in parentheses) that were targeted in kelp removal experiments. Note that several articles included over one species. ¹The former species *Lessonia nigrescens* was split in *Lessonia berteroana* in northern Chile and *Lessonia spicata* south of the biogeographic break at 30°S along the Chilean coast (Tellier et al. 2009; González et al. 2012). *They can also be observed in shallow subtidal zones but mainly in intertidal zones and therefore they were considered as such in the analyses.

Kelp species	Number of articles	Location	Subtidal or intertidal distribution
Ecklonia radiata	6	Australia (6)	Subtidal
Lessonia berteroana and Lessonia spicata ¹	4	Chile (4)	Intertidal
Laminaria digitata	3	Canada (1), France (1), UK (1)	Intertidal*
Lessonia trabeculata	3	Chile (3)	Subtidal
Macrocystis pyrifera	3	Chile (1), USA (2)	Subtidal
Durvillaea antarctica and Durvillaea poha	2	New Zealand (2)	Intertidal
Laminaria hyperborea	2	France (1), Norway (1)	Subtidal
Nereocystis luetkeana	2	USA (2)	Subtidal
Pterygophora californica	2	USA (2)	Subtidal
Saccharina latissima	2	USA (1), UK (1)	Intertidal*
Hedophyllum sessile	1	USA (1)	Intertidal
Laminaria setchellii	1	USA (1)	Intertidal*
Lessoniopsis littoralis	1	USA (1)	Intertidal
Saccharina longicruris	1	Canada (1)	Subtidal
Saccorhiza polyschides	1	UK (1)	Intertidal*

Table S3. Model outputs of kelp removal effects on kelp abundance and understory algae abundance excluding outliers. Significance is shown by p-values in bold

Effect type	Average effect	p-value	Confidence	Confidence
	size g (\pm SE)		interval (CI)	interval (CI)

			Lower limit	Upper limit
Kelp abundance without	-1.3288 (0.2875)	<0.0001	-1.8923	-0.7652
outlier <i>g</i> < -10				
Understory algae	0.7144 (0.205)	0.0019	0.2626	1.1662
abundance without				
outlier <i>g</i> < -10				
Understory algae	0.7137 (0.2307)	0.0020	0.2615	1.1660
abundance without				
outliers <i>g</i> < -10 & <i>g</i> > 10				

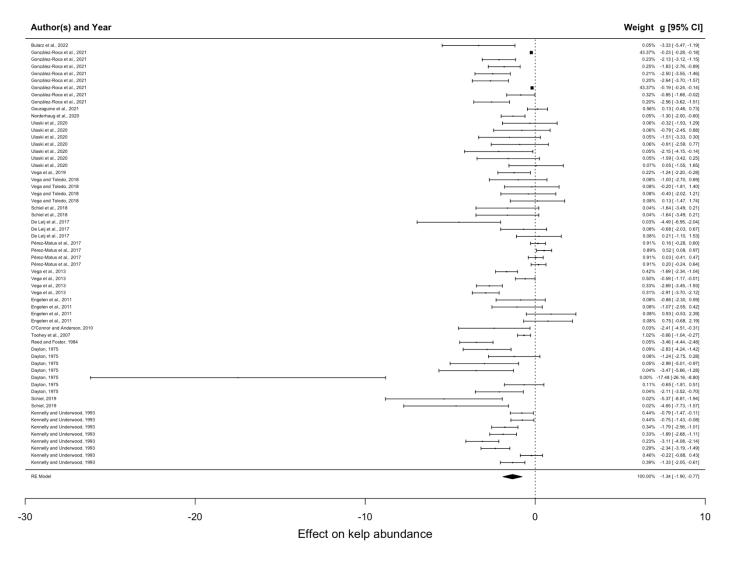


Figure S1. Forest plot of kelp abundance (Hedges' g)

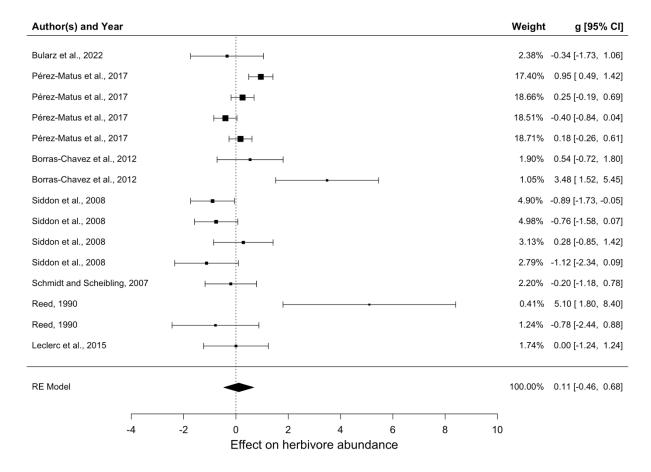


Figure S2. Forest plot of herbivore abundance (Hedges' g)

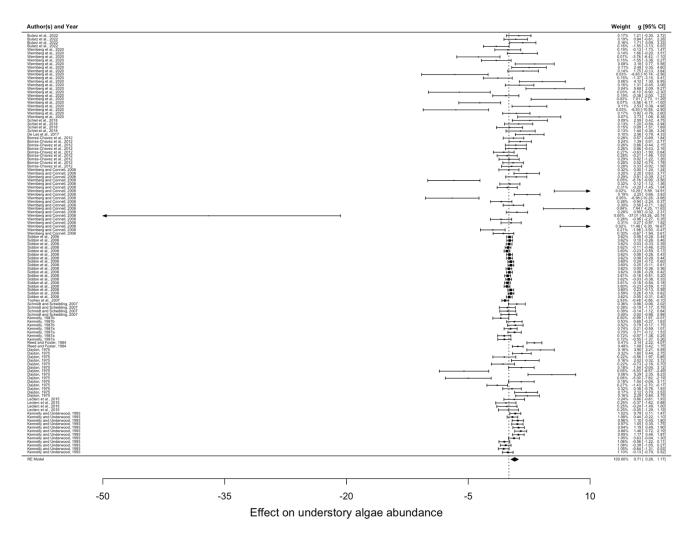


Figure S3. Forest plot of understory algae abundance (Hedges' g)

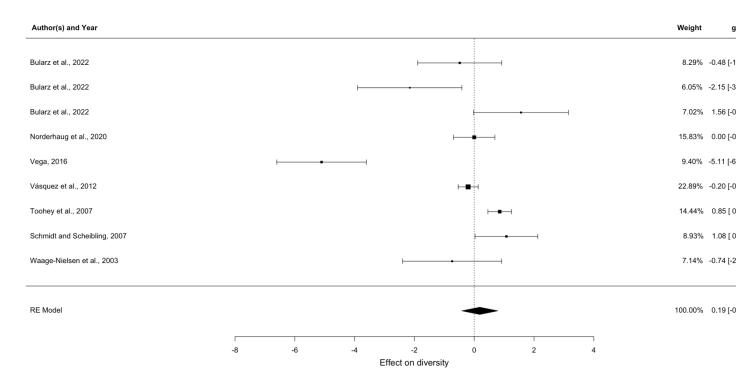


Figure S4. Forest of plot diversity (Hedges' g)