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ARTICLE

Siliceous zeolite-derived topology of
amorphous silica
Hirokazu Masai 1✉, Shinji Kohara 2✉, Toru Wakihara3, Yuki Shibazaki4, Yohei Onodera 5,15,

Atsunobu Masuno 6, Sohei Sukenaga7, Koji Ohara 8,16, Yuki Sakai 9,10, Julien Haines 11, Claire Levelut12,

Philippe Hébert13, Aude Isambert 13,17, David A. Keen 14 & Masaki Azuma 9,10

The topology of amorphous materials can be affected by mechanical forces during com-

pression or milling, which can induce material densification. Here, we show that densified

amorphous silica (SiO2) fabricated by cold compression of siliceous zeolite (SZ) is perma-

nently densified, unlike densified glassy SiO2 (GS) fabricated by cold compression although

the X-ray diffraction data and density of the former are identical to those of the latter.

Moreover, the topology of the densified amorphous SiO2 fabricated from SZ retains that of

crystalline SZ, whereas the densified GS relaxes to pristine GS after thermal annealing. These

results indicate that it is possible to design new functional amorphous materials by tuning the

topology of the initial zeolitic crystalline phases.
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The properties of solid-state materials are significantly
affected by their preparation conditions and chemical
compositions. Polymorphisms in crystalline materials with

the same chemical composition have been investigated using
various approaches1–4. In contrast, in non-equilibrium materials,
such as glasses, in which various metastable structures exist,
structural relaxation by external stimuli is one of the most
interesting topics from both scientific and industrial perspectives.
This metastability is one of the challenging factors for the
structural analysis of glass5.

Non-equilibrium oxide materials, such as glasses and zeolites,
possess nanosized cavities that are specific to their functions. In
materials with such large cavities, thermodynamically metastable
structures can be formed semipermanently or transiently by
applying a much higher pressure than the ambient pressure while
simultaneously heating6–20. Densified samples fabricated at high
pressures exhibit completely different functions from those fab-
ricated under ambient pressure. Greaves et al. predicted that these
microporous materials could approach the “perfect” glass com-
pressed sufficiently slowly6. Densified glassy silica (GS) is tenta-
tively proposed as an example of a high-pressure-induced
densified material because pristine GS possesses large cavities
surrounded by –Si–O–Si– rings of varying sizes. Recently,
experimental and mathematical approaches have been combined
to investigate the behaviours of rings and cavities in amorphous
materials19–22. Owing to their varied rings and cavities, oxide
materials containing many oxygen atoms with lone-pair electrons
are interesting materials for study.

From a material densification perspective, zeolites with their
open-structured micropores are also interesting targets for con-
trollable cavities1,2,23–30. Approximately 260 different zeolite
structures are known, ranging from those with one-dimensional
channels to those with three-dimensional pores, a number of
which are smaller than 1 nm. Zeolites provide another route for
preparing distinct amorphous materials via pressure-induced
amorphization. Haines et al. reported the densification of amor-
phous SiO2 by pressurising a single crystal of siliceous MFI zeolite
(SZ) to 20 GPa at room temperature (RT) (i.e. cold
compression17–19,31). The Bragg peaks from the SZ disappeared
and broad peaks corresponding to amorphous were observed.
However, Onodera et al. reported that the density of densified GS
prepared by cold compression decreased over time, i.e. glass
prepared by cold compression was not permanently densified19.
Considering that they used GS as the starting material, it is
unclear whether permanent densification could be achieved in the
amorphous SiO2 prepared from SZ. We also investigated whether
different topologies of SZ could be obtained via ball milling.
Mechanical milling is sometimes used to prepare reactive ceramic
powders, such as oxides, sulfides, and chalcogenides32,33. The
ball-milling process is expected to break the cages in the SZ,
producing more reactive fragments. This study analysed amor-
phous SiO2 and SZ to clarify the relationship between the starting
materials and the glass structures.

Results and discussion
Preservation of cage structure in SZ-derived amorphous SiO2.
Figure 1a shows the X-ray powder diffraction pattern of amorphous
SiO2 from SZ, prepared by applying 20GPa and 7.7 GPa at RT, along
with previous data reported for densified GS19 and the densified
amorphous SZ prepared from SZ single crystals31. All data, except for
those of the reference materials (pristine GS and pristine SZ), were
acquired from the samples recovered after densification. The struc-
ture factor S(k) of various amorphous materials differs depending on
the preparation conditions. This study focused on the first sharp
diffraction peak (FSDP), which is referred to as k1 and observed at

k ~ 1.53 Å–1 in the diffraction pattern of pristine GS (Fig. 1b). The
FSDP, a signature of intermediate-range ordering in glass, shifts to a
higher-k value upon applying pressure, suggesting that the inter-
mediate correlation distances decrease with the reduction in cavity
volume. In addition, a pre-peak is observed at k ~ 0.63 Å–1 in all
samples obtained from SZs, and the peak height decreases with
increasing pressure. This peak can be referred to as k0 because the
FSDP at a higher-k value is typically referred to as k1 and the second
principal peak is called k234. The k2 peak is only visible in the neutron
diffraction data (Fig. S1) because k2 reflects the packing of oxygen
atoms, and relative to silicon, oxygen scatters neutrons better than it
scatters X-rays35. Notably, the k0 peak was not observed for the GS or
the densified GS. Table 1 summarises the starting materials, fabri-
cation conditions, densities, and coherence lengths estimated from
diffraction peaks. The density ρ was measured using a He pycn-
ometer or by the analysis of the slope of reduced pair distribution
functions G(r) using the equation ρ= 1

4π
∂GðrÞ
∂r , where r is a length.

These results clearly indicate that the structures of the densified
GS and amorphous SiO2 prepared from the SZ are different. The
k value of the k0 peak has similar k value as that observed for the
strong Bragg peaks in the X-ray diffraction pattern of the pristine
SZ, implying that the topology of the crystalline starting material
can be preserved in the amorphous material even after high-
pressure treatment. An illustration of the SZ, highlighted by the
(101) and (020) planes, is presented in Fig. S2. Notably, the height
of k0 increased with k1. Therefore, it is expected that amorphous
SiO2 with different topologies can be obtained by selecting
appropriate starting materials.

Permanent densification and relaxation of SZ-derived amor-
phous SiO2. Because compression was performed at ambient
temperature, it is expected that the long-term thermal stability is
also affected by the topology of the samples. To analyse the
thermal stability after densification, i.e. the permanency of den-
sification, we measured the diffraction data from the same sam-
ples after long delays. Figure 2a, b compares the S(k) values of
amorphous SiO2 prepared by cold compression after 11 and 2
years, respectively. Note that the former was obtained from bulk
SZ (bSZ) single crystals with typical maximum linear dimensions
of 25–80 µm and the latter from a SZ powder (pSZ) with micro-
sized grains. Although the two sets of data are similar, the
structures of the samples depend on the starting material. Fig-
ure 2c, d shows an enlarged portion of S(k) from amorphous SiO2

and the differential S(k) and ΔS(k) values of bSZ and pSZ. ΔS(k) is
the difference in S(k) between the as-prepared sample and the
same sample after an extended period. The positions of the FSDP
and the peak at k3 are indicated by the dashed lines in Fig. 2c, d.
The amorphous SiO2 from bSZ was very stable and showed no
remarkable difference in the diffraction pattern after 11 years (i.e.
there was no peak shift in Fig. 2c). In contrast, shifts in FSDP and
k3 were observed for pSZ even after 2 years (Fig. 2d). The k value
of FSDP decreased, whereas that of k3 increased. This behaviour
is comparable to that of S(k) in pristine GS and densified
amorphous SiO2 as shown in Fig. 1. It is clear that ΔS(k), as
shown in Fig. 2d, corresponds to the structural relaxation of the
densified amorphous SiO2 to pristine GS. Hence, we can conclude
that bSZ-derived amorphous SiO2 was permanently densified,
whereas the amorphous SiO2 from pSZ was not. Considering that
GS densified from bulk GS exhibits permanent densification
behaviour with thermal treatment19, we assume that single
crystals are an important starting point for sustaining permanent
densification via cold compression. Monolithic materials are
expected to be advantageous for efficient densification because
they do not require energy to remove grain boundaries or defects.
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The mechanism of permanent densification has recently been
discussed in terms of the topology19. It has been suggested that
both ring size distribution and cavity volume are correlated with
densification19. The ring-size distributions for a series of SZs and
GS, calculated based on King’s criterion36, are shown in Fig. 3.
The GS data show a variation in the ring size that is topologically
disordered21,22; however, the SZ data have a large fraction of five-
fold rings, which is not representative of topological disorders.
Notably, the ring size distributions of both SZ and GS subjected
to cold compression at 20 GPa were similar to those of their
respective compounds at ambient pressure. The GS results seem
to conflict with previous results for densified SiO2 glass18.
However, although the definition of an n-membered ring and the
simulation method used in the present study are different from
the previous study, we assume that it is difficult to conclude that a
remarkable difference in the ring size distribution is observed by
the cold compression of the GS.

We also visualised the cavities (highlighted in green) in the SZ and
GS, as shown in Fig. 3. The cavity volume ratio (CVR) of pristine GS
was 33 vol% at 0 GPa22. The CVR was highest for pristine SZ at 0
GPa and lowest for amorphous SiO2 prepared by cold compression
at 20 GPa. Furthermore, when comparing the samples prepared by
cold compression at 20GPa, the CVR of the GS is larger than that of
amorphous SiO2 from SZ by 3.8%. We suggest that the small fraction
of cavities in amorphous SiO2 prepared by cold compression of SZ at
20GPa is associated with the persistence of a large fraction of five-
fold rings and that this is an important signature of permanent
densification induced by both atomistic and topological order.

Here, we emphasise that permanent densification is only
observed in amorphous SiO2 obtained by the cold compression of

bulk crystalline siliceous zeolite (bSZ). Because permanent
densification was not achieved by cold compression of GS19 or
pSZ, it is expected that, in general, heating is important for
permanent densification. The effects of temperature on compres-
sion of SiO2 have been reported previous studies18,19,37,38. In
addition to the compression of silica glass18,19,37,38 relaxation of
densified silica glass by thermal annealing has also been
reported38,39. This expectation also raises the question of whether
permanent densification persists even after annealing. To confirm
the thermal stability of the densified samples, we heated cold-
compressed bSZ to 750 °C. The effect of thermal annealing on S(k)
was apparent, as shown in Fig. 4a, b. As seen in Fig. 4b, the S(k) of
annealed amorphous SiO2 is not identical to that of pristine GS
below 6 Å−1; there are differences in the FSDP heights and in the
low-k (small-angle) region below 1 Å–1. Notably, the tiny sharp
diffraction peaks in amorphous SiO2 diminished after annealing at
750 °C, indicating that they were associated with SZ rather than
impurities. Intriguingly, the GS densified by cold compression was
converted into pristine GS using the same annealing process
(Fig. S3). The recovered stishovite also became amorphous upon
heating40. The change in S(k) after annealing clearly demonstrates
that permanent densification is maintained only at ambient
temperatures, and that another metastable structure (topology) of
densified amorphous SiO2 is generated by thermal treatment. Such
a transformation (relaxation) has also been observed in other
papers38,39, in which the saturation behaviour was dependent on
the annealing temperature. Elucidating the key structural details
necessary for maintaining a metastable densified SiO4 network is
the next goal for distinguishing between thermally metastable and
reversible SiO4 networks.

S
(k

)

(1
01

)

(0
20

)

S
(k

)

Pristine SZ

Pristine GS

C20-bSZ31

C20-GS19

ba
k0 k1k0 k1

C20-pSZ

C7.7-pSZ

Pristine SZ

Pristine GS

C20-bSZ31

C20-GS19

C20-pSZ

C7.7-pSZ

Fig. 1 Comparison of X-ray diffraction data. a Total structure factors, S(k), of amorphous SiO2 materials prepared by cold compressions: pristine glassy
SiO2 (GS), densified GS after cold compression with 20 GPa (C20-GS), densified amorphous SiO2 from bulk crystal siliceous zeolite after cold compression
with 20 GPa (C20-bSZ), densified amorphous SiO2 obtained from siliceous zeolite powder by 7.7 GPa and 20 GPa cold compression (C7.7-pSZ and C20-
pSZ, respectively); the dashed lines indicate the position of the scattering vector for k0 and k1 in GS without densification. b Enlarged S(k) in the FSDP
region of amorphous SiO2.

Table 1 Structural parameters of amorphous SiO2 (all densified samples are synthesised by cold compression).

ID Starting material Press condition Density (g cm−3) k0 (Å−1) k1 (Å−1) 2π/k0 (Å) 2π/k1 (Å)
Pristine GS Glassy SiO2 NA 2.2 − 1.53 − 4.12
C20-GS Glassy SiO2

19 20 GPa 2.7 − 1.85 − 3.40
C20-bSZ Bulk siliceous zeolite31 20 GPa 2.7 0.7 1.83 8.97 3.44
C20-pSZ Siliceous zeolite powder 20 GPa 2.3 0.63 1.77 9.94 3.56
C7.7-pSZ Siliceous zeolite powder 7.7 GPa 2.1 0.63 1.66 9.94 3.79
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Effect of ball-milling on the structure of SZ. Figure 5a shows the
S(k) values of the pristine SZ and ball-milled (BM) pSZ. The
sharp Bragg peaks from the crystalline structure of the SZ dis-
appeared after ball milling, indicating amorphization. In the
diffraction pattern of the BM-SZ, the FSDP is at k= 1.65 Å−1,
which is similar to the position of a peak observed for amorphous
SiO2 obtained by a compression at 7.7 GPa and RT. Also, a broad
peak at k= 5 Å−1, which is conventionally attributed to k322 in
pristine GS, is observed. Notably, the scattering intensity
increased remarkably compared to that of pristine GS in the low-
k region as a result of sample grinding. We also note that the
Bragg peaks observed at k ~ 0.6 Å−1, which are associated with
the zeolite cage in crystalline SZ, remarkably diminish in the BM-
sample but do not completely disappear, suggesting that the cage
breakdown is incomplete. Considering that the k0 peak has the
same k value as the Bragg peaks, it is expected that the sample
partially retains its crystallinity, although the cage structure
appears to be much more disordered because of the lack of
translational periodicity. Figure 5b, c shows the 29Si magic angle
spinning (MAS) NMR spectra of the SZs before and after ball-
milling, respectively. As indicated by dashed lines, each silicate
Qn unit was separated by peak deconvolution. In the case of SZ
before the treatment, the Q4 peak observed at −110 ppm was
asymmetric41–44. The chemical shift of the Q4 peak in 29Si MAS
NMR changes depending on the Si–O interatomic distance r and
ρ (=cosθ/(1−cosθ)) determined by the Si–O–Si bond angle θ44,45.
Because the G(r) of SZ exhibits a Si–O correlation represented by
a single normal distribution similar to that of another zeolite46,
the asymmetry of the Q4 peak in the MAS NMR spectrum should
arise from the presence of sites in the SZ with different coupling
angles. The fitting parameters for the materials used to analyse

the G(r) and 29Si NMR spectra are listed in Tables S1 and S2,
respectively. By calculating each Qn area, each Qn fraction is
quantified by calculating its area. These data are presented in
Table 2. Data for SiO2 (Fig. S4), and SZ without BM treatment47

were also included for comparison. Notably, the Q4 peak at a
higher magnetic field in the SZ disappears after ball milling.
Considering the S(k) and Q4 peaks of the sample after ball-milling
(Table S2), the Q4 species at a higher magnetic field can be
assigned to a silicate unit that contributes to the cage structure.
Figure 5d shows the S(k) values of BM-pSZ and cold-compressed
amorphous SiO2 from BM-pSZ by applying a pressure of 20 GPa
and RT. S(k) of pristine GS is also shown for comparison.
Although FSDP and k3 peaks were observed for amorphous SiO2,
both peak heights were lower than those of pristine GS. The S(k)
profiles of BM-SZ and the densified BM amorphous SiO2 are
similar to that of pristine GS at k > 3 Å–1, suggesting that the
short-range structure of BM-SZ is also similar to that of amor-
phous SiO2. Notably, a significant difference is observed in the
low-k region. Although the height of the small-angle scattering
peak below k ~ 1 Å−1 in the milling-induced amorphous SZ
sample decreases after densification, it does not completely dis-
appear. Figure 5e shows G(r) for all samples. The densities of ball-
milled samples were estimated from the slope of the dotted lines
using ρ= 1

4π
∂GðrÞ
∂r (see Fig. S5 for details). We found that the

density of the ball-milled amorphized SZ (2.2 g cm−3) is higher
than that of pristine SZ (1.6 g cm−3) and comparable to that of
GS (2.2 g cm−3). After cold compression at 20 GPa, the density of
the ball-milled amorphized SZ increases (2.4 g cm−3). Based on
these density values, we suggest that densification occurs through
the collapse of zeolite pores following the breaking of the SZ cage
during ball milling.
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Fig. 2 X-ray diffraction data showing the time-dependent variation of densified amorphous SiO2. a Total structure factors, S(k), of densified amorphous
SiO2 prepared by 20 GPa-cold compressions obtained from bulk crystal siliceous zeolite (C20-bSZ). b Total structure factors, S(k), of densified amorphous
SiO2 prepared by 20 GPa-cold compressions obtained from siliceous zeolite powder (C20-pSZ). c, d Enlarged S(k) of amorphous SiO2 and differential S(k)
between the as-prepared sample and the same sample after the stated elapsed time; the dashed lines indicate the positions of the k1 (FSDP) and k3.
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Comparison of amorphous SiO2 in k space. Finally, to compare
the pristine GS with other densified amorphous silicas prepared
from SZs, the small-k region of S(k) of the BM-pSZ is depicted in
Fig. 6, together with the data from previously reported SiO2

materials. Vertical dashed lines A and B–D serve as visual guides
to clarify the positions of k0 and k1, respectively. For amorphous
SiO2 derived from SZ, a peak at k0, which is characteristic of SZ,
was observed. Although the FSDP position is sensitive to
pressure48, a distinct correlation between the position of the
FSDP and density was observed only in the GS and not in the SZ.
However, if we exclude the BM-pSZs, we believe that a correlation
exists between the density and FSDP position of amorphous SiO2

prepared from SZs. Notably, the k0 value of BM-pSZ, whose
FSDP position was at the lowest wavevector k, was the lowest k0
peak among these materials. In SZ-derived amorphous SiO2, it is
suggested that the values of the wave vectors k0 and k1 are
correlated.

The obtained results show that the crystalline topology affects
pressure-induced material fabrication and thermal stability. The
amorphization of the SZ by cold compression is linked to the
collapse of the pores in the SZ, and a trace of the cage structure
has been already reported in a previous paper31. Notably, traces
of the SZ remained in the densified amorphous SiO2 after thermal
annealing. These traces of SZ influence permanent densification
and provide evidence of the structural differences between the

starting materials SZ and GS in amorphous SiO2. Materials with
the same chemical composition but different topologies can be
fabricated by tailoring the starting materials, which will pave the
way for the design of novel functional materials.

Amorphous materials prepared by applying high pressure to the
SZ at room temperature using various treatments were char-
acterised. The results confirm that the structural changes depend
on the stabilisation treatment and pressurisation conditions. The
X-ray structure factor S(k) of the amorphous SiO2 derived from a
single crystal of SZ changed slightly over an 11-year period. In
particular, it was found for the first time that samples prepared
from SZs by high-pressure synthesis have a characteristic k0 peak
at a lower k than that of FSDP, which is a remnant of some Bragg
peaks of SZs. Furthermore, the k0 peak is a disrupted structural
motif of SZs or a long-distance correlation rather than a remnant
Bragg peak, as the peak is shifted to a higher k. The k0 peak, which
is characteristic of a cage within the SZ, disappeared after
mechanical ball milling. The results demonstrated that the
topology of the pressure-induced amorphous materials could be
tuned by tailoring the nature of the starting materials. We are
confident that the clarification of the unique structure existing at
distances beyond the intermediate will provide a guide for opening
up a new science of amorphous materials.

Materials and methods
Sample details. SZ powder was purchased from Tosoh Corp.
(890HOA, MFI-type zeolite), and 890HOA was selected because
its Si/Al ratio is sufficiently high (>1000) and its Al content is
sufficiently low. The linear dimensions of the crystallites were
2–5 µm, and the material contained additional H+ cations.

Densification of samples. The densified SiO2 samples using SZ as
a starting material were prepared using a Kawai-type apparatus
with a Walker-module (mavo press LPR 1000-400/50; Max

Fig. 5 Effect of ball milling (BM) on the structure of siliceous zeolite (SZ). a X-ray total structure factors, S(k), of SZ with and without BM treatment. 29Si
MAS NMR spectra of SZ (b) and SZ after BM-treatment (c). d X-ray total structure factors, S(k), of BM-SZ and densified BM amorphous SiO2 obtained by
cold compression, shown together with that of pristine GS; inset: enlarged S(k) at the FSDP region. e Reduced pair distribution functions, G(r), of all
samples shown in (d). f S(k) of amorphous SiO2 (BM) measured soon after cold pressing and again after 1 year along with SiO2 and densified GS;
successive BM-SZ and GS data are displayed upward at S(k) for clarity.

Table 2 Ratio of Qn units in siliceous zeolite (SZ) and glassy
SiO2 (GS) before and after ball-milling (BM).

Chemicals Treatment Q2 Q3 Q4

SZ Before BM 0 0.15 (±0.01) 0.85 (±0.01)
After BM 0.04 (±0.01) 0.39 (±0.01) 0.57 (±0.01)

GS Before BM47 0 0 1.00
After BM 0.06 (±0.01) 0.53 (±0.02) 0.41 (±0.02)
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Voggenreiter GmbH, Mainleus, Germany) at the Frontier Materials
Laboratory, Tokyo Institute of Technology. The powdered samples
that formed into pellets were sealed in a gold capsule and pressed at
RT at an applied pressure of 20GPa for 1 h. A 1500-ton belt-type
high-temperature, high-pressure apparatus installed at the National
Institute for Materials Science (NIMS), with an applied pressure of
7.7 GPa was used to prepare the samples. The strategy was as fol-
lows: (1) the powdered sample was moulded into a cylindrical shape
with a diameter of 4 mm and height of 3 mm and (2) pressurised to
7.7 GPa in 5 h. Subsequently, (3) the applied pressure was main-
tained for 30min, after which (4) the applied pressure was reduced
to 0 GPa in 5 h. The application of high pressure at an ambient
temperature is known as cold compression.

Ball-milling treatments. To obtain a less-ordered SZ, it was
ground (by ball milling) in air at 500 rpm using a Fritsch P6
planetary ball-mill system, a silicon nitride pot, and silicon nitride
balls. To prevent the pot from heating, the system was allowed to
run for 15 min, and then stopped running for another 15 min to
cool. Overall, grinding was performed for 24 h.

Thermal annealing treatments. To verify the permanent densi-
fication of C20-bSZ, the sample was heat treated in air in a
commercially available electric furnace. The heating strategy was
as follows: (1) the sample was heated to 750 °C at a heating rate of
10 °C/min, (2) 750 °C was maintained for 1 h for thermal
annealing, following which (3) the sample was cooled to room
temperature without the use of cooling-rate control.

NMR measurements. The local structures of the Si atoms in the
pristine and ball-milled SZ were evaluated using 29Si MAS NMR
spectroscopy (JEOL ECA 300 (7.1 T) spectrometer) at a Larmor
frequency of 59.7 MHz. The sample powder was packed in a 4.0-
mm ZrO2 rotor and spun at 7.5 kHz. Single-pulse experiments
were conducted using 30° pulses with a repetition delay of 20 s.
Tetramethylsilane (TMS) was used as the reference material (0
ppm) to calibrate the 29Si chemical shift. To estimate the popu-
lation and NMR parameters of each Si species, the spectra were
fitted to Gaussian functions.

High-energy XRD measurements. High-energy XRD measure-
ments were performed on the BL04B2 beamline at SPring-8

(Hyogo, Japan) using a two-axis diffractometer dedicated to
studying disordered materials. The energy of incident X-rays was
61.34 keV. The raw data were corrected for polarisation,
absorption, and background, and the contribution of Compton
scattering was subtracted using a standard data analysis software.
The corrected X-ray diffraction data were normalised to obtain
the total structure factor, S(k).

Topological analyses. Ring size distribution calculations were
performed for SZ (reverse Monte Carlo (RMC) model)49 and GS
(molecular dynamics–RMC model)19,22,50 using the R.I.N.G.S.
code51,52. Cavity volume analysis was performed using PyMol-
Dyn code53. The code can calculate three types of cavities:
domain, centre-based (Voronoi), and surface-based cavities. We
calculated the surface cavity volumes using a cutoff distance
rc= 2.5 Å.

Data availability
All relevant data supporting the findings of this study are available from the
corresponding author upon request.
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