Supporting Information

Mechanical Evaluation of Hydrogel-Elastomer Interfaces Generated Through Thiol-Ene Coupling

Khai D. Q. Nguyen^{1,2}, Stéphane Dejean³, Benjamin Nottelet³, and Julien E. Gautrot^{1,2*}

¹ Institute of Bioengineering and ² School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.

³ Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM,

Montpellier, France

* To whom correspondence should be addressed E-mail: j.gautrot@qmul.ac.uk.

Supplementary Figure S1. Gel Permeation Chromatography trace obtained for PCL-alkyne.

Supplementary Figure S2. ¹H NMR (300 MHz) spectrum of PCL-Alkyne (CDCl₃). Integrals required to calculate the substitution level are indicated.

Supplementary Figure S3. Image of hybrid sample taken shortly after irradiation in a mould.

Supplementary Figure S4. Representative examples of stress-strain traces recorded for hybrid samples formulated with thiol-ene PDMS and CMC-Allyl hydrogels.

Supplementary Figure S5. Images of hybrid samples formulated with thiol-ene PDMS and various hydrogels, stretched to failure. The hydrogels used in corresponding samples was: A, PEGDA; B, PDMAEMA-Pent; C, CMC-Allyl.

Supplementary Figure S6. Images of hybrid samples, after failure, formulated with PEGDA and PDMAEMA-Pent at different concentrations and Sylgard PDMS (with and without surface treatment with thiolated PDMS).