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Abstract
Environmental DNA (eDNA) metabarcoding provides an efficient approach for docu-
menting biodiversity patterns in marine and terrestrial ecosystems. The complexity of 
these data prevents current methods from extracting and analyzing all the relevant 
ecological information they contain, and new methods may provide better dimen-
sionality reduction and clustering. Here we present two new deep learning-based 
methods that combine different types of neural networks (NNs) to ordinate eDNA 
samples and visualize ecosystem properties in a two-dimensional space: the first 
is based on variational autoencoders and the second on deep metric learning. The 
strength of our new methods lies in the combination of two inputs: the number of 
sequences found for each molecular operational taxonomic unit (MOTU) detected 
and their corresponding nucleotide sequence. Using three different datasets, we 
show that our methods accurately represent several biodiversity indicators in a two-
dimensional latent space: MOTU richness per sample, sequence α-diversity per sam-
ple, Jaccard's and sequence β-diversity between samples. We show that our nonlinear 
methods are better at extracting features from eDNA datasets while avoiding the 
major biases associated with eDNA. Our methods outperform traditional dimension 
reduction methods such as Principal Component Analysis, t-distributed Stochastic 
Neighbour Embedding, Nonmetric Multidimensional Scaling and Uniform Manifold 
Approximation and Projection for dimension reduction. Our results suggest that NNs 
provide a more efficient way of extracting structure from eDNA metabarcoding data, 
thereby improving their ecological interpretation and thus biodiversity monitoring.

K E Y W O R D S
biodiversity monitoring, data visualization, deep learning, deep metric learning, environmental 
DNA, machine learning, neural networks, variational autoencoder

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

Loïc Pellissier and Stéphanie Manel: Co-senior authors. 

www.wileyonlinelibrary.com/journal/men
mailto:
https://orcid.org/0000-0001-8059-1354
https://orcid.org/0000-0002-0396-6383
https://orcid.org/0000-0001-5829-5479
mailto:
https://orcid.org/0000-0002-2289-8259
https://orcid.org/0000-0001-8902-6052
mailto:le.lamperti@gmail.com
mailto:loic.pellissier@usys.ethz.ch
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13861&domain=pdf&date_stamp=2023-09-13


    |  1947LAMPERTI et al.

1  |  INTRODUC TION

Human-induced disturbances affect most of the Earth's ecosystems, 
which are suffering from the accelerating impacts of climate change 
and overexploitation (Johnston et al., 2022; Jouffray et al., 2020). 
These threats alter species assemblages and lead to escalating per-
turbations in ecosystem processes (Frainer et al.,  2017; McLean 
et al., 2019), ultimately altering ecosystem services and thus human-
ity (Cinner et al.,  2020; Tigchelaar et al.,  2022). In the context of 
global change, it is crucial to capture the spatio-temporal dynamics 
of species assemblages and better understand their responses in 
order to design appropriate management and mitigation measures 
(Makiola et al., 2020). Recently, our ability to rapidly generate com-
prehensive biodiversity inventories has been enhanced by the de-
velopment of environmental DNA (eDNA) metabarcoding, which 
allows the retrieval and analysis of DNA naturally shed by organ-
isms in their environment (Deiner et al., 2017; Miya, 2022). eDNA 
metabarcoding is now operational in many ecosystems for a wide 
range of micro- and macroorganisms (Cantera et al., 2022; Cordier 
et al., 2021; Kjær et al., 2022; Mathon et al., 2022), providing infor-
mation on their taxonomic, functional, but also phylogenetic affilia-
tions (Marques, Castagné, et al., 2021; Marques, Milhau, et al., 2021; 
Rozanski et al., 2022). Given its limited field effort and ecosystem 
disturbance (Muff et al., 2023), even in the most remote locations, 
and the decrease in sequencing cost over the recent years, this ap-
proach can be scaled up to monitor many sites at high temporal fre-
quency (Agersnap et al., 2022).

Yet, eDNA metabarcoding produces a huge amount of sequenc-
ing data (i.e.  a high number of short DNA sequences), that repre-
sent complex and high-dimensional information. Typically, these 
sequences are assigned to known taxonomic units stored in a ge-
netic reference database. The incompleteness of genetic reference 
databases precludes the identification of many species (Marques 
et al., 2020), thus working with Molecular Operational Taxonomic 
Units (MOTUs), representing a cluster of similar sequences, may be 
required (Deiner et al., 2017; Floyd et al., 2002; Mathon et al., 2022). 
MOTUs are then defined by a consensus sequence. The attribute at-
tached to an eDNA MOTU is the relative frequency of the sequences 
in each MOTU and the nucleotide sequence itself. Both attributes 
can be directly related to ecosystem states and properties (Bakker 
et al., 2017). Therefore, eDNA data has the potential to reveal eco-
logical patterns that distinguish sampled sites along environmental 
or human pressure gradients (Marques et al., 2020). Such patterns 
are expected to emerge from the interaction and nonlinear combina-
tion of both abundance and phylogenetic information. However, the 
dimensionality of the massive amount of sequence information must 
be reduced to extract relevant features.

Dimensionality reduction is the transformation of high-
dimensional data into a meaningful representation of reduced di-
mensionality (Nissen et al., 2018; van der Maaten & Hinton, 2008). 
Traditionally, dimensionality reduction is performed using linear 
techniques such as Principal Component Analysis (PCA; Karl Pear-
son, 1901), Factor Analysis (Spearman, 1904) and Classical Scaling 

(Torgerson,  1952). However, due to their underlying hypotheses, 
these linear techniques cannot adequately deal with complex nonlin-
ear relationships in data such as those provided by eDNA metabar-
coding. In the last decade, many nonlinear techniques have been 
proposed for dimensionality reduction (Facco et al., 2017; Nguyen 
& Holmes,  2019). Recently, two machine learning techniques – 
the t-distributed Stochastic Neighbour Embedding (t-SNE; van der 
Maaten & Hinton, 2008) and the Uniform Manifold Approximation 
and Projection (UMAP; McInnes et al., 2018) – have shown prom-
ising results in generating two-dimensional visualizations of high-
dimensional biological data (Diaz-Papkovich et al., 2021). However, 
the interpretation of t-SNE and UMAP plots remains challenging due 
to the lack of global structure in the reduced space representation 
(Battey et al., 2021). Although these methods perform well in clus-
tering similar samples, distances between clusters are not always 
meaningful (Becht et al., 2019).

On the other hand, neural networks (NNs) have been shown to 
provide a good representation of learning capacity for various data-
sets (Sze et al., 2017). NNs are complex mathematical models con-
sisting of many operators called neurons connected as a network.

Within the framework of ordination and dimensionality reduc-
tion, there are contrastive methods, such as UMAP and t-SNE, that 
work on learning features by satisfying distances between observa-
tions. Other methods instead use generative latent variable models, 
where prior distributions are specified for the unobserved structure 
in the data so that these unknown properties can be inferred by pos-
terior inference. Examples include factor analysis, probabilistic PCA, 
and variational autoencoders (VAEs). VAEs combine two deep NNs, 
where the first network (the encoder) encodes input data (e.g. the 
number of sequences per MOTU detected in each sample) as a prob-
ability distribution in a latent space, and the second network (the 
decoder) attempts to reconstruct the input data given a set of latent 
coordinates. VAEs have been used extensively in image generation 
(e.g. Gulrajani et al., 2016; Hou et al., 2018; Larsen et al., 2016), and 
several recent studies have applied them to dimensionality reduc-
tion and classification of single-cell RNAseq data (Becht et al., 2019; 
Grønbech et al., 2018; Lafarge, Caicedo, et al., 2019; Lafarge, Pluim, 
et al., 2019; Wang & Gu, 2018). Thanks to the design flexibility of 
artificial NNs in general, they also have the advantage of being able 
to encode and mix information from different data types.

In particular, Deep Metric Learning (DML) lies between con-
trastive and generative latent variable models. DML is an approach 
based directly on a distance metric that aims to establish similarity 
or dissimilarity between objects (Kulis, 2013). Although DML aims 
to reduce the distance between similar objects, it also aims to in-
crease the distance between dissimilar objects (Duffner et al., 2021). 
Through DML, it is possible to use a distance measure relevant to 
the case study as a contrastive model but also to encode different 
inputs via NNs.

The potential of VAE and DML to ordinate eDNA samples in a 
low-dimensional space has not yet been demonstrated. In this study, 
we present two new methods, one based on VAE and the other 
on DML, to visualize eDNA biodiversity indicators. We tested our 
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methods on three different published eDNA datasets: a fish eDNA 
dataset collected in the Mediterranean Sea (Boulanger et al., 2021), 
and two eukaryotic plankton eDNA datasets from the Tara Ocean 
expedition (de Vargas et al.,  2015). We used both the number of 
sequences found for each molecular operational taxonomic unit 
(MOTU) detected and their corresponding nucleotide sequences. To 
validate these two new methods, we compare them with other clas-
sical methods: PCA, t-SNE and UMAP for the VAE-based method, 
and Nonmetric Multidimensional Scaling (NMDS) for the DML-based 
method. Finally, we show how the proposed methods outperform 
classical methods in their representation of biodiversity indicators.

2  |  MATERIAL S AND METHODS

2.1  |  VAE-based method applied to eDNA data

The VAE-based method, called VAESeq (Variational AutoEn-
coder + Sequences) (Figure 1), processes eDNA samples into a two-
dimensional latent space. The model consists of one autoencoder 
(AE) and one VAE. The AE takes as input the nucleotide sequences 
of the detected MOTUs within each sample and compresses them 
in the latent encoding zAE. The VAE encoder then receives and pro-
cesses zAE in combination with the number of sequences found for 
the MOTUs detected in the samples. By mixing the two inputs, the 
VAE encodes the samples as points in a 2D latent space called zVAE. 
In the decoding part, the VAE decoder seeks to recreate the two 
inputs from zVAE. The decoder measures how much information is 
lost from the input during the encoding and optimizes the network 

accordingly. To reduce the running time of the model, we separately 
trained the AE to encode nucleotide sequences and then trained the 
VAE.

To encode the DNA sequence information in the AE, the nucle-
otide sequences are equalized to the same length. We have chosen 
to keep the maximum length, by padding the sequences with nu-
cleotide code N from the IUPAC nucleotide code. Each canonical 
base (A, C, T, G) of the sequence and the IUPAC ambiguity codes are 
translated into an appropriate four-dimensional probability distribu-
tion over the four canonical bases (A, T, C, G), including uncertain 
base sequences (e.g. W and S). For example, A becomes [1, 0, 0, 0] 
or W becomes [0.5, 0, 0, 0.5] (Flück et al., 2022). Furthermore, N 
nucleotides added to equalize the sequence length become [0.25, 
0.25, 0.25, 0.25]. To maintain the same dimension of the AE input, 
we combine the nucleotide sequences with the presence/absence of 
each MOTU in each sample. Therefore, each sample is represented 
by a tensor containing the translated nucleotide sequences in ma-
trices of the detected MOTUs and, alternatively, a zero matrix if the 
MOTU was not detected.

The AE component of the network uses the Adam optimizer and 
the binary cross-entropy loss function to optimize the network. The 
AE encoder consisted of seven fully connected layers with decreas-
ing widths down to 100, rectified linear unit activations, and dropout 
regularization (20% dropout). A mirror architecture was used as the 
decoder.

The VAE component of the network used the Adam optimizer 
and two loss functions to reconstruct the two inputs: the VAE loss 
function (Kullback–Leibler divergence + reconstruction error) for the 
occurrence information and binary cross-entropy for the nucleotide 

F I G U R E  1  Diagram of the VAE-based method applied to eDNA data (VAESeq). The model consists of one autoencoder (AE) and one 
variational autoencoder (VAE). The AE takes as input the genetic sequence information of each MOTU combined with the presence/absence 
of each MOTU within each sample to generate the first latent encoding zAE. This information is then passed to the VAE in one encoder layer. 
Thus, at each iteration, the VAE receives as input the number of sequences detected for each MOTU in one sample and the autoencoder 
embedding zAE. The VAE processes the two inputs and reduces the dimensionality of the samples to a two-dimensional latent space, zVAE. 
In zVAE, we find the 2D representation of all data points (Figure S3a,b). In the decoding part, VAE reconstructs the two inputs in order to 
optimize the network accordingly.
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    |  1949LAMPERTI et al.

sequences latent encoding different combinations, we set the loss 
function weights to 1 and 0.2 respectively.

The VAE encoder consisted of three fully connected layers with 
decreasing widths down to 2, rectified linear unit activations, and 
dropout regularization (20% dropout). A mirror architecture to the 
VAE encoder was used as the decoder.

2.2  |  DML-based method on β -diversity as 
a distance

The DML-based method, called ENNBetaDist (Encoder Neural 
Networks based on Beta diversity Distance matrix), (Figure  2) 
trains the network according to the pairwise β-diversity calculated 
between samples. The pairwise β-diversity is used as a distance 
measure on each pair of samples, to help the network distribute 
the points in the 2D latent space. We used pairwise Jaccard's dis-
similarity as a measure of β-diversity, using the ‘betapart’ library 
in R.

The structure of ENNBetaDist consists of two encoder NNs. 
The encoders of ENNBetaDist are similar to those of VAESeq, with 
differences in the number of hidden layers, training, and optimi-
zation. VAESeq reconstructs the input from the 2D latent space. 
However, we want the latent space to respect the distances we in-
tend to optimize. Therefore, we implemented a second NN, ENN-
BetaDist, consisting of two encoder NNs.

At each iteration, each encoder takes as input a sample contain-
ing the number of sequences per MOTU and the latent encoding 
zAE from the AE of the nucleotide sequences detected in the sam-
ple. Then, the first encoder projects the first sample in its two-
dimensional latent space z1 and the second encoder projects the 
second sample in its two-dimensional latent space z2. To optimize 
the model, we compute the Euclidean distance between the two 
points in z1 and z2 and compare it with the pairwise β-diversity via a 
loss function (the mean square error (MSE)). In z1 and z2 we find the 
2D representations of all data points. The two representations are 
similar, and for the sake of simplicity, we analyse only the first one 
as the final latent space produced by our model. Ultimately, ENN-
BetaDist seeks to represent pairwise the distances related to the 
species composition of the samples (i.e. the information provided by 
Jaccard's β-diversity) as distances between points in the 2D space. 
The encoders consisted of five fully connected layers with decreas-
ing widths down to 2, rectified linear unit activations and dropout 
regularization (20% dropout).

2.3  |  Sensitivity

To perform a cross-validation of our two new methods, we set a 
global random seed to split 80% of the original dataset in the train-
ing set and 20% in the validation set. We repeated the tests until 
the results were stable, ensuring that we did not overfit by moni-
toring the loss on both the training and validation set (Figure  S1). 

We implemented the models in R (version 4.1.3, R Core Team, 2022) 
using TensorFlow (Abadi et al.,  2016) and Keras (Chollet & Oth-
ers, 2015) libraries.

2.4  |  Case study

2.4.1  |  Datasets

We tested our methods on three different published eDNA datasets: 
a fish eDNA dataset collected in the Western Mediterranean Sea 
(Boulanger et al., 2021) and two eukaryotic plankton eDNA datasets 
from the Tara Ocean Campaign (de Vargas et al., 2015). Details are 
given in Table 1.

eDNA samples from the Western Mediterranean Sea were col-
lected at 77 stations in six marine regions covering the Western Med-
iterranean, including fished and no-take protected areas (Boulanger 
et al.,  2021). eDNA extraction and amplification were performed 
at the SPYGEN facility. PCR amplification was performed using the 
teleo primer pair, targeting a 64 bp fragment of the mitochondrial 
DNA 12S rRNA gene specific for teleost fishes and elasmobranches 
(Valentini et al.,  2016). Data collection and sample processing are 
described in detail in Appendix S1.

The Tara Ocean datasets were obtained from the Tara Oceans 
V9 rDNA metabarcoding dataset (De Vargas et al., 2015) collected 
across tropical and temperate oceans during the circumglobal Tara 
Oceans expedition. The analysis was based on metabarcoding data 
from 129 stations in various oceanic provinces worldwide, using 18S 
ribosomal DNA sequences across the intermediate plankton-size 
spectrum. All details on data collection, extraction, and sequencing 
can be found in the article by de Vargas et al. (2015). We selected 
the Dictyochophyceae and Telonemia subsets by taxonomic identifi-
cation, resulting in two smaller datasets of similar sizes to the West-
ern Mediterranean one whose specifications are shown in Table 1.

2.5  |  Comparison and evaluation

We tested the ability of the two new methods to represent biodi-
versity indicators in a 2D space based on their species and sequence 
composition. We compared the 2D representation of VAESeq with 
three other classical dimensionality reduction methods: PCA, which 
is linear, t-SNE and UMAP, which are nonlinear.

We also analysed the latent encoding zAE generated by the au-
toencoder using PCA to evaluate the results of the first part of the 
models, which we call AEgen + PCA (AutoEncoder genetic + PCA). 
Then, we compared it with a simple VAE where the latent encoding 
zAE of the nucleotide sequences was not given as input. Likewise, 
we compared the 2D representation of ENNBetaDist to NMDS, a 
nonlinear method.

To summarize the inputs employed by each method, PCA, t-SNE, 
UMAP, VAE and NMDS use the presence/absence information of 
each MOTU in each sample and the number of sequences found 
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during eDNA extraction for each detected MOTU. AEgen + PCA 
uses the MOTU nucleotide sequences in addition to their presence/
absence information. Our methods, VAESeq and ENNBetaDist, use 
all three inputs: the presence/absence information, the number 
of sequences found for each detected MOTU, and the nucleotide 
sequences. Moreover, NMDS and ENNBetaDist utilize Jaccard's β-
diversity for the optimization process (Table S1).

To evaluate the performance of all methods, we used multiple 
regression on distance matrices (MRM) representing the sample 
in the reduced 2D space. For MRM, we implemented two differ-
ent tests and assessed the statistical significance using permuta-
tions. TEST 1 performs a multiple regression between the sample 
distances in the two-dimensional latent spaces of each method 
and their Jaccard's β-diversity. TEST 2, instead of using Jaccard's 

F I G U R E  2  Diagram of the DML-based method applied to eDNA data using pairwise Jaccard's β-diversity (ENNBetaDist). The DML-based 
method ENNBetaDist trains the network according to the pairwise β-diversity calculated for each pair between samples. The pairwise 
β-diversity is used as a distance measure to help the network distribute the points in the latent space. The two encoders process the two 
samples, combining the number of sequences found for each MOTU detected and the latent encoding zAE from the AE of the nucleotide 
sequences detected in each sample, and project them into two points in z1 and z2. To optimize the model, we calculate the Euclidean 
distance between the two points in z1 and z2 and compare it with Jaccard's β-diversity via a loss function (the mean square error (MSE)). In z1 
and z2, we find the 2D representation of all the data points (Figure S3c,d).

TA B L E  1  Descriptive table of the three eDNA datasets: Western Mediterranean fish dataset (Boulanger et al., 2021), Tara Ocean 
Dictyochophyceae dataset (de Vargas et al., 2015), and Tara Ocean Telonemia dataset (de Vargas et al., 2015). Details on the calculation of 
sequence α-diversity can be found in the Appendix S1.

Western Mediterranean Fish 
Dataset Tara Ocean Dictyochophyceae Dataset

Tara Ocean 
Telonemia Dataset

Tot number of samples 394 319 321

Tot number of MOTUs 290 223 237

Min MOTU richness 1 1 1

Max MOTU richness 92 57 49

Min sequence length 53 76 103

Max sequence length 76 151 151

Min sequence α-diversity 1 1 1

Max sequence α-diversity 16.74 10.54 10.41

 17550998, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13861 by C

ochrane France, W
iley O

nline L
ibrary on [23/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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β-diversity matrix, uses the distance matrix calculated on the β-
diversity between sequences within the Hill number framework. 
In addition, we examined the ability of our methods to represent 
the MOTU richness and sequence α-diversity indicators through 
linear correlations with the two dimensional space. For simplicity, 
we only reported the correlations for the axis with the highest 
correlation denoted as V.

The baseline methods were performed using R version 4.1.3 
with the packages ‘stats’ for PCA, ‘umap’ (Konopka,  2019) for 
UMAP, ‘Rtsne’ (Kjær et al.,  2022) for t-SNE, ‘TensorFlow’ with 
‘Keras’ for VAE. The NMDS method was performed using the 
function metaMDS from the package ‘vegan’ specifying ‘Jaccard's’ 
as distance. We used the MRM function of the ‘ecodist’ package 
to perform the tests. We computed the Euclidean distance matrix 
between each pair of samples in the 2D latent spaces using the 
function dist from the package ‘stats’ and the Jaccard's β-diversity 
using the library ‘betapart’. We calculated the distance matrix of 
sequence β-diversity between each pair of samples using the Hill 
number framework (Abadi et al., 2016). The genetic distance be-
tween each pair of sequences was computed with the function 
dist.gene from the package ‘ape’. Sequence β-diversity was cal-
culated with the function beta.fd.hill from package ‘mFD’, with 
parameters q = 1 and τ = ‘mean’ (Chao et al.,  2020; Magneville 
et al., 2022), using Sørensen's β-diversity.

We have visualized the 2D space results of ENNBetaDist in the 
Western Mediterranean fish dataset on a geographic map (Figure 4). 
To visualize these data, we used the HSV (hue-saturation-value) ap-
proach to transform the coordinates of the points into colours. This 
visualization technique allows us to gain valuable insights into the 
2D space results of the ENNBetaDist analysis. For each point, the 
HSV hue component was determined from the distance of the point 
from zero (i.e. the origin) of the 2D latent space. This resulted in 
creating a colour gradient. Furthermore, the HSV value component 
was derived from the slope of the vector defined by the point and 
the origin of the 2D latent space, introducing additional variations in 
the colour representation. The HSV saturation component was set 
to one. Points from full reserve (i.e. no-take areas) are represented 
by circles, while points from other locations are represented by 
squares. We used the hsv function from R's grDevices.

3  |  RESULTS

3.1  |  Comparison with other methods

We first tested the representation of sequence α-diversity, MOTU 
richness, Jaccard's β-diversity, and sequence β-diversity in the 2D 
spaces of several classical dimension reduction methods. We then 
compared the results of VAESeq and the autoencoder embedding 
followed by a PCA (AEgen + PCA) with the classical PCA, t-SNE, 
UMAP, and a simple VAE (Table 2). Likewise, we compared the re-
sults of ENNBetaDist with NMDS (Table  3) since both work with 
Jaccard's β-diversity information a priori.TA
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3.1.1  |  VAESeq

Out of the three datasets considered, the highest R2 values were 
achieved by VAESeq and AEgen + PCA (Table 2, Table S2). Indeed, 
when we tested the correlation between the distance matrix of 
samples in 2D latent spaces and the Jaccard's distance matrix (TEST 
1), the R2 values of AEgen + PCA and VAESeq (VAESeq: R2 = .34; 
AEgen + PCA: R2 = .31) are almost 10 times higher than those of 
PCA (R2 = .04), and 3 times higher than those of t-SNE (R2 = .11), and 

UMAP (R2 = .11). The worst-performing method was PCA, which is 
the only linear method used. For example, in the Western Mediter-
ranean fish dataset, the first principal component of PCA explained 
only 2.9% of the variance in the data, and the correlation was not 
significant in any test (Figure S2a, Table 2). VAE failed to extract in-
formation for the three datasets when the nucleotide sequence was 
not used (R2 = .04). Furthermore, for VAESeq and AEgen + PCA, the 
R2 values increased when we tested the correlation between the dis-
tance matrix of samples in 2D latent space and the distance matrix 

TA B L E  3  Comparison between the 2D representation of ENNBetaDist and the NMDS method.

MOTU richness Sequence α-diversity β – Diversity

MOTU richness – V Sequence α-diversity – V

TEST 1 TEST 2

D1s–Dβ–jac D1s–Dβ–gen

R2 p-value R2 p-value R2 p-value R2 p-value

Western Mediterranean Fish Dataset

NMDS 0.0821 .001 0.0124 .001 0.0117 .001 0.0369 .006

ENNBetaDist 0.9018 .001 0.7116 .001 0.4106 .001 0.7415 .001

Tara Ocean Dictyochophyceae Dataset

NMDS 0.7527 .001 0.6907 .001 0.3802 .001 0.5337 .001

ENNBetaDist 0.9612 .001 0.8639 .001 0.4440 .001 0.6288 .001

Tara Ocean Telonemia Dataset

NMDS 0.5238 .001 0.4918 .001 0.6428 .001 0.5640 .001

ENNBetaDist 0.9245 .001 0.8034 .001 0.4411 .001 0.5802 .001

Note: The table shows the correlation test values for the two methods in representing the three different ecological indicators of MOTU richness, 
sequence α-diversity and β-diversity. For the MOTU richness and the sequence α-diversity, we study the linear regression with the two axes of the 
2D space and we reported the best, represented by V. For the β-diversity, we explore the use of multiple regression on distance matrices (MRM), and 
tests of statistical significance are performed using permutations. TEST 1 performs the multiple regression between the distance matrix between the 
sample point distances of the two-dimensional latent spaces of each method and Jaccard's β-diversity between the samples. In TEST 2, instead of 
using the distance matrix based on Jaccard's β-diversity, we use the distance matrix calculated on the β-diversity between sequences within the Hill 
number framework. The best results for each test are shown in bold.

F I G U R E  3  Correlation plots between the ordination of data samples in the 2D spaces of the VAESeq and ENNBetaDist with MOTU 
richness (a, d), sequence α-diversity (b, e) with one axe of the 2D latent spaces (V), and between the Euclidean distance between the samples 
in the 2D latent spaces of the two methods and the sequence β-diversity matrix (c, f) on the Western Mediterranean fish dataset. The R2 
values for each correlation test performed are shown in each figure (p < .001).
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    |  1953LAMPERTI et al.

based on genetic β-diversity (for VAESeq: R2 = .48; for AEgen + PCA 
R2 = .43). VAESeq and AEgen+PCA were able to accurately repre-
sent the gradient of MOTU richness and sequence α-diversity for all 
three datasets, where the other classical methods failed (Table S2).

3.1.2  |  ENNBetaDist

For Tara Ocean datasets, both models succeeded in representing the 
Jaccard's β-diversity (for ENNBetaDist: R2 = .44; For NMDS: R2 = .51), 
and the sequence β-diversity (for ENNBetaDist: R2 = .61; For NMDS: 
R2 = .55) (Table 3). For the Western Mediterranean fish dataset ENN-
BetaDist succeeded in representing the Jaccard's β-diversity (R2 = .41) 
and the sequence β-diversity (R2 = .74), while NMDS failed due to 
the presence of one outlier (Jaccard's β-diversity R2 = .01; sequence 
β-diversity R2 = .04; Figure S3). By removing the outlier, NMDS and 

ENNBetaDist achieved similar β-diversity estimates. Moreover, for 
the representation of MOTU richness and sequence α-diversity, ENN-
BetaDist proved to be better than NMDS in representing both indica-
tors, achieving values of R2 >.92 for MOTU richness, and R2 >.71 for 
sequence α-diversity in the three datasets (Table 3).

We describe below in more detail only the results of the Western 
Mediterranean eDNA fish dataset, while the results for the other 
datasets are provided in Figure S4.

3.2  |  Latent spaces representations and 
ecological interpretation on Western Mediterranean 
eDNA dataset

The 2D latent space representations of the eDNA fish samples 
using two new methods (Figure S5) revealed marked gradients both 

F I G U R E  4  Geographical map of the Western Mediterranean fish dataset (a), illustrating the resulting 2D latent space of ENNBetaDist. To 
achieve this visualization, we employed the HSV (hue-saturation-value) approach, which allowed us to transform the coordinates of eDNA 
samples into colors (b). Specifically, the HSV hue component of each sample was determined based on its distance from zero in the 2D latent 
space, resulting in a colour gradient. The HSV value component was derived from the slope of the vector defined by the sample and the origin, 
introducing further colour variations. The HSV saturation component was set to one, ensuring a consistent saturation for all samples. Circles 
represent samples from reserves (i.e. no-take areas), while squares represent other regions. The visualization revealed interesting insights, 
particularly in identifying the pink cluster, corresponding to protected areas in the Mediterranean Sea and its nearby regions. Moving from 
west to east, these areas were identified as Cerbere-Banyuls, Carry-le-Rouet and Riou, Porquerolles, Cap Roux, and Calvi (c).
Note: To better visualize the data in the maps (c), we applied a small amount of noise to the coordinates of the samples, resulting in artificial 
distribution points on land.
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1954  |    LAMPERTI et al.

in terms of MOTU richness (Figures 3a–c) and sequence α-diversity 
(Figures  3b–d). The two gradients were visible along both direc-
tions of the 2D latent space. For simplicity, we only reported the 
axis with the highest correlation denoted as V. For both methods, 
we found that V was significantly and positively correlated with 
the sequence α-diversity (Pearson's r = .80, p < .001 for VAESeq 
Figure 3a; r = .84, p < .001 for ENNBetaDist Figure 3d). V was also 
significantly and positively correlated with the MOTU richness 
(r = .86, p < .001 for VAESeq Figure  3b; r = .95, p < .001 for ENN-
BetaDist Figure  3e). We tested the correlation between the 2D 
spatial representation of VAESeq and ENNBetaDist with Jaccard's 
and sequence β-diversity matrices (TEST 1 and 2; Tables 2 and 3). 
We found that the distance between samples in the 2D spaces of 
the different methods was strongly correlated with the distance 
between samples expressed as Jaccard's and sequence β-diversity. 
Furthermore, we reported the resulting 2D latent space of ENN-
BetaDist in the geographical map of the Western Mediterranean 
Sea using an HSV approach (Figures 4a,b). The geographical map 
of the dataset showed a clustering of protection levels (Figure 4a). 
This was supported by a significant association tested by a general-
ized linear model (GLM) between the level of protection and the 
distance of the samples from zero in the 2D latent space (HSV hue 
value) (likelihood ratio test on the GLM, p-value = .001). Remark-
ably pink clusters on the map corresponded to the protected areas 
located in the Mediterranean Sea and its immediate surroundings. 
Moving from west to east, these areas were identified as Cerbere-
Banyuls, Carry-le-Rouet and Riou, Porquerolles, Cap Roux and 
Calvi (Figure 4c). Additionally, the pink cluster also corresponded 
to eDNA samples with the highest values of MOTU richness and 
the highest values of sequence α-diversity (Figure S5c,d).

4  |  DISCUSSION

The arrival of big data in ecology, facilitated by new technologies 
(Besson et al., 2022; Farley et al., 2018), makes dimensionality re-
duction, as well as data visualization, important analytical tools 
for ecological interpretations. In this study, we introduce two new 
deep learning-based methods that combine different types of NNs 
to ordinate eDNA samples and visualize ecosystem properties in a 
two-dimensional space: the first is based on variational autoencoder 
(VAE), and the second on deep metric learning (DML). The strength 
of our new methods lies in their ability to combine multiple inputs 
simultaneously, namely the number of sequences found for each 
molecular operational taxonomic unit (MOTU) detected and their 
corresponding nucleotide sequence. Using three different datasets 
- a fish eDNA dataset collected in the Mediterranean Sea (Boulanger 
et al., 2021), and two eukaryotic plankton eDNA datasets from the 
Tara Ocean expedition (de Vargas et al., 2015) – we show that our 
methods are able to represent three different biodiversity indicators 
in the two-dimensional latent space: (i) MOTU richness per sample, 
(ii) sequence α-diversity per sample and (iii) Jaccard's and sequence 
β-diversity between samples along a gradient in the latent space 

(Figure 3 and Figure S4, Tables 2 and 3). Thus, the 2D representation 
obtained reveals the ecological information underlying the structure 
of fish communities. In addition, we highlight how VAESeq outper-
forms other dimensionality reduction techniques, such as PCA, t-
SNE, UMAP and even a simple VAE without sequence information 
added, in the visualization of ecosystem properties (Table 2). Like-
wise, ENNBetaDist outperforms NMDS in 11 of the 12 tests per-
formed and manages to cope with the presence of an outlier in the 
Western Mediterranean fish dataset (Table 3).

In contrast, linear methods such as PCA result in poor dimen-
sionality reduction to ordinate eDNA samples (Table 2; Figure S2a). 
This is due to the complexity of eDNA data (Miya,  2022; Xiong 
et al.,  2022). Indeed, despite its potential in biodiversity monitor-
ing (Mathon et al.,  2022; Pawlowski et al.,  2022; van der Heyde 
et al.,  2022), eDNA metabarcoding can be limited by false reads 
due to contamination, errors that can occur during the extraction, 
PCR or sequencing process (Bohmann et al.,  2014; Calderón-
Sanou et al., 2020; Creer et al., 2016; Ficetola et al., 2016; Hering 
et al.,  2018). Although field and laboratory practices can mitigate 
some of this, the risk of error cannot be eliminated and must be 
considered (Burian et al., 2021). Furthermore, eDNA metabarcoding 
sampling produces large, high-resolution datasets that are complex 
and highly dimensional, with a single observation from the experi-
mental system containing measurements describing multiple traits 
(Hallam et al., 2021). For this reason, the application of neural archi-
tectures such as VAESeq and ENNBetaDist provides a better solu-
tion for understanding and representing eDNA data.

Neural networks allow for the integration of multiple inputs 
into a single model (Cichy & Kaiser,  2019; LeCun et al.,  2015; 
Schmidhuber, 2015). This is particularly relevant for the analysis 
of eDNA metabarcoding data, which combines different types of 
information (Table S1). Our two new methods combine the num-
ber of sequences found for each MOTU and the nucleotide se-
quence of the detected MOTUs, which provide complementary 
information about the rarity and dissimilarity of the sequences, 
respectively. Our methods can then represent eDNA samples 
in 2D space, placing samples in relation to each other according 
to their composition (Figure 3, Figure S4). Due to the process of 
phylogenetic niche conservatism (Wiens et al., 2010) and environ-
mental filtering (Guimarães, 2020), species present in a particular 
habitat or under a particular management (e.g. reserve) may show 
some phylogenetic and trait clustering (Jarzyna et al., 2021). In the 
context of eDNA, it is therefore expected that if two MOTUs are 
present in the same habitat, their nucleotide sequence similarity, 
even based on a short sequence, will be higher than for MOTUs 
from different habitats. Therefore, this genetic ‘proximity’ infor-
mation, taken into account in our two methods, contributes to the 
ordination of eDNA samples in a lower-dimensional space along 
ecological, environmental or management gradients. Furthermore, 
despite the short length of the recovered sequence in metabar-
coding (teleo fish marker is approximately 60 pb, Table  1), our 
results indicate that such nucleotide sequence information can 
inform species ecology and biogeography. Here, the manipulation 
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of the nucleotide sequence highlights the proximity of sequences 
where the respective MOTUs are present in the different sam-
ples. Therefore, the composition of each MOTU together with its 
DNA sequence improves the representation of fish biodiversity 
and its indicators. In addition, we show that a simple VAE, using 
only the information on the number of sequences present in each 
sample, provides a poor representation of the data (Table 2). The 
sequences turn out to be crucial for good information extraction.

Instead of relying solely on the number of sequences identified 
per MOTU or the nucleotide sequences as in Cordier et al. (2021) 
and Flück et al.  (2022), our methods combine both information 
(Table  S1). VAESeq is based on VAE that is optimized to recon-
struct the input data. ENNBetaDist is a DML method that also 
uses the diversity information (here the β-diversity) as a distance 
metric between samples. Using VAESeq for data extraction has 
the advantage of treating each data independently because it does 
not rely on any pairwise distance between samples. In this case, 
the model is free to discover connections and highlights possible 
new ones in a fully unsupervised learning process. Alternatively, 
ENNBetaDist helps to represent samples in a 2D latent space ac-
cording to an input metric. ENNBetaDist is also able to represent 
the data and the three biodiversity indicators in the 2D space 
despite the strong perturbation due to an outlier, in contrast to 
the NMDS method (Table 3, Figures S3–S5). In addition, two new 
methods allow users to define the output dimensionality while 
preserving the global geometry (i.e. relative positions in the 2D 
latent space) better than classical methods. Furthermore, in the 
case of the Western Mediterranean eDNA dataset, ENNBetaDist 
revealed a clustering of protected sites (pink cluster on the map, 
Figure   4a, c). This result of an effect of protection on β-diver-
sity supports previous eDNA studies analyzing the same data-
set (Boulanger et al., 2021; Dalongeville, Boulanger, et al., 2022; 
Dalongeville, Nielsen, et al., 2022) and non-eDNA studies in the 
Mediterranean (Giakoumi et al., 2017).

Our results demonstrate that NNs provide a more efficient way 
of extracting structure from eDNA metabarcoding data than tra-
ditional dimension reduction methods, thereby improving future 
ecological interpretation. The resulting biodiversity indices can 
thus be used in future applications to improve our understanding 
of the processes behind spatial patterns coming from other types 
of monitoring approaches and in any other fields. Visualizing eco-
system  eDNA sequences can improve our understanding of bio-
diversity and ecosystem properties, and thus help stakeholders in 
their decisions.
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